Citation: | Chao Fu, Xue Fan, Shengli Li, Shunli Li. Effect of the Tectonic Inversion on the Source-to-Sink System Evolution in a Lacustrine Rift Basin, a Case Study of South Yellow Sea Basin, East China. Journal of Earth Science, 2025, 36(2): 562-583. doi: 10.1007/s12583-022-1664-7 |
The complex plate collision process led the South Yellow Sea Basin (SYSB) to go through an intensity tectonic inversion during the Early Cenozoic, leading to a regional unconformity surface development. As a petroliferous basin, SYSB saw intense denudation and deposition processes, making it hard to characterize their source-to-sink system (S2S), and this study provided a new way to reveal them quantitatively. According to the seismic interpretation, it was found that two types of tectonic inversion led to the strata shortening process, which was classified according to their difference in planar movements: dip-slip faults and strike-slip ones. As for dip-slip faults, the inversion structure was primarily formed by the dip-slip movement, and many fault-related folds developed, which developed in the North Depression Zone of the SYSB. The strike-slip ones, accompanied by some negative flower structures, dominate the South Depression Zone of the SYSB. To reveal its source-to-sink (S2S) system in the tectonic inversion basin, we rebuild the provenance area with detrital zircon U-Pb data and heavy mineral assemblage. The results show, during the Eocene (tectonic inversion stage), the proximal slump or fan delta from the Central Uplift Zone was prominently developed in the North Depression Zone, and the South Depression Zone is filled by sediments from the proximal area (Central Uplift Zone in SYSB and Wunansha Uplift) and the prograding delta long-axis parallel to the boundary faults. Then, calculations were conducted on the coarse sediment content, fault displacements, catchment relief, sediment migration distance, and discussions about the impact factors of the S2S system developed in various strata shortening patterns with a statistical method. It was found that, within the dip-slip faults-dominated zone, the volume of the sediment routing system and the ratio of coarse-grained sediments merely have a relationship with the amount of sediment supply and average faults break displacement. Compared with the strike-slip faults-dominated zone, the source-to-sink system shows a lower level of sandy sediment influx, and its coarse-grained content is mainly determined by the average faults broken displacement.
Allen, M. B., MacDonald, D. I. M., Xun, Z., et al., 1997. Early Cenozoic Two-Phase Extension and Late Cenozoic Thermal Subsidence and Inversion of the Bohai Basin, Northern China. Marine and Petroleum Geology, 14(7/8): 951–972. https://doi.org/10.1016/S0264-8172(97)00027-5 |
Allen, P. A., 2008. From Landscapes into Geological History. Nature, 451(7176): 274–276. https://doi.org/10.1038/nature06586 |
Allen, P. A., Armitage, J. J., Carter, A., et al., 2013. The Qs Problem: Sediment Volumetric Balance of Proximal Foreland Basin Systems. Sedimentology, 60(1): 102–130. https://doi.org/10.1111/sed.12015 |
Ayers, J. C., Dunkle, S., Gao, S., et al., 2002. Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, East-Central China, Using U-Th-Pb Dating of Zircon and Monazite. Chemical Geology, 186(3/4): 315–331. https://doi.org/10.1016/s0009-2541(02)00008-6 |
Babault, J., Viaplana-Muzas, M., Legrand, X., et al., 2018. Source-to-Sink Constraints on Tectonic and Sedimentary Evolution of the Western Central Range and Cenderawasih Bay (Indonesia). Journal of Asian Earth Sciences, 156: 265–287. https://doi.org/10.1016/j.jseaes.2018.02.004 |
Bastos, A. C., Kenyon, N. H., Collins, M., 2002. Sedimentary Processes, Bedforms and Facies, Associated with a Coastal Headland: Portland Bill, Southern UK. Marine Geology, 187(3/4): 235–258. https://doi.org/10.1016/s0025-3227(02)00380-8 |
