Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Yi'an Wang, Ruichao Zhao, Lin Ding, Shuai Xiong, Yin Li, Jianwei Bu, Wei Chen, Hong Zhou, Wei Liu. Karst Trough Control of Solute Transport Processes at Two Karst Groundwater Flow Systems, Western Hubei, Central China. Journal of Earth Science, 2025, 36(4): 1731-1741. doi: 10.1007/s12583-022-1665-6
Citation: Yi'an Wang, Ruichao Zhao, Lin Ding, Shuai Xiong, Yin Li, Jianwei Bu, Wei Chen, Hong Zhou, Wei Liu. Karst Trough Control of Solute Transport Processes at Two Karst Groundwater Flow Systems, Western Hubei, Central China. Journal of Earth Science, 2025, 36(4): 1731-1741. doi: 10.1007/s12583-022-1665-6

Karst Trough Control of Solute Transport Processes at Two Karst Groundwater Flow Systems, Western Hubei, Central China

doi: 10.1007/s12583-022-1665-6
More Information
  • Corresponding author: Wei Liu, wliu@cug.edu.cn
  • Received Date: 30 Dec 2021
  • Accepted Date: 01 Apr 2022
  • Issue Publish Date: 30 Aug 2025
  • To investigate groundwater flow and solute transport characteristics of the karst trough zone in China, tracer experiments were conducted at two adjacent typical karst groundwater flow systems (Yuquandong (YQD) and Migongquan (MGQ)) in Sixi valley, western Hubei, China. High-resolution continuous monitoring was utilized to obtain breakthrough curves (BTCs), which were then analyzed using the multi-dispersion model (MDM) and the two-region nonequilibrium model (2RNE) with basic parameters calculated by CXTFIT and QTRACER2.Results showed that: (1) YQD flow system had a complex infiltration matrix with overland flow, conduit flow and fracture flow, while the MGQ flow system was dominated by conduit flow with fast flow transport velocity, but also small amount of fracture flow there; (2) They were well fitted based on the MDM (R2 = 0.928) and 2RNE (R2 = 0.947) models, indicating that they had strong adaptability in the karst trough zone; (3) conceptual models for YQD and MGQ groundwater systems were generalized. In YQD system, the solute was transported via overland flow during intense rainfall, while some infiltrated down into fissures and conduits. In MGQ system, most were directly transported to spring outlet in the fissure-conduit network.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Barberá, J. A., Mudarra, M., Andreo, B., et al., 2018. Regional-Scale Analysis of Karst Underground Flow Deduced from Tracing Experiments: Examples from Carbonate Aquifers in Malaga Province, Southern Spain. Hydrogeology Journal, 26(1): 23–40. https://doi.org/10.1007/s10040-017-1638-5
    Behrens, H., Beims, U., Dieter, H., et al., 2001. Toxicological and Ecotoxicological Assessment of Water Tracers. Hydrogeology Journal, 9(3): 321–325. https://doi.org/10.1007/s100400100126
    Birk, S., Geyer, T., Liedl, R., et al., 2005. Process-Based Interpretation of Tracer Tests in Carbonate Aquifers. Groundwater, 43(3): 381–388. https://doi.org/10.1111/j.1745-6584.2005.0033.x
    Chen, W., Peng, B., Huang, H. F., et al., 2022. Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China. International Journal of Environmental Research and Public Health, 19(1): 263–276. https://doi.org/10.3390/ijerph19010263
    Cholet, C., Charlier, J. B., Moussa, R., et al., 2017. Assessing Lateral Flows and Solute Transport during Floods in a Conduit-Flow-Dominated Karst System Using the Inverse Problem for the Advection-Diffusion Equation. Hydrology and Earth System Sciences, 21(7): 3635–3653. https://doi.org/10.5194/hess-21-3635-2017
    Ding, H. H., Zhang, X. M., Chu, X. W., et al., 2020. Simulation of Groundwater Dynamic Response to Hydrological Factors in Karst Aquifer System. Journal of Hydrology, 587(8): 124995. https://doi.org/10.1016/j.jhydrol.2020.124995
    Field, M. S., 2002a. Efficient Hydrologic Tracer-Test Design for Tracer-Mass Estimation and Sample-Collection Frequency. 1, Method Development. Environmental Geology, 42(7): 827–838. https://doi.org/10.1007/s00254-002-0591-2
    Field, M. S., 2002b. The QTRACER 2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrological Systems. National Center for Environmental Assessment, US Environmental Protection Agency, Washington, D. C. 26–47
    Field, M. S., Leij, F. J., 2012. Solute Transport in Solution Conduits Exhibiting Multi-Peaked Breakthrough Curves. Journal of Hydrology, 440/441: 26–35. https://doi.org/10.1016/j.jhydrol.2012.03.018
