Citation: | Zhen Ye, Qiang Xu, Qian Liu, Xiujun Dong, Feng Pu. 3D Distinct Element Back Analysis Based on Rock Structure Modelling of SfM Point Clouds: The Case of the 2019 Pinglu Rockfall of Kaili, China. Journal of Earth Science, 2024, 35(5): 1568-1582. doi: 10.1007/s12583-022-1667-4 |
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure, based on a case study of the 2019 Pinglu rockfall. The basic processing procedure involves: (1) computing the point normal for HSV-rendering of point cloud; (2) automatically clustering the discontinuity sets; (3) extracting the set-based point clouds; (4) estimating of set-based mean orientation, spacing, and persistence; (5) identifying the block-forming arrays of discontinuity sets for the assessment of stability. The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis. The results show that SfM modelling and rock structure computing provides enormous cost, time and safety incentives in standard engineering practice.
Abellán, A., Calvet, J., Vilaplana, J. M., et al., 2010. Detection and Spatial Prediction of Rockfalls by Means of Terrestrial Laser Scanner Monitoring. Geomorphology, 119(3/4): 162–171. https://doi.org/10.1016/j.geomorph.2010.03.016 |
Assali, P., Grussenmeyer, P., Villemin, T., et al., 2014. Surveying and Modeling of Rock Discontinuities by Terrestrial Laser Scanning and Photogrammetry: Semi-Automatic Approaches for Linear Outcrop Inspection. Journal of Structural Geology, 66: 102–114. https://doi.org/10.1016/j.jsg.2014.05.014 |
Aydin, A., Basu, A., 2005. The Schmidt Hammer in Rock Material Characterization. Engineering Geology, 81(1): 1–14. https://doi.org/10.1016/j.enggeo.2005.06.006 |
Barton, N., Choubey, V., 1977. The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics, 10(1): 1–54. https://doi.org/10.1007/bf01261801 |
Basu, A., Aydin, A., 2004. A Method for Normalization of Schmidt Hammer Rebound Values. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1211–1214. https://doi.org/10.1016/j.ijrmms.2004.05.001 |
Boulch, A., Marlet, R., 2012. Fast and Robust Normal Estimation for Point Clouds with Sharp Features. Computer Graphics Forum, 31(5): 1765–1774. https://doi.org/10.1111/j.1467-8659.2012.03181.x |
Boulch, A., Marlet, R., 2016. Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Proceedings of the Symposium on Geometry Processing. June 20, 2016, Berlin. |
Brideau, M. A., Pedrazzini, A., Stead, D., et al., 2011. Three-Dimensional Slope Stability Analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides, 8(2): 139–158. https://doi.org/10.1007/s10346-010-0242-8 |
Brideau, M. A., Stead, D., 2010. Controls on Block Toppling Using a Three-Dimensional Distinct Element Approach. Rock Mechanics and Rock Engineering, 43(3): 241–260. https://doi.org/10.1007/s00603-009-0052-2 |
Brideau, M. A., Stead, D., 2012. Evaluating Kinematic Controls on Planar Translational Slope Failure Mechanisms Using Three-Dimensional Distinct Element Modelling. Geotechnical and Geological Engineering, 30(4): 991–1011. https://doi.org/10.1007/s10706-012-9522-5 |
Brideau, M. A., Sturzenegger, M., Stead, D., et al., 2012. Stability Analysis of the 2007 Chehalis Lake Landslide Based on Long-Range Terrestrial Photogrammetry and Airborne LiDAR Data. Landslides, 9(1): 75–91. https://doi.org/10.1007/s10346-011-0286-4 |
Buyuksagis, I. S., Goktan, R. M., 2007. The Effect of Schmidt Hammer Type on Uniaxial Compressive Strength Prediction of Rock. International Journal of Rock Mechanics and Mining Sciences, 44(2): 299–307. https://doi.org/10.3969/j.issn.1003-8825.2010.03.070 |