Bonini, M., Sani, F., Antonielli, B., 2012. Basin Inversion and Contractional Reactivation of Inherited Normal Faults: A Review Based on Previous and New Experimental Models. Tectonophysics, 522: 55–88. https://doi.org/10.1016/j.tecto.2011.11.014 |
Bouaziz, S., Barrier, E., Soussi, M., et al., 2002. Tectonic Evolution of the Northern African Margin in Tunisia from Paleostress Data and Sedimentary Record. Tectonophysics, 357(1/2/3/4): 227–253. https://doi.org/10.1016/S0040-1951(02)00370-0 |
Caballero, V., Mora, A., Quintero, I., et al., 2013. Tectonic Controls on Sedimentation in an Intermontane Hinterland Basin Adjacent to Inversion Structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377(1): 315–342. https://doi.org/10.1144/sp377.12 |
Cai, J., Zhao, Z. G., Zhang, X. L., et al., 2014. On Sedimentary Facies in Funing Formation of Northern Sag in North Depression in South Yellow Sea Basin. Journal of Geology, 38(4): 530–535. https://doi.org/10.3969/j.issn.1674-3636.2014.04.530 |
Cai, L. X., Guo, X. W., Zhang, X. H., et al., 2020. Pore-Throat Structures of the Permian Longtan Formation Tight Sandstones in the South Yellow Sea Basin, China: A Case Study from Borehole CSDP-2. Journal of Petroleum Science and Engineering, 186: 106733. https://doi.org/10.1016/j.petrol.2019.106733 |
Cai, L. X., Xiao, G. L., Guo, X. W., et al., 2019. Assessment of Mesozoic and Upper Paleozoic Source Rocks in the South Yellow Sea Basin Based on the Continuous Borehole CSDP-2. Marine and Petroleum Geology, 101: 30–42. https://doi.org/10.1016/j.marpetgeo.2018.11.028 |
Cai, L. X., Zhang, X. H., Guo, X. W., et al., 2021. Effective Hydrocarbon-Bearing Geological Conditions of the Permian Strata in the South Yellow Sea Basin, China: Evidence from Borehole CSDP-2. Journal of Petroleum Science and Engineering, 196: 107815. https://doi.org/10.1016/j.petrol.2020. 107815 doi: 10.1016/j.petrol.2020.107815 |
Cao, Q., Ye, J. R., Wang, W., et al., 2009. Preliminary Prediction and Evaluation on Source Rock in Low Exploration Basin—A Case Study from the Northeast Depression, South Yellow Sea Basin, East China. Journal of Earth Science, 20(5): 836–847. https://doi.org/10.1007/s12583-009-0070-8 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1 |
Chen, G., Chang, X. C., Guo, X. W., et al., 2022. Geochemical Characteristics and Organic Matter Enrichment Mechanism of Permian Black Mudstone in the South Yellow Sea Basin, China. Journal of Petroleum Science and Engineering, 208: 109248. https://doi.org/10.1016/j.petrol.2021.109248 |
Chen, Z., Chen, F., 1995. Inversion Structures and Their Relationship to Traps of Oil and Gas. Earth Sciences Frontiers, 2(3–4): 96–102 (in Chinese) |
Cheong, C. S., Jeong, G. Y., Kim, H., et al., 2003. Early Permian Peak Metamorphism Recorded in U-Pb System of Black Slates from the Ogcheon Metamorphic Belt, South Korea, and Its Tectonic Implication. Chemical Geology, 193(1/2): 81–92. https://doi.org/10.1016/s0009-2541(02)00227-9 |
Cho, D. L., Lee, S. R., Armstrong, R., 2008. Termination of the Permo-Triassic Songrim (Indosinian) Orogeny in the Ogcheon Belt, South Korea: Occurrence of ca. 220 Ma Post-Orogenic Alkali Granites and Their Tectonic Implications. Lithos, 105(3/4): 191–200. https://doi.org/10.1016/j.lithos.2008.03.007 |
Cho, M., Cheong, W., Ernst, W. G., et al., 2013. SHRIMP U-Pb Ages of Detrital Zircons in Metasedimentary Rocks of the Central Ogcheon Fold-Thrust Belt, Korea: Evidence for Tectonic Assembly of Paleozoic Sedimentary Protoliths. Journal of Asian Earth Sciences, 63: 234–249. https://doi.org/10.1016/j.jseaes.2012.08.020 |
