Citation: | Yi'an Wang, Ruichao Zhao, Lin Ding, Shuai Xiong, Yin Li, Jianwei Bu, Wei Chen, Hong Zhou, Wei Liu. Karst Trough Control of Solute Transport Processes at Two Karst Groundwater Flow Systems, Western Hubei, Central China. Journal of Earth Science, 2025, 36(4): 1731-1741. doi: 10.1007/s12583-022-1665-6 |
To investigate groundwater flow and solute transport characteristics of the karst trough zone in China, tracer experiments were conducted at two adjacent typical karst groundwater flow systems (Yuquandong (YQD) and Migongquan (MGQ)) in Sixi valley, western Hubei, China. High-resolution continuous monitoring was utilized to obtain breakthrough curves (BTCs), which were then analyzed using the multi-dispersion model (MDM) and the two-region nonequilibrium model (2RNE) with basic parameters calculated by CXTFIT and QTRACER2.Results showed that: (1) YQD flow system had a complex infiltration matrix with overland flow, conduit flow and fracture flow, while the MGQ flow system was dominated by conduit flow with fast flow transport velocity, but also small amount of fracture flow there; (2) They were well fitted based on the MDM (
Barberá, J. A., Mudarra, M., Andreo, B., et al., 2018. Regional-Scale Analysis of Karst Underground Flow Deduced from Tracing Experiments: Examples from Carbonate Aquifers in Malaga Province, Southern Spain. Hydrogeology Journal, 26(1): 23–40. https://doi.org/10.1007/s10040-017-1638-5 |
Behrens, H., Beims, U., Dieter, H., et al., 2001. Toxicological and Ecotoxicological Assessment of Water Tracers. Hydrogeology Journal, 9(3): 321–325. https://doi.org/10.1007/s100400100126 |
Birk, S., Geyer, T., Liedl, R., et al., 2005. Process-Based Interpretation of Tracer Tests in Carbonate Aquifers. Groundwater, 43(3): 381–388. https://doi.org/10.1111/j.1745-6584.2005.0033.x |
Chen, W., Peng, B., Huang, H. F., et al., 2022. Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China. International Journal of Environmental Research and Public Health, 19(1): 263–276. https://doi.org/10.3390/ijerph19010263 |
Cholet, C., Charlier, J. B., Moussa, R., et al., 2017. Assessing Lateral Flows and Solute Transport during Floods in a Conduit-Flow-Dominated Karst System Using the Inverse Problem for the Advection-Diffusion Equation. Hydrology and Earth System Sciences, 21(7): 3635–3653. https://doi.org/10.5194/hess-21-3635-2017 |
Ding, H. H., Zhang, X. M., Chu, X. W., et al., 2020. Simulation of Groundwater Dynamic Response to Hydrological Factors in Karst Aquifer System. Journal of Hydrology, 587(8): 124995. https://doi.org/10.1016/j.jhydrol.2020.124995 |
Field, M. S., 2002a. Efficient Hydrologic Tracer-Test Design for Tracer-Mass Estimation and Sample-Collection Frequency. 1, Method Development. Environmental Geology, 42(7): 827–838. https://doi.org/10.1007/s00254-002-0591-2 |
Field, M. S., 2002b. The QTRACER 2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrological Systems. National Center for Environmental Assessment, US Environmental Protection Agency, Washington, D. C. 26–47 |
Field, M. S., Leij, F. J., 2012. Solute Transport in Solution Conduits Exhibiting Multi-Peaked Breakthrough Curves. Journal of Hydrology, 440/441: 26–35. https://doi.org/10.1016/j.jhydrol.2012.03.018 |
Field, M. S., Pinsky, P. F., 2000. A Two-Region Nonequilibrium Model for Solute Transport in Solution Conduits in Karstic Aquifers. Journal of Contaminant Hydrology, 44(3/4): 329–351. https://doi.org/10.1016/S0169-7722(00)00099-1 |
Geyer, T., Birk, S., Licha, T., et al., 2007. Multitracer Test Approach to Characterize Reactive Transport in Karst Aquifers. Groundwater, 45(1): 36–45. https://doi.org/10.1111/j.1745-6584.2006.00261.x |
Giese, M., Reimann, T., Bailly-Comte, V., et al., 2018. Turbulent and Laminar Flow in Karst Conduits under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling. Water Resources Research, 54(3): 1918–1933. https://doi.org/10.1002/2017WR020658 |
