Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Xin Sun, Li Tian, Xincheng Qiu, Kaiping Guan, Erik Tihelka, Haijun Song, Jinnan Tong, Hao Yang. Gastropod Fauna of the Zuodeng Permian-Triassic Boundary Section in the Nanpanjiang Basin and Its Geometric-Based Morphological Disparity Analysis. Journal of Earth Science, 2025, 36(1): 89-101. doi: 10.1007/s12583-022-1645-x
Citation: Xin Sun, Li Tian, Xincheng Qiu, Kaiping Guan, Erik Tihelka, Haijun Song, Jinnan Tong, Hao Yang. Gastropod Fauna of the Zuodeng Permian-Triassic Boundary Section in the Nanpanjiang Basin and Its Geometric-Based Morphological Disparity Analysis. Journal of Earth Science, 2025, 36(1): 89-101. doi: 10.1007/s12583-022-1645-x

Gastropod Fauna of the Zuodeng Permian-Triassic Boundary Section in the Nanpanjiang Basin and Its Geometric-Based Morphological Disparity Analysis

doi: 10.1007/s12583-022-1645-x
More Information
  • Corresponding author: Li Tian, tianlibgeg@cug.edu.cn
  • Received Date: 17 Dec 2021
  • Accepted Date: 02 Mar 2022
  • Gastropods, as one of the most common invertebrates in shallow marine environments, were heavily impacted by the Permian–Triassic mass extinction (PTME), with severe loss of diversity and remarkable dwarfism of body size. Here, we report a new gastropod fauna from the Permian‒Triassic carbonates of Zuodeng, Guangxi Province, South China. Five species belonging to five genera and two indeterminate taxa are identified. The Zuodeng fauna is dominated by Paleozoic holdover taxa, including Holopea teres, Protostylus sp., and Wannerispira shangganensis although most of them are found in the basal Triassic microbialites. Three gastropod communities have been recognized by cluster analysis. Further morphological analyses show that the changing pattern of disparity, with diversity decreasing from community Ⅱ to Ⅲ, fits the interior-reduction model. In addition, the morphospace of community in microbialites is higher than those in non-microbialite bearing beds at Zuodeng, shedding new light on the ecological role of microbialites during the Permian–Triassic environmental stress.

     

  • Electronic Supplementary Materials Supplementary materials (Figure S1, Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1645-x.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adams, D. C., Rohlf, F. J., Slice, D. E., 2004. Geometric Morphometrics: Ten Years of Progress Following the 'Revolution'. Italian Journal of Zoology, 71(1): 5–16. https://doi.org/10.1080/11250000409356545
    Amini-Yekta, F., Shokri, M. R., Maghsoudlou, A., et al., 2019. Shell Morphology of Marine Gastropod Cerithium Caeruleum Is Influenced by Variation in Environmental Condition across the Northern Persian Gulf and the Gulf of Oman. Regional Studies in Marine Science, 25: 100478. https://doi.org/10.1016/j.rsma.2018.100478
    Batten, R. L., Stokes, W. L., 1986. Early Triassic Gastropods from the Sinbad Member of the Moenkopi Formation, San Rafael Swell, Utah. American Museum of Natural History, New York. 1–33. http://hdl.handle.net/2246/5202
    Bazzi, M., Kear, B. P., Blom, H., et al., 2018. Static Dental Disparity and Morphological Turnover in Sharks across the End-Cretaceous Mass Extinction. Current Biology, 28(16): 2607–2615. e3. https://doi.org/10.1016/j.cub.2018.05.093
    Benton, M. J., 2016. Palaeontology: Dinosaurs, Boneheads and Recovery from Extinction. Current Biology, 26(19): R887–R889. https://doi.org/10.1016/j.cub.2016.07.029
    Benton, M. J., 2024. Universal Hyperthermal Model for Mass Extinctions. Journal of Earth Science, 35(2): 704–707. https://doi.org/10.1007/s12583-024-1985-9
    Benton, M. J., Forth, J., Langer, M. C., 2014. Models for the Rise of the Dinosaurs. Current Biology, 24(2): R87–R95. https://doi.org/10.1016/j.cub.2013.11.063
