Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Yan Cao, Zhiqiang Kang, Feng Yang, Tong Zhou, Dongmei Liu, Rui Wang. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science, 2022, 33(3): 681-695. doi: 10.1007/s12583-022-1634-0
Citation: Yan Cao, Zhiqiang Kang, Feng Yang, Tong Zhou, Dongmei Liu, Rui Wang. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science, 2022, 33(3): 681-695. doi: 10.1007/s12583-022-1634-0

Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane

doi: 10.1007/s12583-022-1634-0
More Information
  • Corresponding author: Zhiqiang Kang, zk99201@163.com
  • Received Date: 18 Sep 2021
  • Accepted Date: 09 Feb 2022
  • The Lhasa terrane records voluminous magmatism related to the subduction of the Neo-Tethyan oceanic lithosphere, the study of which constrains the tectonomagmatic evolution of the region. We report zircon U-Pb ages, whole-rock compositions and Sr-Nd isotopic data from volcanic rocks in the Bangba district within the central Lhasa subterrane to constrain their magmatic source and petrogenesis. Zircon U-Pb dating of two volcanic rock samples yields End Cretaceous ages of 70.0 ± 0.8 and 74.3 ± 1.2 Ma. The rocks have high SiO2 (65.41 wt.%–68.45 wt.%), Al2O3 (16.16 wt.%–16.59 wt.%) and K2O (5.00 wt.%–6.73 wt.%) contents, and low TFe2O3 (2.33 wt.%–2.79 wt.%), MgO (0.64 wt.%–1.44 wt.%) and TiO2 (0.61 wt.%–0.65 wt.%) contents, with aluminium saturation indices (A/CNK) of 0.99–1.06. The major- and trace-element compositions of the rocks show they are metaluminous to slightly peraluminous high-K calc-alkaline trachydacite. The relatively high SiO2 and Sr-Nd isotopic compositions ((87Sr/86Sr)i = 0.722 654, 0.722 038 and 0.725 787 andεNd(t) = -12.27, -12.36 and -6.09, respectively) indicate that the trachydacites formed by partial melting of crustal material. The trachydacites are relatively enriched in light rare earth elements, depleted in heavy rare earth elements, have high (La/Yb)N and (Gd/Yb)N ratios (> 61 and > 6, respectively), and low Y (< 18 ppm) and Yb (< 18 ppm) contents, indicating they most likely formed from partial melting of lower crust in the garnet stability field. Considering the geodynamic setting of the region during this period, partial melting of the ancient Lhasa crust was likely triggered by underplating mafic magmas during rollback of the Neo-Tethyan slab.

     

  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Cao, S. H., Wang, Z., Lou, F., et al., 2014. Prospecting Analysis and Metallogenic Regularity of Iron and Copper in the Middle Gangdese, Tibet. Acta Geologica Sincia, 88(11): 2108-2118 (in Chinese with English Abstract)
    Cao, Y., Kang, Z. Q., Xu, J. F., et al., 2020. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block. Earth Science, 45(5): 1573-1592. https://doi.org/10.3799/dqkx.2019.161 (in Chinese with English Abstract)
    Chen, B. B., Ding, L., Xu, Q., et al., 2016. U-Pb Age Framework of The Linzizong Volcanic Roks from The Linzhou Basin, Tibet. Quaternary Science, 36(5): 1037-1054 (in Chinese with English Abstract)
    Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9): 745-748. https://doi.org/10.1130/g22725.1 doi: 10.1130/G22725.1
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
    de Hollanda, M. H. B., Pimentel, M. M., de Sá, E. F. J., 2003. Paleoproterozoic Subduction-Related Metasomatic Signatures in the Lithospheric Mantle beneath NE Brazil: Inferences from Trace Element and Sr-Nd-Pb Isotopic Compositions of Neoproterozoic High-K Igneous Rocks. Journal of South American Earth Sciences, 15(8): 885-900. https://doi.org/10.1016/s0895-9811(03)00014-2 doi: 10.1016/S0895-9811(03)00014-2
    DePaolo, D. J., 1988. Neodymium Isotope Geochemistry. Minerals & Rocks, 20(3): 159-174
    Ding, L., Lai, Q. Z., 2003. New Geological Evidence of Crustal Thickening in the Gangdese Block Prior to the Indo-Asian Collision. Chinese Science Bulletin, 48(15): 1604-1610. https://doi.org/10.1007/bf03183969 doi: 10.1007/BF03183969
    Duan, Z. M., Li, G. M., Li, Y. X., et al., 2014. Geochronology and Geochemical Characteristics of Ore-Bearing Porphyry in Longgen Lead-Zinc Deposit of Middle-Gangdese Metallogenic Belt, Tibet. Mineral Deposits, 33: 625-638 (in Chinese with English Abstract).
