Citation: | Xiumin Zhai, Xinggong Kong, Yuanhai Zhang, Philip John Rowsell, Zhijun Zhao, Baojian Huang, Jing Zhang. Late Miocene Elevated Horizontal Karst Caves and Landform Evolution as a Response to Tectonic Uplift along with Regional Integration of Fluvial Drainage in Southwestern China. Journal of Earth Science, 2025, 36(4): 1717-1730. doi: 10.1007/s12583-022-1656-7 |
In Southwestern China, the development of karst landforms and planation surfaces is closely related to local tectonics, fluvial incision, and base level changes, and climate changes. However, researches on when these karst landforms and planation surfaces formed and how they evolved along drainage development are scarce. Fortunately, horizontal caves with numerous fluvial deposits in high karst mountains can be served as time markers in landform evolution. Here we select large horizontal caves to perform studies of geomorphology, sedimentology, and geochronology. Fieldwork revealed that more than 25 km long horizontal cave passages are perched 1 500 m higher than the local base level, but filled with several phases of fluvial sediments and breakdown slabs. The first phase of fluvial gravels and related cave drainage was dated back to 6.4 Ma using cosmogenic nuclide burial dating, and the stalagmite covering the cave collapse was dated by the U-Pb method to be older than 1.56 Ma. These results show that the continuous horizontal cave drainage system and the planation surface were developed before the Late Miocene. The lowering process of the base level as a result of the sharp fluvial incision and water level lowering, along with the regional uplift, led to the abandonment of the horizontal cave and the elevated planation surface at the Late Miocene. After that, the phase of cave collapse, thick fluvial sand, and clay sediments in the recharge of cave areas were deposited at around 1.6 Ma and during the Middle Pleistocene, respectively. Subsequently, speleothems were widely deposited on the collapse and clay sediments during the period from 600 to 90 ka, whereas the deposition of cave fluvial sediments terminated suddenly. The tectonic could control the denudation of surface caprocks and the development of karst conduits before the Late Miocene, whereas the river incision acted as the main driver for the base level lowering and the destruction of the horizontal cave drainage at high altitudes. In addition, the rapid incision and retreat of Silurian gorges finally caused the formation of karst mesas in the Middle Pleistocene.
An, Z. S., Huang, Y. S., Liu, W. G., et al., 2005. Multiple Expansions of C4 Plant Biomass in East Asia since 7 Ma Coupled with Strengthened Monsoon Circulation. Geology, 33(9): 705–708. https://doi.org/10.1130/g21423.1 |
An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62–66. https://doi.org/10.1038/35075035 |
Anthony, D. M., Granger, D. E., 2004. A Late Tertiary Origin for Multilevel Caves along the Western Escarpment of the Cumberland Plateau, Tennessee and Kentucky, Established by Cosmogenic 26Al and 10Be. Journal of Cave and Karst Studies, 66(2): 46–55 |
Audra, P., Camus, H., Rochette, P., 2001. Le Karst des Plateaux Jurassiques de la Moyenne Valee de l'Ardeche; Datation Par Paleomagnetisme des Phases D'evolution Plio-Quaternaires (Aven de la Combe Rajeau). Bulletin de la Société Géologique de France, 172(1): 121–129. https://doi.org/10.2113/172.1.121 |
Audra, P., Palmer, A. N., 2011. The Pattern of Caves: Controls of Epigenic Speleogenesis. Géomorphologie, 4: 35–378. https://doi.org/10.4000/geomorphologie.9571 |