    Brayard, A., Meier, M., Escarguel, G., et al., 2015. Early Triassic Gulliver Gastropods: Spatio-Temporal Distribution and Significance for Biotic Recovery after the End-Permian Mass Extinction. Earth-Science Reviews, 146: 31–64. https://doi.org/10.1016/j.earscirev.2015.03.005
    Brayard, A., Nützel, A., Stephen, D. A., et al., 2010. Gastropod Evidence Against the Early Triassic Lilliput Effect. Geology, 38(2): 147–150. https://doi.org/10.1130/g30553.1
    Brosse, M., Bucher, H., Baud, A., et al., 2019. New Data from Oman Indicate Benthic High Biomass Productivity Coupled with Low Taxonomic Diversity in the Aftermath of the Permian-Triassic Boundary Mass Extinction. Lethaia, 52(2): 165–187. https://doi.org/10.1111/let.12281
    Chen, Y., Ye, Q., Jiang, H. S., et al., 2019. Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China. Journal of Earth Science, 30(2): 244–257. https://doi.org/10.1007/s12583-018-0884-3
    Ciampaglio, C. N. , 2004. Measuring Changes in Articulate Brachiopod Morphology before and after the Permian Mass Extinction Event: Do Developmental Constraints Limit Morphological Innovation? Evolution & Development, 6(4): 260–274.https://doi.org/10.1111/j.1525-142X.2004.04031.x doi: 10.1086/303400
    Ciampaglio, C. N., Kemp, M., McShea, D. W., 2001. Detecting Changes in Morphospace Occupation Patterns in the Fossil Record: Characterization and Analysis of Measures of Disparity. Paleobiology, 27(4): 695–715. https://doi.org/10.1666/0094-8373(2001)0270695:dcimop>2.0.co;2 doi: 10.1666/0094-8373(2001)0270695:dcimop>2.0.co;2
    Dai, X., Korn, D., Song, H. J., 2021. Morphological Selectivity of the Permian–Triassic Ammonoid Mass Extinction. Geology, 49(9): 1112–1116. https://doi.org/10.1130/g48788.1
    Dai, X., Song, H. J., 2020. Toward an Understanding of Cosmopolitanism in Deep Time: a Case Study of Ammonoids from the Middle Permian to the Middle Triassic. Paleobiology, 46(4): 533–549. https://doi.org/10.1017/pab.2020.40
    Dillon, R. T. Jr, Jacquemin, S. J., 2015. The Heritability of Shell Morphometrics in the Freshwater Pulmonate Gastropod Physa. PLoS One, 10(4): e0121962. https://doi.org/10.1371/journal.pone.0121962
    Dommergues, J. L., Laurin, B., Meister, C., 1996. Evolution of Ammonoid Morphospace during the Early Jurassic Radiation. Paleobiology, 22(2): 219–240. https://doi.org/10.1017/s0094837300016183
    Dowgiallo, M., 2004. Patterns in Diversity and Distribution of Benthic Molluscs along a Depth Gradient in the Bahamas: [Dissertation]. University of Maryland, College Park
    Erwin, D. H., 1990. Carboniferous-Triassic Gastropod Diversity Patterns and the Permo-Triassic Mass Extinction. Paleobiology, 16(2): 187–203. https://doi.org/10.1017/S0094837300009878
    Erwin, D. H., 1994. The Permo–Triassic Extinction. Nature, 367(6460): 231–236. https://doi.org/10.1038/367231a0
    Erwin, D. H., 2007. Disparity: Morphological Pattern and Developmental Context. Palaeontology, 50(1): 57–73. https://doi.org/10.1111/j.1475-4983.2006.00614.x
    Erwin, D. H., Pan, H. Z., 1997. Recoveries and Radiations: Gastropods after the Permo-Triassic Mass Extinction. Geological Society, London, Special Publications, 102(1): 223–229. https://doi.org/10.1144/gsl.sp.1996.001.01.15
    Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272–277. https://doi.org/10.1126/science.aax4953
    Fang, Y. H., Chen, Z. Q., Kershaw, S., et al., 2017. Permian–Triassic Boundary Microbialites at Zuodeng Section, Guangxi Province, South China: Geobiology and Palaeoceanographic Implications. Global and Planetary Change, 152: 115–128. https://doi.org/10.1016/j.gloplacha.2017.02.011
    Farabegoli, E., Perri, M. C., Posenato, R., 2007. Environmental and Biotic Changes across the Permian–Triassic Boundary in Western Tethys: The Bulla Parastratotype, Italy. Global and Planetary Change, 55(1/2/3): 109–135. https://doi.org/10.1016/j.gloplacha.2006.06.009