Cho, M., Na, J., Yi, K., 2010. SHRIMP U-Pb Ages of Detrital Zircons in Metasandstones of the Taean Formation, Western Gyeonggi Massif, Korea: Tectonic Implications. Geosciences Journal, 14(2): 99–109. https://doi.org/10.1007/s12303-010-0011-7 |
Cooper, M. A., Williams, G. D., de Graciansky, P. C., et al., 1989. Inversion Tectonics—A Discussion. Geological Society, London, Special Publications, 44(1): 335–347. https://doi.org/10.1144/gsl.sp.1989.044.01.18 |
Cooper, M., Warren, M. J., 2010. The Geometric Characteristics, Genesis and Petroleum Significance of Inversion Structures. Geological Society, London, Special Publications, 335(1): 827–846. https://doi.org/10.1144/sp335.33 |
Dorsey, R. J., 2010. Sedimentation and Crustal Recycling along an Active Oblique-Rift Margin: Salton Trough and Northern Gulf of California. Geology, 38(5): 443–446. https://doi.org/10.1130/g30698.1 |
Dubois, A., Odonne, F., Massonnat, G., et al., 2002. Analogue Modelling of Fault Reactivation: Tectonic Inversion and Oblique Remobilisation of Grabens. Journal of Structural Geology, 24(11): 1741–1752. https://doi.org/10.1016/s0191-8141(01)00129-8 |
Escalona, A., Mann, P., 2011. Tectonics, Basin Subsidence Mechanisms, and Paleogeography of the Caribbean-South American Plate Boundary Zone. Marine and Petroleum Geology, 28(1): 8–39. https://doi.org/10.1016/j.marpetgeo.2010.01.016 |
Fu, C., Li, S. L., Li, S. L., et al., 2020. Sedimentary Characteristics, Dispersal Patterns, and Pathway Formation in Liaoxi Sag, Liaodong Bay Depression, North China: Evolution of Source-to-Sink Systems in Strike-Slip Tectonics Belt. Geological Journal, 55(7): 5119–5137. https://doi.org/10.1002/gj.3677 |
Gawthorpe, R. L., Leeder, M. R., 2000. Tectono-Sedimentary Evolution of Active Extensional Basins. Basin Research, 12(3/4): 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x |
Glen, R. A., Hancock, P. L., Whittaker, A., 2005. Basin Inversion by Distributed Deformation: The Southern Margin of the Bristol Channel Basin, England. Journal of Structural Geology, 27(12): 2113–2134. https://doi.org/10.1016/j.jsg.2005.08.006 |
He, M. Y., Mei, X., Zhang, X. H., et al., 2019. Provenance Discrimination of Detrital Zircon U-Pb Dating in the Core CSDP-1in the Continental Shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85–95. https://doi.org/10.13278/j.cnki.jjuese.20180099 |
Helland-Hansen, W., Sømme, T. O., Martinsen, O. J., et al., 2016. Deciphering Earth's Natural Hourglasses: Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9): 1008–1033. https://doi.org/10.2110/jsr.2016.56 |
Horner, S. C., Hubbard, S. M., Martin, H. K., et al., 2019. Reconstructing Basin-Scale Drainage Dynamics with Regional Subsurface Mapping and Channel-Bar Scaling, Aptian, Western Canada Foreland Basin. Sedimentary Geology, 385: 26–44. https://doi.org/10.1016/j.sedgeo.2019.03.012 |
Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x |
Hou, Z. H., Xiao, Y. L., Shen, J., et al., 2020. In situ Rutile U-Pb Dating Based on Zircon Calibration Using LA-ICP-MS, Geological Applications in the Dabie Orogen, China. Journal of Asian Earth Sciences, 192: 104261. https://doi.org/10.1016/j.jseaes.2020.104261 |
Hu, P. P., Yang, F. L., Tian, L. X., et al., 2019. Stress Field Modelling of the Late Oligocene Tectonic Inversion in the Liaodong Bay Subbasin, Bohai Bay Basin (Northern China): Implications for Geodynamics and Petroleum Accumulation. Journal of Geodynamics, 126: 32–45. https://doi.org/10.1016/j.jog.2019.01.003 |
Huang, L., Liu, C. Y., 2017. Three Types of Flower Structures in a Divergent-Wrench Fault Zone. Journal of Geophysical Research (Solid Earth), 122(12): 10478–10497. https://doi.org/10.1002/2017jb014675 |
Huang, L., Liu, C. Y., Zhou, X. H., et al., 2012. The Important Turning Points during Evolution of Cenozoic Basin Offshore the Bohai Sea: Evidence and Regional Dynamics Analysis. Science China Earth Sciences, 55(3): 476–487. https://doi.org/10.1007/s11430-011-4359-y |