Bahain, J. J., Falguères, C., Laurent, M., et al., 2007. ESR Chronology of the Somme River Terrace System and First Human Settlements in Northern France. Quaternary Geochronology, 2(1/2/3/4): 356–362. https://doi.org/10.1016/j.quageo.2006.04.012 |
Calaforra, J. M., De Waele, J., 2011. New Peculiar Cave Ceiling Forms from Carlsbad Caverns (New Mexico, USA): The Zenithal Ceiling Tube-Holes. Geomorphology, 134(1/2): 43–48. https://doi.org/10.1016/j.geomorph.2011.02.032 |
Calvet, M., Gunnell, Y., Braucher, R., et al., 2015. Cave Levels as Proxies for Measuring Post-Orogenic Uplift: Evidence from Cosmogenic Dating of Alluvium-Filled Caves in the French Pyrenees. Geomorphology, 246: 617–633. https://doi.org/10.1016/j.geomorph.2015.07.013 |
Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640 000 Years and Ice Age Terminations. Nature, 534(7609): 640–646. https://doi.org/10.1038/nature18591 |
Chmeleff, J., von Blanckenburg, F., Kossert, K., et al., 2010. Determination of the 10Be Half-Life by Multicollector ICP-MS and Liquid Scintillation Counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2): 192–199. https://doi.org/10.1016/j.nimb.2009.09.012 |
Clark, M. K., House, M. A., Royden, L. H., et al., 2005. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525–528. https://doi.org/10.1130/g21265.1 |
Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): 1–20. https://doi.org/10.1029/2002TC001402 |
Columbu, A., Chiarini, V., De Waele, J., et al., 2017. Late Quaternary Speleogenesis and Landscape Evolution in the Northern Apennine Evaporite Areas. Earth Surface Processes and Landforms, 42(10): 1447–1459. https://doi.org/10.1002/esp.4099 |
Columbu, A., De Waele, J., Forti, P., et al., 2015. Gypsum Caves as Indicators of Climate-Driven River Incision and Aggradation in a Rapidly Uplifting Region. Geology, 43(6): 539–542. https://doi.org/10.1130/g36595.1 |
Columbu, A., Sauro, F., Lundberg, J., et al., 2018. Palaeoenvironmental Changes Recorded by Speleothems of the Southern Alps (Piani Eterni, Belluno, Italy) during Four Interglacial to Glacial Climate Transitions. Quaternary Science Reviews, 197: 319–335. https://doi.org/10.1016/j.quascirev.2018.08.006 |
Cui, Z. J., Gao, Q. Z., Liu, G. N., et al., 1996. Planation Surface, Paleo-Karst and Tibet Plateau Uplift. Science in China, 26(4): 378–385 (in Chinese) |
De Waele, J., Plan, L., Audra, P., 2009. Recent Developments in Surface and Subsurface Karst Geomorphology: An Introduction. Geomorphology, 106(1/2): 1–8. https://doi.org/10.1016/j.geomorph.2008.09.023 |
Deng, B., Liu, S. G., Qin, Z. P., et al., 2015. Mutli-Stage Structural Evolution of Intracontinental Daloushan Basin-Mountain System, Upper Yangtze Block: Implications for a Coupling of Deformation Events across South China Plate and Its Periphery. Geotectonica et Metallogenia, 39(6): 973–991. https://doi.org/10.16539/j.ddgzyckx.2015.06.001 (in Chinese with English Abstract) |
Ding, Z. L., Liu, D. S., 1991. Comparison of Loess-Deep Sea Paleoclimate Records Since 1.8 Ma. Chinese Science Bulletin, 36(18): 1401–1403. https://doi.org/10.1360/csb1991-36-18-1401 (in Chinese) |
Farrant, A. R., Smart, P. L., 2011. Role of Sediment in Speleogenesis: Sedimentation and Paragenesis. Geomorphology, 134(1/2): 79–93. https://doi.org/10.1016/j.geomorph.2011.06.006 |
Gao, L., Yin, G. M., Liu, C. R., et al., 2011. ESR Dating of Fault Gouge from the Eastern Liupanshan Piedmont Fault Zone. Nuclear Techniques, 34(2): 121–125. https://doi.org/10.3969/j.issn.0253-4967.2022.05.004 (in Chinese with English Abstract) |