    Foote, M., 1990. Nearest-Neighbor Analysis of Trilobite Morphospace. Systematic Biology, 39(4): 371–382. https://doi.org/10.2307/2992357
    Foote, M., 1993. Discordance and Concordance between Morphological and Taxonomic Diversity. Paleobiology, 19(2): 185–204. https://doi.org/10.1017/s0094837300015864
    Foote, M., 1994. Morphological Disparity in Ordovician-Devonian Crinoids and the Early Saturation of Morphological Space. Paleobiology, 20(3): 320–344. https://doi.org/10.1017/S009483730001280x
    Foote, M., 1996. Ecological Controls on the Evolutionary Recovery of Post-Paleozoic Crinoids. Science, 274(5292): 1492–1495. https://doi.org/10.1126/science.274.5292.1492
    Foote, M., 1997. The Evolution of Morphological Diversity. Annual Review of Ecology and Systematics, 28: 129–152. https://doi.org/10.1146/annurev.ecolsys.28.1.129
    Forel, M. B., 2013. The Permian–Triassic Mass Extinction: Ostracods (Crustacea) and Microbialites. Comptes Rendus Geoscience, 345(4): 203–211. https://doi.org/10.1016/j.crte.2013.03.003
    Forel, M. B., Crasquin, S., Kershaw, S., et al., 2009. Ostracods (Crustacea) and Water Oxygenation in the Earliest Triassic of South China: Implications for Oceanic Events at the End-Permian Mass Extinction. Australian Journal of Earth Sciences, 56(6): 815–823. https://doi.org/10.1080/08120090903002631
    Foster, W. J., Lehrmann, D. J., Hirtz, J. A., et al., 2019a. Early Triassic Benthic Invertebrates from the Great Bank of Guizhou, South China: Systematic Palaeontology and Palaeobiology. Papers in Palaeontology, 5(4): 613–656. https://doi.org/10.1002/spp2.1252
    Foster, W. J., Lehrmann, D. J., Yu, M. Y., et al., 2019b. Facies Selectivity of Benthic Invertebrates in a Permian/Triassic Boundary Microbialite Succession: Implications for the "Microbialite Refuge" Hypothesis. Geobiology, 17(5): 523–535. https://doi.org/10.1111/gbi.12343
    Fraiser, M. L., Bottjer, D. J., 2004. The Non-Actualistic Early Triassic Gastropod Fauna: A Case Study of the Lower Triassic SinbadLimestone Member. Palaios, 19(3): 259–275. https://doi.org/10.1669/0883-1351(2004)0190259:tnetgf>2.0.co;2 doi: 10.1669/0883-1351(2004)0190259:tnetgf>2.0.co;2
    Fraiser, M. L., Twitchett, R. J., Bottjer, D. J., 2005. Unique Microgastropod Biofacies in the Early Triassic: Indicator of Long-Term Biotic Stress and the Pattern of Biotic Recovery after the End-Permian Mass Extinction. Comptes Rendus Palevol, 4(6/7): 543–552. https://doi.org/10.1016/j.crpv.2005.04.006
    Groves, J. R., Altiner, D., 2005. Survival and Recovery of Calcareous Foraminifera Pursuant to the End-Permian Mass Extinction. Comptes Rendus Palevol, 4(6/7): 487–500. https://doi.org/10.1016/j.crpv.2004.12.007
    Guo, Z., Chen, Z. Q., Harper, D. A. T., 2020. Phylogenetic and Ecomorphologic Diversifications of Spiriferinid Brachiopods after the End-Permian Extinction. Paleobiology, 46(4): 495–510. https://doi.org/10.1017/pab.2020.34
    Hammer, Ø., Harper, D., Ryan, P., et al., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1): 1–9. https://doi.org/10.1016/j.palaeo.2009.11.002
    Hautmann, M., Bagherpour, B., Brosse, M., et al., 2015. Competition in Slow Motion: The Unusual Case of Benthic Marine Communities in the Wake of the End-Permian Mass Extinction. Palaeontology, 58(5): 871–901. https://doi.org/10.1111/pala.12186
    Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3): 413–430. https://doi.org/10.1007/s12583-014-0444-4
    Kaim, A., Nützel, A., Bucher, H., et al., 2010. Early Triassic (Late Griesbachian) Gastropods from South China (Shanggan, Guangxi). Swiss Journal of Geosciences, 103(1): 121–128. https://doi.org/10.1007/s00015-010-0005-5
    Korn, D., Hopkins, M. J., Walton, S. A., 2013. Extinction Space—A Method for the Quantification and Classification of Changes in Morphospace across Extinction Boundaries. Evolution, 67(10): 2795–2810. https://doi.org/10.1111/evo.12162