Goldscheider, N., 2008. A New Quantitative Interpretation of the Long-Tail and Plateau-Like Breakthrough Curves from Tracer Tests in the Artesian Karst Aquifer of Stuttgart, Germany. Hydrogeology Journal, 16(7): 1311–1317. https://doi.org/10.1007/s10040-008-0307-0 |
Goldscheider, N., Meiman, J., Pronk, M., et al., 2008. Tracer Tests in Karst Hydrogeology and Speleology. International Journal of Speleology, 37(1): 27–40. https://doi.org/10.5038/1827-806x.37.1.3 |
Göppert, N., Goldscheider, N., 2008. Solute and Colloid Transport in Karst Conduits under Low- and High-Flow Conditions. Groundwater, 46(1): 61–68. https://doi.org/10.1111/j.1745-6584.2007.00373.x |
He, X. D., Wu, J. H., Guo, W. Y., 2019. Karst Spring Protection for the Sustainable and Healthy Living: The Examples of Niangziguan Spring and Shuishentang Spring in Shanxi, China. Exposure and Health, 11(2): 153–165. https://doi.org/10.1007/s12403-018-00295-4 |
Huang, H. F., Liu, H. F., Xiong, S., et al., 2021. Rapid Transport of Organochlorine Pesticides (OCPs) in Multimedia Environment from Karst Area. Science of The Total Environment, 775: 145698. https://doi.org/10.1016/j.scitotenv.2021.145698 |
Jayawardena, A. W., Lui, P. H., 1984. Numerical Solution of the Dispersion Equation Using a Variable Dispersion Coefficient: Method and Applications. Hydrological Sciences Journal, 29(3): 293–309. https://doi.org/10.1080/02626668409490947 |
Jiang, L. Q., Sun, R. L., Liang, X., 2021. Impact of Different Characterization Methods of Aquifer Heterogeneity on the Prediction of Groundwater Flow and Solute Transport. Earth Science, 46(11): 4150–4160. https://doi.org/10.3799/dqkx.2020.268 (in Chinese with English Abstract) |
Lauber, U., Goldscheider, N., 2014. Use of Artificial and Natural Tracers to Assess Groundwater Transit-Time Distribution and Flow Systems in a High-Alpine Karst System (Wetterstein Mountains, Germany). Hydrogeology Journal, 22(8): 1807–1824. https://doi.org/10.1007/s10040-014-1173-6 |
Lauber, U., Ufrecht, W., Goldscheider, N., 2014. Spatially Resolved Information on Karst Conduit Flow from In-Cave Dye Tracing. Hydrology and Earth System Sciences, 18(2): 435–445. https://doi.org/10.5194/hess-18-435-2014 |
Li, G. Q., Goldscheider, N., Field, M. S., 2016. Modeling Karst Spring Hydrograph Recession Based on Head Drop at Sinkholes. Journal of Hydrology, 542: 820–827. https://doi.org/10.1016/j.jhydrol.2016.09.052 |
Liu, A. W., Brancelj, A., Ellis Burnet, J., 2016. Interpretation of Epikarstic Cave Drip Water Recession Curves: A Case Study from Velika Pasica Cave, Central Slovenia. Hydrological Sciences Journal, 61(15): 2754–2762. https://doi.org/10.1080/02626667.2016.1154150 |
Liu, W., Brancelj, A., 2014. Hydrochemical Response of Cave Drip Water to Snowmelt Water, a Case Study from Velika Pasica Cave, Central Slovenia. Acta Carsologica, 43(1): 65–74. https://doi.org/10.3986/ac.v43i1.613 |
Liu, W., Wang, Z. J., Chen, Q. L., et al., 2020. An Interpretation of Water Recharge in Karst Trough Zone as Determined by High-Resolution Tracer Experiments in Western Hubei, China. Environmental Earth Sciences, 79(14): 357. https://doi.org/10.1007/s12665-020-09056-6 |
Luo, M. M., Chen, Z. H., Zhou, H., et al., 2016. Identifying Structure and Function of Karst Aquifer System Using Multiple Field Methods in Karst Trough Valley Area, South China. Environmental Earth Sciences, 75(9): 824. https://doi.org/10.1007/s12665-016-5630-5 |
Magal, E., Arbel, Y., Caspi, S., et al., 2013. Determination of Pollution and Recovery Time of Karst Springs, an Example from a Carbonate Aquifer in Israel. Journal of Contaminant Hydrology, 145: 26–36. https://doi.org/10.1016/j.jconhyd.2012.10.010 |
Majdalani, S., Guinot, V., Delenne, C., et al., 2018. Modelling Solute Dispersion in Periodic Heterogeneous Porous Media: Model Benchmarking Against Intermediate Scale Experiments. Journal of Hydrology, 561: 427–443. https://doi.org/10.1016/j.jhydrol.2018.03.024 |