    Field, M. S., Pinsky, P. F., 2000. A Two-Region Nonequilibrium Model for Solute Transport in Solution Conduits in Karstic Aquifers. Journal of Contaminant Hydrology, 44(3/4): 329–351. https://doi.org/10.1016/S0169-7722(00)00099-1
    Geyer, T., Birk, S., Licha, T., et al., 2007. Multitracer Test Approach to Characterize Reactive Transport in Karst Aquifers. Groundwater, 45(1): 36–45. https://doi.org/10.1111/j.1745-6584.2006.00261.x
    Giese, M., Reimann, T., Bailly-Comte, V., et al., 2018. Turbulent and Laminar Flow in Karst Conduits under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling. Water Resources Research, 54(3): 1918–1933. https://doi.org/10.1002/2017WR020658
    Goldscheider, N., 2008. A New Quantitative Interpretation of the Long-Tail and Plateau-Like Breakthrough Curves from Tracer Tests in the Artesian Karst Aquifer of Stuttgart, Germany. Hydrogeology Journal, 16(7): 1311–1317. https://doi.org/10.1007/s10040-008-0307-0
    Goldscheider, N., Meiman, J., Pronk, M., et al., 2008. Tracer Tests in Karst Hydrogeology and Speleology. International Journal of Speleology, 37(1): 27–40. https://doi.org/10.5038/1827-806x.37.1.3
    Göppert, N., Goldscheider, N., 2008. Solute and Colloid Transport in Karst Conduits under Low- and High-Flow Conditions. Groundwater, 46(1): 61–68. https://doi.org/10.1111/j.1745-6584.2007.00373.x
    He, X. D., Wu, J. H., Guo, W. Y., 2019. Karst Spring Protection for the Sustainable and Healthy Living: The Examples of Niangziguan Spring and Shuishentang Spring in Shanxi, China. Exposure and Health, 11(2): 153–165. https://doi.org/10.1007/s12403-018-00295-4
    Huang, H. F., Liu, H. F., Xiong, S., et al., 2021. Rapid Transport of Organochlorine Pesticides (OCPs) in Multimedia Environment from Karst Area. Science of The Total Environment, 775: 145698. https://doi.org/10.1016/j.scitotenv.2021.145698
    Jayawardena, A. W., Lui, P. H., 1984. Numerical Solution of the Dispersion Equation Using a Variable Dispersion Coefficient: Method and Applications. Hydrological Sciences Journal, 29(3): 293–309. https://doi.org/10.1080/02626668409490947
    Jiang, L. Q., Sun, R. L., Liang, X., 2021. Impact of Different Characterization Methods of Aquifer Heterogeneity on the Prediction of Groundwater Flow and Solute Transport. Earth Science, 46(11): 4150–4160. https://doi.org/10.3799/dqkx.2020.268 (in Chinese with English Abstract)
    Lauber, U., Goldscheider, N., 2014. Use of Artificial and Natural Tracers to Assess Groundwater Transit-Time Distribution and Flow Systems in a High-Alpine Karst System (Wetterstein Mountains, Germany). Hydrogeology Journal, 22(8): 1807–1824. https://doi.org/10.1007/s10040-014-1173-6
    Lauber, U., Ufrecht, W., Goldscheider, N., 2014. Spatially Resolved Information on Karst Conduit Flow from In-Cave Dye Tracing. Hydrology and Earth System Sciences, 18(2): 435–445. https://doi.org/10.5194/hess-18-435-2014
    Li, G. Q., Goldscheider, N., Field, M. S., 2016. Modeling Karst Spring Hydrograph Recession Based on Head Drop at Sinkholes. Journal of Hydrology, 542: 820–827. https://doi.org/10.1016/j.jhydrol.2016.09.052
    Liu, A. W., Brancelj, A., Ellis Burnet, J., 2016. Interpretation of Epikarstic Cave Drip Water Recession Curves: A Case Study from Velika Pasica Cave, Central Slovenia. Hydrological Sciences Journal, 61(15): 2754–2762. https://doi.org/10.1080/02626667.2016.1154150
    Liu, W., Brancelj, A., 2014. Hydrochemical Response of Cave Drip Water to Snowmelt Water, a Case Study from Velika Pasica Cave, Central Slovenia. Acta Carsologica, 43(1): 65–74. https://doi.org/10.3986/ac.v43i1.613
    Liu, W., Wang, Z. J., Chen, Q. L., et al., 2020. An Interpretation of Water Recharge in Karst Trough Zone as Determined by High-Resolution Tracer Experiments in Western Hubei, China. Environmental Earth Sciences, 79(14): 357. https://doi.org/10.1007/s12665-020-09056-6
    Luo, M. M., Chen, Z. H., Zhou, H., et al., 2016. Identifying Structure and Function of Karst Aquifer System Using Multiple Field Methods in Karst Trough Valley Area, South China. Environmental Earth Sciences, 75(9): 824. https://doi.org/10.1007/s12665-016-5630-5
    Magal, E., Arbel, Y., Caspi, S., et al., 2013. Determination of Pollution and Recovery Time of Karst Springs, an Example from a Carbonate Aquifer in Israel. Journal of Contaminant Hydrology, 145: 26–36. https://doi.org/10.1016/j.jconhyd.2012.10.010