    Krystyn, L., Richoz, S., Baud, A., et al., 2003. A Unique Permian–Triassic Boundary Section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(3/4): 329–344. https://doi.org/10.1016/S0031-0182(02)00670-3
    Luo, G. M., Algeo, T. J., Huang, J. H., et al., 2014. Vertical δ13Corg Gradients Record Changes in Planktonic Microbial Community Composition during the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 119–131. https://doi.org/10.1016/j.palaeo.2014.01.006
    Luo, G. M., Wang, Y. B., Algeo, T. J., et al., 2011a. Enhanced Nitrogen Fixation in the Immediate Aftermath of the Latest Permian Marine Mass Extinction. Geology, 39(7): 647–650. https://doi.org/10.1130/g32024.1
    Luo, G. M., Wang, Y. B., Yang, H., et al., 2011b. Stepwise and Large-Magnitude Negative Shift in δ13Ccarb Preceded the Main Marine Mass Extinction of the Permian–Triassic Crisis Interval. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1/2): 70–82. https://doi.org/10.1016/j.palaeo.2010.10.035
    Luo, M., Chen, J. T., Qie, W. K., et al., 2021. Microbially Induced Carbonate Precipitation in a Middle Triassic Microbial Mat Deposit from Southwestern China: New Implications for the Formational Process of Micrite. Journal of Earth Science, 32(3): 633–645. https://doi.org/10.1007/s12583-020-1075-6
    McGowan, A. J., Smith, A. B., Taylor, P. D., 2009. Faunal Diversity, Heterogeneity and Body Size in the Early Triassic: Testing Post-Extinction Paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences, 56(6): 859–872. https://doi.org/10.1080/08120090903002839
    Nützel, A., 2005. Recovery of Gastropods in the Early Triassic. Comptes Rendus Palevol, 4(6/7): 501–515. https://doi.org/10.1016/j.crpv.2005.02.007
    Nützel, A., Schulbert, C., 2005. Facies of Two Important Early Triassic Gastropod Lagerstätten: Implications for Diversity Patterns in the Aftermath of the End-Permian Mass Extinction. Facies, 51(1): 480–500. https://doi.org/10.1007/s10347-005-0074-5
    Pan, H. Z., Erwin, D. H., 2002. Gastropods from the Permian of Guangxi and Yunnan Provinces, South China. Journal of Paleontology, 76(sp56): 1–49. https://doi.org/10.1666/0022-3360(2002)76[1:gftpog]2.0.co;2
    Pan, H. Z., Erwin, D. H., Nützel, A., et al., 2003. Jiangxispira, a New Gastropod Genus from the Early Triassic of China with Remarks on the Phylogeny of the Heterostropha at the Permian/Triassic Boundary. Journal of Paleontology, 77(1): 44–49. https://doi.org/10.1017/s0022336000043407
    Pan, H. Z., 2004. Remarks on Permian Extinction and Triassic Recovery of Gastropods. In: Rong, J., Fang, Z., eds., Mass Extinction and Recovery, Evidences from the Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Beijing. 719–730 (in Chinese with English Abstract)
    Payne, J. L., 2005. Evolutionary Dynamics of Gastropod Size across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology, 31(2): 269–290. https://doi.org/10.1666/0094-8373(2005)031[0269:edogsa]2.0.co;2
    Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. Geological Society of America Bulletin, 119(7/8): 771–784. https://doi.org/10.1130/b26091.1
    Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506–509. https://doi.org/10.1126/science.1097023
    Qian, H., Ricklefs, R. E., 2007. A Latitudinal Gradient in Large-Scale Beta Diversity for Vascular Plants in North America. Ecology Letters, 10(8): 737–744. https://doi.org/10.1111/j.1461-0248.2007.01066.x
    Raup, D. M., 1979. Size of the Permo-Triassic Bottleneck and Its Evolutionary Implications. Science, 206(4415): 217–218. https://doi.org/10.1126/science.206.4415.217
    Rohlf, F. J., Slice, D., 1990. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Biology, 39(1): 40–59. https://doi.org/10.2307/2992207
    Rohlf, F., 2015. The tps Series of Software. Hystrix-Italian Journal of Mammalogy, 26: 9–12. https://doi.org/10.4404/hystrix-26.1-11264