Gázquez, F., Calaforra, J. M., Forti, P., et al., 2014. Paleoflood Events Recorded by Speleothems in Caves. Earth Surface Processes and Landforms, 39(10): 1345–1353. https://doi.org/10.1002/esp.3543 |
Granger, D. E., Fabel, D., Palmer, A. N., 2001. Pliocene–Pleistocene Incision of the Green River, Kentucky, Determined from Radioactive Decay of Cosmogenic 26Al and 10Be in Mammoth Cave Sediments. Geological Society of America Bulletin, 113(7): 825–836. https://doi.org/10.1130/0016-7606(2001)113<0825:ppiotg>2.0.co;2 doi: 10.1130/0016-7606(2001)113<0825:ppiotg>2.0.co;2 |
Granger, D. E., Muzikar, P. F., 2001. Dating Sediment Burial with in situ-Produced Cosmogenic Nuclides: Theory, Techniques, and Limitations. Earth and Planetary Science Letters, 188(1/2): 269–281. https://doi.org/10.1016/S0012-821X(01)00309-0 |
Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build-up of Arctic Ice Sheets during 400 000-Year Minima in Insolation Variability. Nature, 490(7420): 393–396. https://doi.org/10.1038/nature11493 |
Harmand, D., Adamson, K., Rixhon, G., et al., 2017. Relationships between Fluvial Evolution and Karstification Related to Climatic, Tectonic and Eustatic Forcing in Temperate Regions. Quaternary Science Reviews, 166: 38–56. https://doi.org/10.1016/j.quascirev.2017.02.016 |
He, Z. L., Wang, X. W., Li, S. J., et al., 2011. Yanshan Movement and Its Influence on Petroleum Preservation in Middle–Upper Yangtze Region. Petroleum Geology & Experiment, 33(1): 1–11. https://doi.org/10.3969/j.issn.1001-6112.2011.01.001 (in Chinese with English Abstract) |
Kang, C. G., Li, C. G., Wang, J. T., et al., 2009. Heavy Minerals Characteristics of Sediments in Jianghan Plain and Its Indication to the Forming of the Three Gorges. Earth Science—Journal of China University of Geosciences, 34(3): 419–427. https://doi.org/10.3799/dqkx.2009.047 (in Chinese with English Abstract) |
Kirby, E., Reiners, P. W., Krol, M. A., et al., 2002. Late Cenozoic Evolution of the Eastern Margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He Thermochronology. Tectonics, 21(1): 1–20. https://doi.org/10.1029/2000TC001246 |
Laureano, F. V., Karmann, I., Granger, D. E., et al., 2016. Two Million Years of River and Cave Aggradation in NE Brazil: Implications for Speleogenesis and Landscape Evolution. Geomorphology, 273: 63–77. https://doi.org/10.1016/j.geomorph.2016.08.009 |
Li, J. J., Xie, S. Y., Kuang, M. S., 2001. Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation. Geomorphology, 41(2/3): 125–135. https://doi.org/10.1016/S0169-555X(01)00110-6 |
Liu, C. R., Yin, G. M., Gao, L., et al., 2011. Dose Response of Artificial Irradiation of Fluvial Sediment Sample for ESR Dating. Nuclear Techniques, 34(2): 95–98 (in Chinese with English Abstract) |
McPhillips, D., Hoke, G. D., Jing, L. Z., et al., 2016. Dating the Incision of the Yangtze River Gorge at the First Bend Using Three-Nuclide Burial Ages. Geophysical Research Letters, 43(1): 101–110. https://doi.org/10.1002/2015GL066780 |
Nishiizumi, K., 2004. Preparation of 26Al AMS Standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223: 388–392. https://doi.org/10.1016/j.nimb.2004.04.075 |
Nishiizumi, K., Imamura, M., Caffee, M. W., et al., 2007. Absolute Calibration of 10Be AMS Standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258(2): 403–413. https://doi.org/10.1016/j.nimb.2007.01.297 |