    Majdalani, S., Guinot, V., Delenne, C., et al., 2018. Modelling Solute Dispersion in Periodic Heterogeneous Porous Media: Model Benchmarking Against Intermediate Scale Experiments. Journal of Hydrology, 561: 427–443. https://doi.org/10.1016/j.jhydrol.2018.03.024
    Mudarra, M., Andreo, B., Marín, A. I., et al., 2014. Combined Use of Natural and Artificial Tracers to Determine the Hydrogeological Functioning of a Karst Aquifer: The Villanueva Del Rosario System (Andalusia, Southern Spain). Hydrogeology Journal, 22(5): 1027–1039. https://doi.org/10.1007/s10040-014-1117-1
    Pardo-Igúzquiza, E., Dowd, P. A., Xu, C. S., et al., 2012. Stochastic Simulation of Karst Conduit Networks. Advances in Water Resources, 35: 141–150. https://doi.org/10.1016/j.advwatres.2011.09.014
    Qian, Z., Mao, Y., Xiong, S., et al., 2020. Historical Residues of Organochlorine Pesticides (OCPs) and Polycyclic Aromatic Hydrocarbons (PAHs) in a Flood Sediment Profile from the Longwang Cave in Yichang, China. Ecotoxicology and Environmental Safety, 196(2): 110542. https://doi.org/10.1016/j.ecoenv.2020.110542
    Qiu, J., Jiang, Y. J., Lyu, T. R., et al., 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst Trough Valley. Earth Science, 47(2): 717–728. https://doi.org/10.3799/dqkx.2021.008 (in Chinese with English Abstract)
    Su, A. N., Chen, Z. Y., Liu, J., et al., 2014. Sustainability of Intensively Exploited Aquifer Systems in the North China Plain: Insights from Multiple Environmental Tracers. Journal of Earth Science, 25(3): 605–611. https://doi.org/10.1007/s12583-014-0441-7
    Toride, N., Leij, F. J., van Genuchten, M. T., 1999. The CXTFIT Code (Version 2.1) for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. U. S. Salinity Laboratory, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California. 137
    Torrese, P., 2020. Investigating Karst Aquifers: Using Pseudo 3-D Electrical Resistivity Tomography to Identify Major Karst Features. Journal of Hydrology, 580: 124257. https://doi.org/10.1016/j.jhydrol.2019.124257
    van Genuchten, M. T., Wierenga, P. J., 1977. Mass Transfer Studies in Sorbing Porous Media: Ⅱ. Experimental Evaluation with Tritium (3H2O). Soil Science Society of America Journal, 41(2): 272–278. https://doi.org/10.2136/sssaj1977.03615995004100020022x
    Veress, M., 2020. Karst Types and Their Karstification. Journal of Earth Science, 31(3): 621–634. https://doi.org/10.1007/s12583-020-1306-x
    Vojtechovska, A., Bruthans, J., Krejca, F., 2010. Comparison of Conduit Volumes Obtained from Direct Measurements and Artificial Tracer Tests. Journal of Cave and Karst Studies, 72(3): 156–160. https://doi.org/10.4311/jcks2009es0095
    Vuilleumier, C., Jeannin, P. Y., Perrochet, P., 2019. Physics-Based Fine-Scale Numerical Model of a Karst System (Milandre Cave, Switzerland). Hydrogeology Journal, 27(7): 2347–2363. https://doi.org/10.1007/s10040-019-02006-y
    Wang, C. Q., Wang, X. G., Majdalani, S., et al., 2020. Influence of Dual Conduit Structure on Solute Transport in Karst Tracer Tests: An Experimental Laboratory Study. Journal of Hydrology, 590(2): 125255. https://doi.org/10.1016/j.jhydrol.2020.125255
    Werner, A., Hötzl, H., Käß, W., 1997. The Interpretation of a High Water Tracer Test in the Danube-Aach-System (Western Swabian Alb, Germany). In: Jeannin, P. Y., ed., Proceedings of the 12th International Congress of Speleology, 6th Conference on Limestone Hydrology and Fissured Media, August 10, 1997, La Chaux-de-Fonds, Switzerland. 187–190
    Worthington, S. R. H., Ford, D. C., 2009. Self-Organized Permeability in Carbonate Aquifers. Groundwater, 47(3): 326–336. https://doi.org/10.1111/j.1745-6584.2009.00551.x
    Wu, Q. H., Liu, C. L., Lin, W. J., et al., 2015. Quantifying the Preferential Flow by Dye Tracer in the North China Plain. Journal of Earth Science, 26(3): 435–444. https://doi.org/10.1007/s12583-014-0489-4
    Zhao, X. E., Chang, Y., Wu, J. C., et al., 2017. Laboratory Investigation and Simulation of Breakthrough Curves in Karst Conduits with Pools. Hydrogeology Journal, 25(8): 2235–2250. https://doi.org/10.1007/s10040-017-1626-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(627) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return