    Roy, K., Foote, M., 1997. Morphological Approaches to Measuring Biodiversity. Trends in Ecology & Evolution, 12(7): 277–281. https://doi.org/10.1016/S0169-5347(97)81026-9
    Schaeffer, J., Benton, M. J., Rayfield, E. J., et al., 2020. Morphological Disparity in Theropod Jaws: Comparing Discrete Characters and Geometric Morphometrics. Palaeontology, 63(2): 283–299. https://doi.org/10.1111/pala.12455
    Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367–1372. https://doi.org/10.1126/science.1213454
    Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 154–188. https://doi.org/10.1007/s11430-017-9228-4
    Simon, M. S., Korn, D., Koenemann, S., 2010. Disparity Fluctuations in Jurassic Ammonoids by Means of Conch Geometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3/4): 520–531. https://doi.org/10.1016/j.palaeo.2010.04.023
    Song, H. J., Kemp, D. B., Tian, L., et al., 2021. Thresholds of Temperature Change for Mass Extinctions. Nature Communications, 12(1): 4694. https://doi.org/10.1038/s41467-021-25019-2
    Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. Earth Science, 41(6): 901–918. https://doi.org/10.3799/dqkx.2016.077 (in Chinese with English Abstract)
    Song, H. J., Tong, J., Chen, Z. Q., 2009a. Two Episodes of Foraminiferal Extinction near the Permian-Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765–773. https://doi.org/10.1080/08120090903002599
    Song, H. J., Tong, J. N., Chen, Z. Q., et al., 2009b. End-Permian Mass Extinction of Foraminifers in the Nanpanjiang Basin, South China. Journal of Paleontology, 83(5): 718–738. https://doi.org/10.1666/08-175.1
    Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian–Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4: 4132. https://doi.org/10.1038/srep04132
    Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236–243. https://doi.org/10.1007/s12583-018-1002-2
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian–Triassic Crisis. Nature Geoscience, 6: 52–56. https://doi.org/10.1038/ngeo1649
    Sun, X., Qiu, X. C., Tihelka, E., et al., 2021. A Diverse Gastropod Fauna from the Shallow Marine Carbonate Platform of the Yangou Section (South China) in the Immediate Aftermath of the Permian–Triassic Mass Extinction. Geological Journal, 56(12): 6199–6209. https://doi.org/10.1002/gj.4083
    Tarhan, L. G., Planavsky, N. J., Laumer, C. E., et al., 2013. Microbial Mat Controls on Infaunal Abundance and Diversity in Modern Marine Microbialites. Geobiology, 11(5): 485–497. https://doi.org/10.1111/gbi.12049
    Tian, L., Bottjer, D. J., Tong, J. N., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian–Triassic Mass Extinction. Palaios, 30(9): 714–727. https://doi.org/10.2110/palo.2014.110
    Tong, J. N., 2023. How to Evaluate the Inherent Relation of the Modern Biodiversity with the Paleozoic–Mesozoic Mass Extinction?. Earth Science, 48(1): 375. https://doi.org/10.3799/dqkx.2023.800 (in Chinese with English Abstract)
    Tong, J. N., Erwin, D. H., 2001. Triassic Gastropods of the Southern Qinling Mountains, China. Smithsonian Contributions to Paleobiology, (92): 1–47. https://doi.org/10.5479/si.00810266.92.1
    Twitchett, R. J., 2007. The Lilliput Effect in the Aftermath of the End-Permian Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 132–144. https://doi.org/10.1016/j.palaeo.2006.11.038
    Verhaegen, G., Neiman, M., Haase, M., 2018. Ecomorphology of a Generalist Freshwater Gastropod: Complex Relations of Shell Morphology, Habitat, and Fecundity. Organisms Diversity & Evolution, 18(4): 425–441. https://doi.org/10.1007/s13127-018-0377-3
    Villier, L., Korn, D., 2004. Morphological Disparity of Ammonoids and the Mark of Permian Mass Extinctions. Science, 306(5694): 264–266. https://doi.org/10.1126/science.1102127