Huang, R. B., Liu, J. R., Yang, Z. Y., et al., 2020. Landscape Configuration of Eastern South China during the Late Neoproterozoic: New Constraints from Sedimentary Indices and Zircon U-Pb-Hf Isotopes of the Southeastern Margin of the Yangtze Block. Precambrian Research, 347: 105839. https://doi.org/10.1016/j.precamres.2020.105839 |
Hwang, B. H., Son, M., Yang, K., et al., 2008. Tectonic Evolution of the Gyeongsang Basin, Southeastern Korea from 140 Ma to the Present, Based on a Strike-Slip and Block Rotation Tectonic Model. International Geology Review, 50(4): 343–363. https://doi.org/10.2747/0020-6814.50.4.343 |
Indrevær, K., Gabrielsen, R. H., Faleide, J. I., 2017. Early Cretaceous Synrift Uplift and Tectonic Inversion in the Loppa High Area, Southwestern Barents Sea, Norwegian Shelf. Journal of the Geological Society, 174(2): 242–254. https://doi.org/10.1144/jgs2016-066 |
Kim, S. W., Kwon, S., Park, S. I., et al., 2016. SHRIMP U-Pb Dating and Geochemistry of the Cretaceous Plutonic Rocks in the Korean Peninsula: A New Tectonic Model of the Cretaceous Korean Peninsula. Lithos, 262: 88–106. https://doi.org/10.1016/j.lithos.2016.06.027 |
Lamarche, J., Scheck, M., Lewerenz, B., 2003. Heterogeneous Tectonic Inversion of the Mid-Polish Trough Related to Crustal Architecture, Sedimentary Patterns and Structural Inheritance. Tectonophysics, 373(1/2/3/4): 75–92. https://doi.org/10.1016/s0040-1951(03)00285-3 |
Lee, B. C., Oh, C. W., Yi, K., 2016. Geochemistry, Zircon U-Pb Ages, and Hf Isotopic Compositions of Precambrian Gneisses in the Wonju-Jechon Area of the Southern Gyeonggi Massif: Implications for the Precambrian Tectonic Evolution of Korea and Northeast Asia. Precambrian Research, 283: 169–189. https://doi.org/10.1016/j.precamres.2016.07.014 |
Lee, C., Ryu, I. C., Shinn, Y. J., 2017. U-Pb Ages of Detrital Zircons in Lower Cretaceous Non-Marine Successions of the Gyeongsang Basin, Northeast Asia: Implications for Sediment Provenance. Sedimentary Geology, 353: 125–138. https://doi.org/10.1016/j.sedgeo.2017.03.008 |
Lee, G. H., Kwon, Y. I., Yoon, C. S., et al., 2006. Igneous Complexes in the Eastern Northern South Yellow Sea Basin and Their Implications for Hydrocarbon Systems. Marine and Petroleum Geology, 23(6): 631–645. https://doi.org/10.1016/j.marpetgeo.2006.06.001 |
Lee, Y., Cho, M., Yi, K., 2017. In situ U-Pb and Lu-Hf Isotopic Studies of Zircons from the Sancheong-Hadong AMCG Suite, Yeongnam Massif, Korea: Implications for the Petrogenesis of ~1.86 Ga Massif-Type Anorthosite. Journal of Asian Earth Sciences, 138: 629–646. https://doi.org/10.1016/j.jseaes.2017.02.038 |
Li, C. F., Chen, B., Zhou, Z. Y., 2009. Deep Crustal Structures of Eastern China and Adjacent Seas Revealed by Magnetic Data. Science in China Series D: Earth Sciences, 52(7): 984–993. https://doi.org/10.1007/s11430-009-0096-x |
Li, N., Li, W. R., Long, H. Y., 2013. Study of Positive Inversion Structures in the North Depression of the South Yellow Sea Basin. Marine Geology & Quaternary Geology, 33(3): 95–100. https://doi.org/10.3724/sp.j.1140.2013.03095 |
Li, S. L., Yu, X. H., Steel, R., et al., 2018. Change from Tide-Influenced Deltas in a Regression-Dominated Set of Sequences to Tide-Dominated Estuaries in a Transgression-Dominated Sequence Set, East China Sea Shelf Basin. Sedimentology, 65(7): 2312–2338. https://doi.org/10.1111/sed.12466 |
Li, W. Y., Liu, Y. X., Li, B., et al., 2016. Hydrocarbon Exploration in the South Yellow Sea Based on Airborne Gravity, China. Journal of Earth Science, 27(4): 686–698. https://doi.org/10.1007/s12583-015-0607-y |
Li, W. Y., Liu, Y. X., Xu, J. C., 2014. Onshore-Offshore Structure and Hydrocarbon Potential of the South Yellow Sea. Journal of Asian Earth Sciences, 90: 127–136. https://doi.org/10.1016/j.jseaes.2014.04.024 |