    Gao, Y. F., Wei, R. H., Hou, Z. Q., et al., 2008. Eocene High-MgO Volcanism in Southern Tibet: New Constraints for Mantle Source Characteristics and Deep Processes. Lithos, 105(1/2): 63-72. https://doi.org/10.1016/j.lithos.2008.02.008
    Guan, Q., Zhu, D. C., Zhao, Z. D., et al., 2010. Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet: Products of Neo-Tethyan Ridge Subduction? Acta Petrologica Sinica, 26(7): 2165-2179 (in Chinese with English Abstract)
    Guo, L., Zhang, H. F., Harris, N., et al., 2011. Origin and Evolution of Multi-Stage Felsic Melts in Eastern Gangdese Belt: Constraints from U-Pb Zircon Dating and Hf Isotopic Composition. Lithos, 127(1/2): 54-67. https://doi.org/10.1016/j.lithos.2011.08.005
    Guo, L., Zhang, H. F., Harris, N., et al., 2013. Late Cretaceous (~81 Ma) High-Temperature Metamorphism in the Southeastern Lhasa Terrane: Implication for the Neo-Tethys Ocean Ridge Subduction. Tectono-physics, 608: 112-126. https://doi.org/10.1016/j.tecto.2013.10.00 doi: 10.1016/j.tecto.2013.10.007
    Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Develop-ment of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
    He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1/2/3/4): 15-37. https://doi.org/10.1016/j.tecto.2007.01.005
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
    Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015a. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1 doi: 10.1130/G36362.1
    Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015b. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
    Huang, W., Dupont, N. G., Lippert, P. C., et al. 2015. What was the Paleogene Latitude of the Lhasa Terrane? A Reassessment of the Geochronology and Paleomagnetism of Linzizong Volcanic Rocks (Linzhou Basin, Tibet). Tectonic, 34(3): 594-622. https://doi.org/10.1002/2014tc003787 doi: 10.1002/2014TC003787
    Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009a. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
    Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2009b. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China Series D: Earth Sciences, 52(9): 1240-1261. https://doi.org/10.1007/s11430-009-0131-y
    Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2014. The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet. Lithos, 210/211: 168-180. https://doi.org/10.1016/j.lithos.2014.10.001
    Jiang, J. S., Zheng, Y. Y., Gao, S. B., et al., 2018. The Newly-Discovered Late Cretaceous Igneous Rocks in the Nuocang District: Products of Ancient Crust Melting Trigged by Neo-Tethyan Slab Rollback in the Western Gangdese. Lithos, 308/309: 294-315. https://doi.org/10.1016/j.lithos.2018.03.009
    Lee, H. Y., Chung, S. L., Wang, Y., et al., 2007. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes. Acta Petrologica Sinica, 23: 493-500
    Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1/2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031
    Lee, H. Y., Chung, S. L., Ji, J. Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53: 96-114. https://doi.org/10.1016/j.jseaes.2011.08.019
    Liang, X. R., Wei, G. J., Li, X. H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English Abstract)
    Liang, Y. P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2): 211-223 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, J. H., Xie, C. M., Li, C., et al., 2019. Origins and Tectonic Implications of Late Cretaceous Adakite and Primitive High-Mg Andesite in the Songdo Area, Southern Lhasa Subterrane, Tibet. Gondwana Research, 76: 185-203. https://doi.org/10.1016/j.gr.2019.06.014
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, 4: 25-32
    Lü X., Wang, Z. H., Liu, Y. L., et al., 2015. Geochronology and Geochemistry of the Late Cretaceous to Paleocene Intrusions in East Gangdese, Lhasa, Tibet and Their Tectonic Significances. Acta Geologica Sinica—English Edition, 89(2): 441-466. https://doi.org/10.1111/1755-6724.12440
    Ma, L., Wang, Q., Li, Z. X., et al., 2013a. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-up" in Southern Lhasa (Tibet). Lithos, 172/173: 17-30. https://doi.org/10.1016/j.lithos.2013.03.007
    Ma, L., Wang, Q., Wyman, D. A., et al., 2013b. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175/176: 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
    Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016. Late Triassic Crustal Growth in Southern Tibet: Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37: 449-464. https://doi.org/10.1016/j.gr.2015.10.007
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
    Mo, X. X., Zhao, Z. D., Yu, X. H., et al., 2009. Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau. Geological Publishing House, Beijing. 1-396 (in Chinese with English Abstract)
    Müller, D., Groves, D. I., 2001. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Springer-Verlag, Berlin
    Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012a. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 doi: 10.1016/j.jseaes.2011.12.018