    Wan, J. Y., Foster, W. J., Tian, L., et al., 2021. Decoupling of Morphological Disparity and Taxonomic Diversity during the End-Permian Mass Extinction. Paleobiology, 47(3): 402–417. https://doi.org/10.1017/pab.2020.57
    Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High-Resolution Variation in Ostracod Assemblages from Microbialites near the Permian-Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349
    Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 156–166. https://doi.org/10.1016/j.palaeo.2015.11.032
    Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End-Permian Mass Extinction. Paleobiology, 40(1): 113–129. https://doi.org/10.1666/13022
    Wesley-Hunt, G. D., 2005. The Morphological Diversification of Carnivores in North America. Paleobiology, 31(1): 35–55. https://doi.org/10.1666/0094-8373(2005)0310<035:tmdoci>2.0.co;2 doi: 10.1666/0094-8373(2005)0310<035:tmdoci>2.0.co;2
    Wheeley, J., Twitchett, R., 2005. Palaeoecological Significance of a New Griesbachian (Early Triassic) Gastropod Assemblage from Oman. Lethaia, 38(1): 37–45. https://doi.org/10.1080/0024116051003150
    Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5/6): 954–956. https://doi.org/10.1130/b26424.1
    Wills, M., 2001. Morphological Disparity: A Primer. In: Adrain, J., Edgecombe, G., Lieberman, B., eds., Fossils, Phylogeny, and Form: An Analytical Approach. Kluwer Academic/Plenum Publishers, New York. 55–144
    Xiao, Y. F., Wu, K., Tian, L., et al., 2018. Framboidal Pyrite Evidence for Persistent Low Oxygen Levels in Shallow-Marine Facies of the Nanpanjiang Basin during the Permian-Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 243–255. https://doi.org/10.1016/j.palaeo.2018.08.012
    Yan, C., 2013. Study on Early–Middle Triassic Conodont Biostratigraphy in Nanpanjiang Area: [Dissertation]. China University of Geosciences, Wuhan. 23–37 (in Chinese with English Abstract)
    Yang, H., Chen, Z. Q., Ou, W. Q., 2015. Microconchids from Microbialites near the Permian-Triassic Boundary in the Zuodeng Section, Baise Area, Guangxi Zhuang Autonomous Region, South China and Their Paleoenvironmental Implications. Journal of Earth Science, 26(2): 157–165. https://doi.org/10.1007/s12583-015-0554-7
    Yang, H., Chen, Z. Q., Wang, Y. B., et al., 2011. Composition and Structure of Microbialite Ecosystems Following the End-Permian Mass Extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 111–128. https://doi.org/10.1016/j.palaeo.2010.05.029
    Yang, H., Liu, H., Wang, Y. B., 2010. Calcareous Tube-Worm Fossils in Microbialites after End-Permian Mass Extinction and Their Paleoenvironmental Implications. Journal of Earth Science, 21(1): 174–175. https://doi.org/10.1007/s12583-010-0203-0
    Yang, S., Hao, W., Wang, X., 1999. Conodont Evolutionary Lineages, Zonation, and P-T Boundary Beds in Guangxi, China. In: Yao, A., Ezaki, Y., Hao, W., et al., eds., Biotic and Geological Developments in the Paleo-Tethys in China. Peking University Press, Beijing. 81–95 (in Chinese with English Abstract)
    Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137: 19–33. https://doi.org/10.1016/j.earscirev.2013.06.003
    Zelditch, M. L., Swiderski, D. L., Sheets, H. D., et al., 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, San Diego. 23–50
    Zheng, W., Xu, X., Qi, Y. A., et al., 2023. Evolution of Terrestrial Triassic Ichnofossils and Ecological Significance in Western Henan Province. Earth Science, 48(8): 2807–2821. https://doi.org/10.3799/dqkx.2021.078 (in Chinese with English Abstract)
    Zhu, X. S., 1999. Discoveries of the Gastropods from the Boundary Bed at Yangou Section in Northeastern Jiangxi. Journal of Jiangxi Normal University (Natural Sciences Edition), 23(4): 363–368. https://doi.org/10.16357/j.cnki.issn1000-5862.1999.04.019 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(194) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return