Li, Z. X., 1994. Collision between the North and South China Blocks: a Crustal-Detachment Model for Suturing in the Region East of the Tanlu Fault. Geology, 22(8): 739. https://doi.org/10.1130/0091-7613(1994)022<0739:cbtnas>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0739:cbtnas>2.3.co;2 |
Lin, C. M., Zhang, X., Zhang, N., et al., 2014. Provenance Records of the North Jiangsu Basin, East China: Zircon U-Pb Geochronology and Geochemistry from the Paleogene Dainan Formation in the Gaoyou Sag. Journal of Palaeogeography, 3(1): 99–114. https://doi.org/10.3724/sp.j.1261.2014.00006 |
Liu, C., Jiang, Z. X., Zhou, X. W., et al., 2021. Paleocene Storm-Related Event Beds in the Gaoyou Sag of the Subei Basin, Eastern China: A New Interpretation for These Deep Lacustrine Sandstones. Marine and Petroleum Geology, 124: 104850. https://doi.org/10.1016/j.marpetgeo.2020.104850 |
Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007 |
Mao, J. W., Xie, G. Q., Bierlein, F., et al., 2008. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta, 72(18): 4607–4626. https://doi.org/10.1016/j.gca.2008.06.027 |
McClay, K. R., 1989. Analogue Models of Inversion Tectonics. Geological Society, London, Special Publications, 44(1): 41–59. https://doi.org/10.1144/gsl.sp.1989.044.01.04 |
McClay, K. R., 1995. The Geometries and Kinematics of Inverted Fault Systems: A Review of Analogue Model Studies. Geological Society of London Special Publications, 88(1): 97–118. https://doi.org/10.1144/gsl.sp.1995.088.01.07 |
Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312: 244–257. https://doi.org/10.1016/j.lithos.2018.05.009 |
Morton, A. C., Berge, C., 1995. Heavy Mineral Suites in the Statfjord and Nansen Formations of the Brent Field, North Sea: A New Tool for Reservoir Subdivision and Correlation. Petroleum Geoscience, 1(4): 355–364. https://doi.org/10.1144/petgeo.1.4.355 |
Morton, A. C., Hallsworth, C., 1994. Identifying Provenance-Specific Features of Detrital Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 90(3/4): 241–256. https://doi.org/10.1016/0037-0738(94)90041-8 |
Nyberg, B., Helland-Hansen, W., Gawthorpe, R. L., et al., 2018. Revisiting Morphological Relationships of Modern Source-to-Sink Segments as a First-Order Approach to Scale Ancient Sedimentary Systems. Sedimentary Geology, 373: 111–133. https://doi.org/10.1016/j.sedgeo.2018.06.007 |
Nyberg, B., Helland-Hansen, W., Gawthorpe, R., et al., 2021. Assessing First-Order BQART Estimates for Ancient Source-to-Sink Mass Budget Calculations. Basin Research, 33(4): 2435–2452. https://doi.org/10.1111/bre.12563 |
Odlum, M. L., Stockli, D. F., Capaldi, T. N., et al., 2019. Tectonic and Sediment Provenance Evolution of the South Eastern Pyrenean Foreland Basins during Rift Margin Inversion and Orogenic Uplift. Tectonophysics, 765: 226–248. https://doi.org/10.1016/j.tecto.2019.05.008 |
Pang, Y. M., Guo, X. W., Han, Z. Z., et al., 2019. Mesozoic–Cenozoic Denudation and Thermal History in the Central Uplift of the South Yellow Sea Basin and the Implications for Hydrocarbon Systems: Constraints from the CSDP-2 Borehole. Marine and Petroleum Geology, 99: 355–369. https://doi.org/10.1016/j.marpetgeo.2018.10.027 |
Pang, Y. X., Zhang, G., Xiao, X., et al., 2017. Characteristics of Meso-Cenozoic Igneous Complexes in the South Yellow Sea Basin, Lower Yangtze Craton of eastern China and the Tectonic Setting. Acta Geologica Sinica, 91(3): 971–987 (in Chinese with English Abstract) |
Park, S. I., Kim, S. W., Kwon, S., et al., 2014. Paleozoic Tectonics of the Southwestern Gyeonggi Massif, South Korea: Insights from Geochemistry, Chromian-Spinel Chemistry and SHRIMP U-Pb Geochronology. Gondwana Research, 26(2): 684–698. https://doi.org/10.1016/j.gr.2013.07.015 |