Ortega, A. I., Benito-Calvo, A., Pérez-González, A., et al., 2013. Evolution of Multilevel Caves in the Sierra de Atapuerca (Burgos, Spain) and Its Relation to Human Occupation. Geomorphology, 196: 122–137. https://doi.org/10.1016/j.geomorph.2012.05.031 |
Ouimet, W., Whipple, K., Royden, L., et al., 2010. Regional Incision of the Eastern Margin of the Tibetan Plateau. Lithosphere, 2(1): 50–63. https://doi.org/10.1130/l57.1 |
Richardson, N. J., Densmore, A. L., Seward, D., et al., 2010. Did Incision of the Three Gorges Begin in the Eocene? Geology, 38(6): 551–554. https://doi.org/10.1130/G30527.1 |
Rossi, C., Villalaín, J. J., Lozano, R. P., et al., 2016. Paleo-Watertable Definition Using Cave Ferromanganese Stromatolites and Associated Cave-Wall Notches (Sierra de Arnero, Spain). Geomorphology, 261: 57–75. https://doi.org/10.1016/j.geomorph.2016.02.023 |
Sartégou, A., Bourlès, D. L., Blard, P. H., et al., 2018. Deciphering Landscape Evolution with Karstic Networks: A Pyrenean Case Study. Quaternary Geochronology, 43: 12–29. https://doi.org/10.1016/j.quageo.2017.09.005 |
Sasowsky, I. D., 1998. Determining the Age of What is Not there. Science, 279(5358): 1874. https://doi.org/10.1126/science.279.5358.1874 |
Shao, Q. F., Li, C. H., Huang, M. J., et al., 2019. Interactive Programs of MC-ICPMS Data Processing for 230Th/U Geochronology. Quaternary Geochronology, 51: 43–52. https://doi.org/10.1016/j.quageo.2019.01.004 |
Shao, Q. -F., Pons-Branchu, E., Zhu, Q. -P., et al., 2017. High Precision U/Th Dating of the Rock Paintings at Mt. Huashan, Guangxi, Southern China. Quaternary Research, 88(1): 1–13. https://doi.org/10.1017/qua.2017.24 |
Stock, G. M., Granger, D. E., Sasowsky, I. D., et al., 2005. Comparison of U-Th, Paleomagnetism, and Cosmogenic Burial Methods for Dating Caves: Implications for Landscape Evolution Studies. Earth and Planetary Science Letters, 236(1/2): 388–403. https://doi.org/10.1016/j.epsl.2005.04.024 |
Strasser, M., Strasser, A., Pelz, K., et al., 2009. A Mid Miocene to Early Pleistocene Multi-Level Cave as a Gauge for Tectonic Uplift of the Swabian Alb (Southwest Germany). Geomorphology, 106(1/2): 130–141. https://doi.org/10.1016/j.geomorph.2008.09.012 |
Sun, X. L., Tian, Y. T., Kuiper, K. F., et al., 2021. No Yangtze River Prior to the Late Miocene: Evidence from Detrital Muscovite and K-Feldspar 40Ar/39Ar Geochronology. Geophysical Research Letters, 48(5): e2020GL089903. https://doi.org/10.1029/2020GL089903 |
Tang, W., Lan, G. Y., Yang, H., et al., 2018. Applicability Evaluation on Chemical Pretreatment Methods of α-Uranium Series Dating. Nuclear Electronics and Detection Technology, 38(1): 117–122. https://doi.org/10.3969/j.issn.0258-0934.2018.01.023 (in Chinese with English Abstract) |
Tian, L. J., Li, P. Z., Luo, Y., 1996. Development History of the Three Gorges Valley of the Yangtze River. Southwest Jiaotong University Press, Chengdu (in Chinese) |
Voinchet, P., Despriée, J., Tissoux, H., et al., 2010. ESR Chronology of Alluvial Deposits and First Human Settlements of the Middle Loire Basin (Region Centre, France). Quaternary Geochronology, 5(2/3): 381–384. https://doi.org/10.1016/j.quageo.2009.03.005 |
Wagner, T., Fabel, D., Fiebig, M., et al., 2010. Young Uplift in the Non-Glaciated Parts of the Eastern Alps. Earth and Planetary Science Letters, 295(1/2): 159–169. https://doi.org/10.1016/j.epsl.2010.03.034 |
Wagner, T., Fritz, H., Stüwe, K., et al., 2011. Correlations of Cave Levels, Stream Terraces and Planation Surfaces along the River Mur: Timing of Landscape Evolution along the Eastern Margin of the Alps. Geomorphology, 134(1/2): 62–78. https://doi.org/10.1016/j.geomorph.2011.04.024 |