    Pan, G. T., Wang, L. Q., Zhu, D. C., et al., 2004. Thoughts on some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau. Regional Geology of China, 23(1): 12-19 (in Chinese with English Abstract)
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
    Rudnick, R. L., Barth, M., Horn, I., et al., 2000. Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 287(5451): 278-281. https://doi.org/10.1126/science.287.5451.278
    Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
    Sun, S. S., Mcdonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
    Tang, P., Tang, J. X., Zheng, W. B., et al., 2018. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Volcanic Rocks in Dianzhong Formation from Xingaguo Area, Tibet. Acta Petrologica et Mineralogica, 37(1): 47-60 (in Chinese with English Abstract)
    Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Compositions and Evolution. Blackwell, Oxford. 27-72
    Wang, C., Ding, L., Zhang, L. Y., et al., 2016. Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane: Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere. Lithos, 262: 320-333. https://doi.org/10.1016/j.lithos.2016.07.021
    Wang, Q. L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Wang, R., Richards, J. P., Hou, Z. Q., et al., 2015. Zircon U-Pb Age and Sr-Nd-Hf-O Isotope Geochemistry of the Paleocene-Eocene Igneous Rocks in Western Gangdese: Evidence for the Timing of Neo-Tethyan Slab Breakoff. Lithos, 224/225: 179-194. https://doi.org/10.1016/j.lithos.2015.03.003
    Wang, Y. M., 2003. 1 : 250 000 Geji County Regional Geological Report. China University of Geosciences, Beijing (in Chinese)
    Wei, T. W., Kang, Z. Q., Yang, F., et al., 2019. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks in the Jiega Formation, Western Lhasa Block, Sailipu, Tibet. Earth Science Frontiers, 26(2): 157-168. https://doi.org/10.13745/j.esf.sf.2019.3.9 (in Chinese with English Abstract)
    Wen, D. R., Chung, S. L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet: Petrogenesis and Tectonic Implications. Lithos, 105(1/2): 1-11. https://doi.org/10.1016/j.lithos.2008.02.005
    Xia, D. X., 1997. Lithostratigraphy of Tibet Autonomous Region. Geological Publishing House, Wuhan (in Chinese)
    Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17 (in Chinese with English Abstract)
    Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English Abstract) doi: 10.1111/j.1755-6724.2011.00375.x
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zhang, L., Yang, J. S., Zhang, J., 2015. Geochronology and Geochemistry of Zengga Mesozoic Grantoids from East Gangdese Batholith, Implications for the Remelting Mechanism of Granite Formation. Acta Geologica Sinica—English Edition, 89(Suppl. 2): 113-114. https://doi.org/10.1111/1755-6724.12308_68
    Zhang, Q., Wang, Y. L., Jin, W. J., et al. 2008. Criteria for the Recognition of Pre-, Syn-and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27 (1): 1-18 (in Chinese with English Abstract)
    Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010a. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007
    Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010b. Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet: Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x
    Zhang, Z. M., Dong, X., Xiang, H., et al., 2014a. Metagabbros of the Gangdese Arc Root, South Tibet: Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143: 268-284. https://doi.org/10.1016/j.gca.2014.01.045
    Zhang, Z. M., Dong, X., Santosh, M., et al., 2014b. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170-189. https://doi.org/10.1016/j.gr.2012.08.024
    Zhang, Z. M., Ding, L., Zhao, Z. D., et al., 2017. Tectonic Evolution and Dynamics of the Tibetan Plateau. Gondwana Research, 41: 1-8. https://doi.org/10.1016/j.gr.2016.09.001
    Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190/191: 240-263. https://doi.org/10.1016/j.lithos.2013.12.013
    Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar/39Ar Geochronology of Genozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese) doi: 10.1360/csb2004-49-20-2095
    Zhu, D. C., Pang, G. T., Mo, X. X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English Abstract)
    Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3/4): 298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
    Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. https://doi.org/10.1002/2016jb013508 doi: 10.1002/2016JB013508
    Zhu, D. C., Wang, Q., Chung, S. L., et al., 2018. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14
    Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
    Zorpi, M. J., Coulon, C., Orsini, J. B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids—A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1/2/3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(246) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return