Park, Y. A., Khim, B. K., Zhao, S., 1994. Sea Level Fluctuation in the Yellow Sea Basin. Journal of the Korean Society of Oceanography, 29(1): 42–49 |
Qiu, X. F., Tong, X. R., Jiang, T., et al., 2021. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119–130. https://doi.org/10.1016/j.gr.2020.08.014 |
Romans, B. W., Normark, W. R., McGann, M. M., et al., 2009. Coarse-Grained Sediment Delivery and Distribution in the Holocene Santa Monica Basin, California: Implications for Evaluating Source-to-Sink Flux at Millennial Time Scales. Geological Society of America Bulletin, 121(9/10): 1394–1408. https://doi.org/10.1130/b26393.1 |
Rowley, D. B., Xue, F., Tucker, R. D., et al., 1997. Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan: U/Pb Zircon Geochronology. Earth and Planetary Science Letters, 151(3/4): 191–203. https://doi.org/10.1016/S0012-821x(97)81848-1 |
Saylor, J. E., Sundell, K. E., 2016. Quantifying Comparison of Large Detrital Geochronology Data Sets. Geosphere, 12(1): 203–220. https://doi.org/10.1130/ges01237.1 |
Schmidt, A., Weyer, S., Mezger, K., et al., 2008. Rapid Eclogitisation of the Dabie–Sulu UHP Terrane: Constraints from Lu-Hf Garnet Geochronology. Earth and Planetary Science Letters, 273(1/2): 203–213. https://doi.org/10.1016/j.epsl.2008.06.036 |
Shinn, Y. J., 2015. Geological Structures and Controls on Half-Graben Inversion in the Western Gunsan Basin, Yellow Sea. Marine and Petroleum Geology, 68: 480–491. https://doi.org/10.1016/j.marpetgeo.2015.09.013 |
Shinn, Y. J., Chough, S. K., Hwang, I. G., 2010. Structural Development and Tectonic Evolution of Gunsan Basin (Cretaceous–Tertiary) in the Central Yellow Sea. Marine and Petroleum Geology, 27(2): 500–514. https://doi.org/10.1016/j.marpetgeo.2009.11.001 |
Sømme, T. O., Jackson, C. A. L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 2 – Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5): 512–531. https://doi.org/10.1111/bre.12014 |
Sømme, T. O., Jackson, C. A. L., Vaksdal, M., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 1–Depositional Setting and Fan Evolution. Basin Research, 25(5): 489–511. https://doi.org/10.1111/bre.12013 |
Syvitski, J., Milliman, J., 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology, 115(1): 1–19. https://doi.org/10.1086/509246 |
Tan, J., Zhang, L. M., Wang, C. S., et al., 2020. Late Cretaceous Provenance Change in the Jiaolai Basin, East China: Implications for Paleogeographic Evolution of East Asia. Journal of Asian Earth Sciences, 194: 104188. https://doi.org/10.1016/j.jseaes.2019.104188 |
Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1/2): 48–82. https://doi.org/10.1016/j.precamres.2006.09.001 |
Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2008. Zircon U-Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 161(3/4): 389–418. https://doi.org/10.1016/j.precamres.2007.09.008 |
Teipel, U., Eichhorn, R., Loth, G., et al., 2004. U-Pb SHRIMP and Nd Isotopic Data from the Western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician Magmatism. International Journal of Earth Sciences, 93(5): 782–801. https://doi.org/10.1007/s00531-004-0419-2 |
Turner, J. P., Williams, G. A., 2004. Sedimentary Basin Inversion and Intra-Plate Shortening. Earth-Science Reviews, 65(3/4): 277–304. https://doi.org/10.1016/j.earscirev.2003.10.002 |
Vandycke, S., 2002. Palaeostress Records in Cretaceous Formations in NW Europe: Extensional and Strike–Slip Events in Relationships with Cretaceous–Tertiary Inversion Tectonics. Tectonophysics, 357(1/2/3/4): 119–136. https://doi.org/10.1016/S0040-1951(02)00365-7 |
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140-–146 |