Copons, R., Vilaplana, J. M., 2008. Rockfall Susceptibility Zoning at a Large Scale: From Geomorphological Inventory to Preliminary Land Use Planning. Engineering Geology, 102(3): 142–151. https://doi.org/10.1016/j.enggeo.2008.03.020 |
Curtaz, M., Ferrero, A. M., Roncella, R., et al., 2014. Terrestrial Photogrammetry and Numerical Modelling for the Stability Analysis of Rock Slopes in High Mountain Areas: Aiguilles Marbrées Case. Rock Mechanics and Rock Engineering, 47(2): 605–620. https://doi.org/10.1007/s00603-013-0446-z |
Danzl, P., Gamper, T., Liu, Q., et al., 2020. Photogrammetric Reconstruction of Rock Outcrops Using Open Source Software. ISRM International Symposium-EUROCK 2020, June 14, 2020, Trondheim |
Dewez, T. J. B., Girardeau-Montaut, D., Allanic, C., et al., 2016. Facets: A Cloudcompare Plugin to Extract Geological Planes from Unstructured 3D Point Clouds. ISPRS-International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XLI-B5: 799–804. https://doi.org/10.5194/isprsarchives-xli-b5-799-2016 |
Dong, X. J., Xu, Q., Huang, R. Q., et al., 2020. Reconstruction of Surficial Rock Blocks by Means of Rock Structure Modelling of 3D TLS Point Clouds: The 2013 Long-Chang Rockfall. Rock Mechanics and Rock Engineering, 53(2): 671–689. https://doi.org/10.1007/s00603-019-01935-0 |
Emmer, A., 2018. Geographies and Scientometrics of Research on Natural Hazards. Geosciences, 8(10): 382. https://doi.org/10.3390/geosciences8100382 |
Fanti, R., Gigli, G., Lombardi, L., et al., 2013. Terrestrial Laser Scanning for Rockfall Stability Analysis in the Cultural Heritage Site of Pitigliano (Italy). Landslides, 10(4): 409–420. https://doi.org/10.1007/s10346-012-0329-5 |
Fekete, S., Diederichs, M., 2013. Integration of Three-Dimensional Laser Scanning with Discontinuum Modelling for Stability Analysis of Tunnels in Blocky Rockmasses. International Journal of Rock Mechanics and Mining Sciences, 57: 11–23. https://doi.org/10.1016/j.ijrmms.2012.08.003 |
Fener, M., Kahraman, S., Bilgil, A., et al., 2005. A Comparative Evaluation of Indirect Methods to Estimate the Compressive Strength of Rocks. Rock Mechanics and Rock Engineering, 38(4): 329–343. https://doi.org/10.1007/s00603-005-0061-8 |
Ferrero, A. M., Forlani, G., Roncella, R., et al., 2009. Advanced Geostructural Survey Methods Applied to Rock Mass Characterization. Rock Mechanics and Rock Engineering, 42(4): 631–665. https://doi.org/10.1007/s00603-008-0010-4 |
Ge, Y. F., Tang, H. M., Ez Eldin, M. A. M., et al., 2019. Deposit Characteristics of the Jiweishan Rapid Long-Runout Landslide Based on Field Investigation and Numerical Modeling. Bulletin of Engineering Geology and the Environment, 78(6): 4383–4396. https://doi.org/10.1007/s10064-018-1422-3 |
Gigli, G., Morelli, S., Fornera, S., et al., 2014. Terrestrial Laser Scanner and Geomechanical Surveys for the Rapid Evaluation of Rock Fall Susceptibility Scenarios. Landslides, 11(1): 1–14. https://doi.org/10.1007/s10346-012-0374-0 |
Giordan, D., Manconi, A., Tannant, D. D., et al., 2015. UAV: Low-Cost Remote Sensing for High-Resolution Investigation of Landslides 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 26–31, 2015. Milan. |
Goodman, R. E., Bray, J. W., 1976. Toppling of Rock Slopes. Proceedings of the Specialty Conference on Rock Engineering for Foundations and Slopes ASCE/Voulder, August 15–18, Colorado |
Gutiérrez, F., Parise, M., de Waele, J., et al., 2014. A Review on Natural and Human-Induced Geohazards and Impacts in Karst. Earth-Science Reviews, 138: 61–88. https://doi.org/10.1016/j.earscirev.2014.08.002 |
Hencher, S. R., 2014. Characterizing Discontinuities in Naturally Fractured Outcrop Analogues and Rock Core: The Need to Consider Fracture Development over Geological Time. Geological Society, London, Special Publications, 374(1): 113–123. https://doi.org/10.1144/sp374.15 |