Wang, H., Yin, J. J., Yu, J. G., et al., 2012. The Removal of the Disturbance of the Clastic Rock Material from Cave Carbonate Sediments in Alpha U-Series Dating Method. Acta Geoscientica Sinica, 33(6): 936–940. https://doi.org/10.3975/cagsb.2012.06.12 (in Chinese with English Abstract) |
Wang, P., Zheng, H. B., Wang, Y. D., et al., 2021. Sedimentology, Geochronology, and Provenance of the Late Cenozoic "Yangtze Gravel": Implications for Lower Yangtze River Reorganization and Tectonic Evolution in Southeast China. GSA Bulletin, 134(1/2): 463–486. https://doi.org/10.1130/B35851.1 |
Wei, Q. F., Chen, H. Z., Wu, Z. D., et al., 1983. The Geochemical Characteristics of Limestone Soils in Longgang Area, Guangxi. Acta Pedologica Sinica, 20(1): 30–42 (in Chinese with English Abstract) |
Woodhead, J., Hellstrom, J., Maas, R., et al., 2006. U-Pb Geochronology of Speleothems by MC-ICPMS. Quaternary Geochronology, 1(3): 208–221. https://doi.org/10.1016/j.quageo.2006.08.002 |
Woodhead, J., Hellstrom, J., Pickering, R., et al., 2012. U and Pb Variability in Older Speleothems and Strategies for Their Chronology. Quaternary Geochronology, 14: 105–113. https://doi.org/10.1016/j.quageo.2012.02.028 |
Woodhead, J., Pickering, R., 2012. Beyond 500 ka: Progress and Prospects in the U-Pb Chronology of Speleothems, and Their Application to Studies in Palaeoclimate, Human Evolution, Biodiversity and Tectonics. Chemical Geology, 322: 290–299. https://doi.org/10.1016/j.chemgeo.2012.06.017 |
Xiang, F., Zhu, L. D., Wang, C. S., et al., 2007. Quaternary Sediment in the Yichang Area: Implications for the Formation of the Three Gorges of the Yangtze River. Geomorphology, 85(3/4): 249–258. https://doi.org/10.1016/j.geomorph.2006.03.027 |
Yang, R., Willett, S. D., Goren, L., 2015. In situ Low-Relief Landscape Formation as a Result of River Network Disruption. Nature, 520(7548): 526–529. https://doi.org/10.1038/nature14354 |
Ye, Y. G., Diao, S. B., Wu, X. L., et al., 2000. Thermodynamic Behavior of E' Centers in Quartz from Sediments: Application Potential in Geochronometry and Palaeothermometry. Rock and Mineral Analysis, 19(1): 4–6. https://doi.org/10.15898/j.cnki.11-2131/td.2000.01.002 (in Chinese with English Abstract) |
Yin, G. M., Bahain, J. J., Shen, G. J., et al., 2011. ESR/U-Series Study of Teeth Recovered from the Palaeoanthropological Stratum of the Dali Man Site (Shaanxi Province, China). Quaternary Geochronology, 6(1): 98–105. https://doi.org/10.1016/j.quageo.2010.04.001 |
Zhai, X. M., Huang, B. J., Zhang, J., et al., 2019. Speleologic Mysteries-Magic Jinfoshan Karst. Geological Publishing House, Beijing (in Chinese) |
Zhang, R., Zhu, X. W., Han, D. S., et al., 1998. Preliminary Study on Karst Caves of Mt. Jinfo, Nanchuan, Chongqing. Carsologica Sinica, 17(3): 196–211 (in Chinese with English Abstract) |
Zhang, Z. J., Daly, J. S., Li, C. A., et al., 2021. Formation of the Three Gorges (Yangtze River) no Earlier than 10 Ma. Earth-Science Reviews, 216: 103601. https://doi.org/10.1016/j.earscirev.2021.103601 |
Zheng, H. B., 2015. Birth of the Yangtze River: Age and Tectonic-Geomorphic Implications. National Science Review, 2(4): 438–453. https://doi.org/10.1093/nsr/nwv063 |
Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561. https://doi.org/10.1073/pnas.1216241110 |
Zhu, X. W., 1982. Solutional Features of Limestone Caves in Guilin Area. Carsologica Sinica, 1(2): 93–103 (in Chinese with English Abstract) |