Wageman, J. M., Hilde, T. W. C., Emery, K. O., 1970. Structural Framework of East China Sea and Yellow Sea. AAPG Bulletin, 54(9): 1611–1643. https://doi.org/10.1306/5d25cbd7-16c1-11d7-8645000102c1865d |
Wang, K. S., Wang, G. Q., Cai, S. W., et al., 2007. Heavy Mineral Characteristics of Surface Sediments in the Subaqueous Yangtze River Delta. Marine Geology & Quaternary Geology, 27(1): 7–12 (in Chinese with English Abstract) |
Wang, L., Gao, X. Y., Chen, R. X., et al., 2021. Zircon and Titanite Behaviors during Partial Melting of Metabasite in the Post-Collisional Stage: Constraints from Garnet Pyroxenite in the Dabie Orogen, China. Journal of Asian Earth Sciences, 205: 104615. https://doi.org/10.1016/j.jseaes.2020.104615 |
Wang, Y. S., Bai, Q., Tian, Z. Q., et al., 2020. Detrital Zircon U-Pb Dating in the Southern Hefei Basin: Evidence for Exhumation of HP-UHP Rocks of the Dabie Orogen. Science China Earth Sciences, 63(7): 954–968. https://doi.org/10.1007/s11430-019-9565-3 |
Williams, G. A., Turner, J. P., Holford, S. P., 2005. Inversion and Exhumation of the St. George's Channel Basin, Offshore Wales, UK. Journal of the Geological Society, 162(1): 97–110. https://doi.org/10.1144/0016-764904-023 |
Williams, G. D., Powell, C. M., Cooper, M. A., 1989. Geometry and Kinematics of Inversion Tectonics. Geological Society of London Special Publications, 44(1): 3–15. https://doi.org/10.1144/gsl.sp.1989.044.01.02 |
Xiong, C., Chen, H. D., Niu, Y. L., et al., 2019. Provenance, Depositional Setting, and Crustal Evolution of the Cathaysia Block, South China: Insights from Detrital Zircon U-Pb Geochronology and Geochemistry of Clastic Rocks. Geological Journal, 54(2): 897–912. https://doi.org/10.1002/gj.3253 |
Xu, M., Chen, J. W., Liang, J., et al., 2019. Basement Structures underneath the Northern South Yellow Sea Basin (East China): Implications for the Collision between the North China and South China Blocks. Journal of Asian Earth Sciences, 186: 104040. https://doi.org/10.1016/j.jseaes.2019.104040 |
Yamada, Y., McClay, K., 2003a. Application of Geometric Models to Inverted Listric Fault Systems in Sandbox Experiments. Paper 2: Insights for Possible along Strike Migration of Material during 3D Hanging Wall Deformation. Journal of Structural Geology, 25(8): 1331–1336. https://doi.org/10.1016/S0191-8141(02)00160-8 |
Yamada, Y., McClay, K., 2003b. Application of Geometric Models to Inverted Listric Fault Systems in Sandbox Experiments. Paper 1: 2D Hanging Wall Deformation and Section Restoration. Journal of Structural Geology, 25(9): 1551–1560. https://doi.org/10.1016/s0191-8141(02)00181-5 |
Yang, S. Y., Jung, H. S., Lim, D. I., et al., 2003. A Review on the Provenance Discrimination of Sediments in the Yellow Sea. Earth-Science Reviews, 63(1/2): 93–120. https://doi.org/10.1016/s0012-8252(03)00033-3 |
Yao, Y. J., Chen, C. F., Feng, Z. Q., et al., 2010. Tectonic Evolution and Hydrocarbon Potential in Northern Area of the South Yellow Sea. Journal of Earth Science, 21(1): 71–82. https://doi.org/10.1007/s12583-010-0006-3 |
Yi, S., Yi, S., Batten, D. J., et al., 2003. Cretaceous and Cenozoic Non-Marine Deposits of the Northern South Yellow Sea Basin, Offshore Western Korea: Palynostratigraphy and Palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(1): 15–44. https://doi.org/10.1016/s0031-0182(02)00637-5 |
Yoon, S. H., Sohn, Y. K., Chough, S. K., 2014. Tectonic, Sedimentary, and Volcanic Evolution of a Back-Arc Basin in the East Sea (Sea of Japan). Marine Geology, 352: 70–88. https://doi.org/10.1016/j.margeo.2014.03.004 |
Yue, B. J., Zhang, H., Liao, J., et al., 2017. Neoproterozoic Granitic Gneiss Offshore the Shandong Peninsula of Eastern China: The Eastward Extension of the Sulu Orogenic Belt. International Geology Review, 59(8): 1015–1027. https://doi.org/10.1080/00206814.2016.1250127 |