Mudarra, M., Andreo, B., Marín, A. I., et al., 2014. Combined Use of Natural and Artificial Tracers to Determine the Hydrogeological Functioning of a Karst Aquifer: The Villanueva Del Rosario System (Andalusia, Southern Spain). Hydrogeology Journal, 22(5): 1027–1039. https://doi.org/10.1007/s10040-014-1117-1 |
Pardo-Igúzquiza, E., Dowd, P. A., Xu, C. S., et al., 2012. Stochastic Simulation of Karst Conduit Networks. Advances in Water Resources, 35: 141–150. https://doi.org/10.1016/j.advwatres.2011.09.014 |
Qian, Z., Mao, Y., Xiong, S., et al., 2020. Historical Residues of Organochlorine Pesticides (OCPs) and Polycyclic Aromatic Hydrocarbons (PAHs) in a Flood Sediment Profile from the Longwang Cave in Yichang, China. Ecotoxicology and Environmental Safety, 196(2): 110542. https://doi.org/10.1016/j.ecoenv.2020.110542 |
Qiu, J., Jiang, Y. J., Lyu, T. R., et al., 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst Trough Valley. Earth Science, 47(2): 717–728. https://doi.org/10.3799/dqkx.2021.008 (in Chinese with English Abstract) |
Su, A. N., Chen, Z. Y., Liu, J., et al., 2014. Sustainability of Intensively Exploited Aquifer Systems in the North China Plain: Insights from Multiple Environmental Tracers. Journal of Earth Science, 25(3): 605–611. https://doi.org/10.1007/s12583-014-0441-7 |
Toride, N., Leij, F. J., van Genuchten, M. T., 1999. The CXTFIT Code (Version 2.1) for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. U. S. Salinity Laboratory, Agricultural Research Service, U. S. Department of Agriculture, Riverside, California. 137 |
Torrese, P., 2020. Investigating Karst Aquifers: Using Pseudo 3-D Electrical Resistivity Tomography to Identify Major Karst Features. Journal of Hydrology, 580: 124257. https://doi.org/10.1016/j.jhydrol.2019.124257 |
van Genuchten, M. T., Wierenga, P. J., 1977. Mass Transfer Studies in Sorbing Porous Media: Ⅱ. Experimental Evaluation with Tritium (3H2O). Soil Science Society of America Journal, 41(2): 272–278. https://doi.org/10.2136/sssaj1977.03615995004100020022x |
Veress, M., 2020. Karst Types and Their Karstification. Journal of Earth Science, 31(3): 621–634. https://doi.org/10.1007/s12583-020-1306-x |
Vojtechovska, A., Bruthans, J., Krejca, F., 2010. Comparison of Conduit Volumes Obtained from Direct Measurements and Artificial Tracer Tests. Journal of Cave and Karst Studies, 72(3): 156–160. https://doi.org/10.4311/jcks2009es0095 |
Vuilleumier, C., Jeannin, P. Y., Perrochet, P., 2019. Physics-Based Fine-Scale Numerical Model of a Karst System (Milandre Cave, Switzerland). Hydrogeology Journal, 27(7): 2347–2363. https://doi.org/10.1007/s10040-019-02006-y |
Wang, C. Q., Wang, X. G., Majdalani, S., et al., 2020. Influence of Dual Conduit Structure on Solute Transport in Karst Tracer Tests: An Experimental Laboratory Study. Journal of Hydrology, 590(2): 125255. https://doi.org/10.1016/j.jhydrol.2020.125255 |
Werner, A., Hötzl, H., Käß, W., 1997. The Interpretation of a High Water Tracer Test in the Danube-Aach-System (Western Swabian Alb, Germany). In: Jeannin, P. Y., ed., Proceedings of the 12th International Congress of Speleology, 6th Conference on Limestone Hydrology and Fissured Media, August 10, 1997, La Chaux-de-Fonds, Switzerland. 187–190 |
Worthington, S. R. H., Ford, D. C., 2009. Self-Organized Permeability in Carbonate Aquifers. Groundwater, 47(3): 326–336. https://doi.org/10.1111/j.1745-6584.2009.00551.x |
Wu, Q. H., Liu, C. L., Lin, W. J., et al., 2015. Quantifying the Preferential Flow by Dye Tracer in the North China Plain. Journal of Earth Science, 26(3): 435–444. https://doi.org/10.1007/s12583-014-0489-4 |
Zhao, X. E., Chang, Y., Wu, J. C., et al., 2017. Laboratory Investigation and Simulation of Breakthrough Curves in Karst Conduits with Pools. Hydrogeology Journal, 25(8): 2235–2250. https://doi.org/10.1007/s10040-017-1626-9 |