Hudson, J. A., Priest, S. D., 1983. Discontinuity Frequency in Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 20(2): 73–89. https://doi.org/10.1016/0148-9062(83)90329-7 |
Humair, F., Pedrazzini, A., Epard, J. L., et al., 2013. Structural Characterization of Turtle Mountain Anticline (Alberta, Canada) and Impact on Rock Slope Failure. Tectonophysics, 605: 133–148. https://doi.org/10.1016/j.tecto.2013.04.029 |
Jaboyedoff, M., Abellán, A., Carrea, D., et al., 2018. Mapping and Monitoring of Landslides Using LIDAR. Natural Hazards. Boca Raton, Taylor & Francis, Florida |
Jaboyedoff, M., Couture, R., Locat, P., 2009. Structural Analysis of Turtle Mountain (Alberta) Using Digital Elevation Model: Toward a Progressive Failure. Geomorphology, 103(1): 5–16. https://doi.org/10.1016/j.geomorph.2008.04.012 |
Jaboyedoff, M., Metzger, R., Oppikofer, T., et al., 2007 New Insight Techniques to Analyze Rock-Slope Relief Using DEM and 3D-Imaging Cloud Points: COLTOP-3D Software. Proceedings of the 1st Canada-US Rock Mechanics Symposium-Rock Mechanics Meeting Society's Challenges and Demands, 1: 61–68. |
Kim, B. H., Cai, M., Kaiser, P. K., et al., 2007. Estimation of Block Sizes for Rock Masses with Non-Persistent Joints. Rock Mechanics and Rock Engineering, 40(2): 169–192. https://doi.org/10.1007/s00603-006-0093-8 |
Kim, D. H., Gratchev, I., Balasubramaniam, A., 2015. Back Analysis of a Natural Jointed Rock Slope Based on the Photogrammetry Method. Landslides, 12(1): 147–154. https://doi.org/10.1007/s10346-014-0528-3 |
Lato, M., Diederichs, M. S., Hutchinson, D. J., 2009. Optimization of LiDAR Scanning and Processing for Automated Structural Evaluation of Discontinuities in Rockmasses. International Journal of Rock Mechanics and Mining Sciences, 46(1): 194–199. https://doi.org/10.1016/j.ijrmms.2008.04.007 |
Li, H. B., Qi, S. C., Yang, X. G., et al., 2020. Geological Survey and Unstable Rock Block Movement Monitoring of a Post-Earthquake High Rock Slope Using Terrestrial Laser Scanning. Rock Mechanics and Rock Engineering, 53(10): 4523–4537. https://doi.org/10.1007/s00603-020-02178-0 |
Li, Z. H., Dong, S. W., Qu, H. J., 2014. Timing of the Initiation of the Jurassic Yanshan Movement on the North China Craton: Evidence from Sedimentary Cycles, Heavy Minerals, Geochemistry, and Zircon U-Pb Geochronology. International Geology Review, 56(3): 288–312. https://doi.org/10.1080/00206814.2013.855013 |
Liu, Q., Kaufmann, V., 2015. Integrated Assessment of Cliff Rockfall Hazards by Means of Rock Structure Modelling Applied to TLS Data: New Developments. ISRM Regional Symposium, EUROCK 2015, October 7, Salzburg |
Liu, Q., Kieffer, D. S., 2021. Deriving Three-Dimensional Rock Structure from LiDAR Point Clouds for Evaluating Scour of the Ricobayo Dam Spillway. 55th US Rock Mechanics/Geomechanics Symposium, June 19–25, 2021. Virtuell |
Liu, Q., Wronski, L., Danzl, P., 2021. Processing Outcrop Point Clouds to 3D Rock Structure Using Open Source Software. IOP Conference Series: Earth and Environmental Science, 833(1): 012054. https://doi.org/10.1088/1755-1315/833/1/012054 |
Lollino, G., Giordan, D., Thuro, K., et al. 2015. Engineering Geology for Society and Territory-Volume 6. Applied Geology for Major Engineering Projects. Springer Cham, Switzerland. |
Lu, Y. R., Liu, Q., Zhang, F. E., 2013. Environmental Characteristics of Karst in China and Their Effect on Engineering. Carbonates and Evaporites, 28(1): 251–258. https://doi.org/10.1007/s13146-013-0158-1 |
Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913–934 (in Chinese with English Abstract) |
Ma, X. D., Zhou, J., Zhang, L. Q., et al., 2022. Dynamic Response Laws of Flexible Rockfall Barriers Based on Movement Characteristics of Rockfall. Earth Science, 47(12): 4559–4573 (in Chinese with English Abstract) |
Menegoni, N., Giordan, D., Perotti, C., et al., 2019. Detection and Geometric Characterization of Rock Mass Discontinuities Using a 3D High-Resolution Digital Outcrop Model Generated from RPAS Imagery–Ormea Rock Slope, Italy. Engineering Geology, 252: 145–163. https://doi.org/10.1016/j.enggeo.2019.02.028 |
Metzger, R., Jaboyedoff, M., Oppikofer, T., et al., 2009, Coltop3D: A New Software for Structural Analysis with High Resolution 3D Point Clouds and DEM. Frontiers innovation, 278–281 |
Nex, F., Remondino, F., 2014. UAV for 3D Mapping Applications: A Review. Applied Geomatics, 6(1): 1–15. https://doi.org/10.1007/s12518-013-0120-x |
Priest, S. D., 1993. Discontinuity Analysis for Rock Engineering. Chapman & Hall, London |
Raghuvanshi, T. K., 2019. Plane Failure in Rock Slopes―A Review on Stability Analysis Techniques. Journal of King Saud University– Science, 31: 101–109. https://doi.org/10.1016/j.jksus.2017.06.004 |
Riquelme, A. J., Abellán, A., Tomás, R., et al., 2014. A New Approach for Semi-Automatic Rock Mass Joints Recognition from 3D Point Clouds. Computers and Geosciences, 68: 38–52. https://doi.org/10.1016/j.cageo.2014.03.014 |
Sauro, U., 2016. Dolines and Sinkholes: Aspects of Evolution and Problems of Classification. Acta Carsologica, 32: 41–52. https://doi.org/10.3986/ac.v32i2.335 |
Song, L., Jiang, Q., Zhong, Z., et al., 2021 Technical Path of Model Reconstruction and Shear Wear Analysis for Natural Joint Based on 3D Scanning Technology. Measurement, 188: 110584. https://doi.org/10.1016/j.measurement.2021.110584 |
Stead, D., Wolter, A., 2015. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. Journal of Structural Geology, 74: 1–23. https://doi.org/10.1016/j.jsg.2015.02.002 |
Sturzenegger, M., Sartori, M., Jaboyedoff, M., et al., 2007. Regional Deterministic Characterization of Fracture Networks and Its Application to GIS-Based Rock Fall Risk Assessment. Engineering Geology, 94(3): 201–214. https://doi.org/10.1016/j.enggeo.2007.08.002 |
Thiele, S. T., Lachlan, G., Anindita, S., et al., 2017. Rapid, Semi-Automatic Fracture and Contact Mapping for Point Clouds, Images and Geophysical Data. Solid Earth, 8(6): 1241–1253. https://doi.org/10.5194/se-8-1241-2017 |
Vanneschi, C., Eyre, M., Venn, A., et al., 2019. Investigation and Modeling of Direct Toppling Using a Three-Dimensional Distinct Element Approach with Incorporation of Point Cloud Geometry. Landslides, 16(8): 1453–1465. https://doi.org/10.1007/s10346-019-01192-w |
Verma, A. K., Sardana, S., Sharma, P., et al., 2019. Investigation of Rockfall-Prone Road Cut Slope near Lengpui Airport, Mizoram, India. Journal of Rock Mechanics and Geotechnical Engineering, 11(1): 146–158. https://doi.org/10.1016/j.jrmge.2018.07.007 |
Yuan, D. X., Li, B., Liu, Z. H., 1995. Karst in China. Episodes, 18(1/2): 62–65. https://doi.org/10.18814/epiiugs/1995/v18i1.2/013 |
Zhang, J. Y., Li, H. B., Yang, X. G., et al., 2021. Quantitative Assessment of Rockfall Hazard in Post-Landslide High Rock Slope through Terrestrial Laser Scanning. Bulletin of Engineering Geology and the Environment, 80(10): 7315–7331. https://doi.org/10.1007/s10064-021-02426-9 |
Zhao, H. J., Ma, F. S., Guo, J., 2012. Regularity and Formation Mechanism of Large-Scale Abrupt Karst Collapse in Southern China in the First Half of 2010. Natural Hazards, 60(3): 1037–1054. https://doi.org/10.1007/s11069-011-9888-3 |