Yue, W., Yang, S. Y., Zhao, B. C., et al., 2019. Changes in Environment and Provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene Transition. Marine Geology, 416: 105976. https://doi.org/10.1016/j.margeo.2019.105976 |
Zhai, M. G., Guo, J. H., Li, Z., et al., 2007. Linking the Sulu UHP Belt to the Korean Peninsula: Evidence from Eclogite, Precambrian Basement, and Paleozoic Sedimentary Basins. Gondwana Research, 12(4): 388–403. https://doi.org/10.1016/j.gr.2007.0 2.003 doi: 10.1016/j.gr.2007.02.003 |
Zhang, B., Liu, S. F., Lin, C. F., et al., 2019. Source-to-Sink System Reconstruction in the Northern Jiaolai Basin, Eastern China, by Multiproxy Provenance Methods and Implications for Exhumation of the Sulu Orogen. Tectonophysics, 754: 18–32. https://doi.org/10.1016/j.tecto.2019.01.009 |
Zhang, H., Han, Z. Z., Xu, H., et al., 2014. Zircon U-Pb Ages and Geochemical Composition of Gneisses from the Mesozoic Foreland Basin in the Yellow Sea, China. International Geology Review, 56(16): 1984–1999. https://doi.org/10.1080/00206814.2014.981304 |
Zhang, P., Kuang, H. W., Liu, Y. Q., et al., 2019. Sedimentary Characteristics and Provenance of the Basal Conglomerate of the Late Jurassic–Early Cretaceous Jiaolai Basin, Eastern China and Their Implications for the Uplift of the Sulu Orogenic Belt. International Geology Review, 61(5): 521–538. https://doi.org/10.1080/00206814.2018.1437786 |
Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone: A Comprehensive Review. Gondwana Research, 16(1): 1–26. https://doi.org/10.1016/j.gr.2009.03.008 |
Zhang, R. Y., Yang, F. L., Hu, P. P., et al., 2021. Cenozoic Tectonic Inversion in the Northern Depression, South Yellow Sea Basin, East Asia: Structural Styles and Driving Mechanism. Tectonophysics, 798: 228687. https://doi.org/10.1016/j.tecto.2020.228687 |
Zhang, R. Y., Yang, F. L., Zhao, C. J., et al., 2020. Coupling Relationship between Sedimentary Basin and Moho Morphology in the South Yellow Sea, East China. Geological Journal, 55(9): 6544–6561. https://doi.org/10.1002/gj.3821 |
Zhang, X. H., Yang, J. Y., Li, G., et al., 2015. Basement Structure and Distribution of Mesozoic-Paleozoic Marine Strata in the South Yellow Sea Basin. Chinese Journal of Geophysics, 58(1): 96–107. https://doi.org/10.1002/cjg2.20158 |
Zhang, Y. B., Zhai, M. G., Hou, Q. L., et al., 2012. Late Cretaceous Volcanic Rocks and Associated Granites in Gyeongsang Basin, SE Korea: Their Chronological Ages and Tectonic Implications for Cratonic Destruction of the North China Craton. Journal of Asian Earth Sciences, 47: 252–264. https://doi.org/10.1016/j.jseaes.2011.12.011 |
Zhang, Y., Shi, Y. H., Song, C. Z., et al., 2017. Sedimentary Environments and Its Geological Significance of Jurassic Moshan Formation in the Northeastern Margin of Dabie Mountain. Acta Petrologica Sinica, 33(2): 639–652 (in Chinese with English Abstract) |
Zheng, B. S., Mou, C. L., Wang, X. P., et al., 2021. U-Pb Ages, Trace Elements and Hf Isotopes of Detrital Zircons from the Late Permian–Early Triassic Sedimentary Succession in the Northern Yangtze Block, South China: Implications for the Reconstruction of the South China Block in Pangea. Journal of Asian Earth Sciences, 206: 104609. https://doi.org/10.1016/j.jseaes.2020.104609 |
Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145–4165. https://doi.org/10.1016/j.gca.2004.01.007 |
Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89–111. https://doi.org/10.1016/j.earscirev.2018.12.009 |
Zhu, X. F., Shen, C. B., Zhou, R. J., et al., 2020. Paleogene Sediment Provenance and Paleogeographic Reconstruction of the South Yellow Sea Basin, East China: Constraints from Detrital Zircon U-Pb Geochronology and Heavy Mineral Assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776. https://doi.org/10.1016/j.palaeo.2020.109776 |