Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Chuan Guo, Daizhao Chen, Yong Fu, Xiqiang Zhou, Cunge Liu. Origin of Burrow-Associated Dolomites and Its Reservoir Implications: A Case Study from the Lower–Middle Ordovician Carbonates of Tarim Basin (NW China). Journal of Earth Science, 2025, 36(4): 1568-1590. doi: 10.1007/s12583-022-1673-6
Citation: Chuan Guo, Daizhao Chen, Yong Fu, Xiqiang Zhou, Cunge Liu. Origin of Burrow-Associated Dolomites and Its Reservoir Implications: A Case Study from the Lower–Middle Ordovician Carbonates of Tarim Basin (NW China). Journal of Earth Science, 2025, 36(4): 1568-1590. doi: 10.1007/s12583-022-1673-6

Origin of Burrow-Associated Dolomites and Its Reservoir Implications: A Case Study from the Lower–Middle Ordovician Carbonates of Tarim Basin (NW China)

doi: 10.1007/s12583-022-1673-6
More Information
  • Corresponding author: Cunge Liu, Liucunge@163.com
  • Received Date: 09 Oct 2021
  • Accepted Date: 18 Apr 2022
  • Issue Publish Date: 30 Aug 2025
  • The Yingshan Formation of the Lower–Middle Ordovician in the Tarim Basin (NW China) was mainly deposited in a shallow platform, which was intensely bioturbated with burrows filled with both dolomites and calcites. This study aims to figure out the controls on the dolomitization of burrow infills and the effects on petroleum reservoir quality based on petrographic examination, fluid inclusion microthermometry, and isotopic (C-O-Sr) geochemical analyses. The differentiation of burrow-associated carbonates (dolomites and calcites) was likely controlled by the interactions of sea-level oscillations of variable orders and depositional environments. The burrow-associated dolomites (BADs) were precipitated in a relatively restricted (i.e., lagoon) depositional environment during the lowstand of long-term sea level. In contrast, the burrow-associated calcites (BACs) were formed in a water circulation-improved lagoonal environment during the transgression of long-term sea level. Isotopic geochemical data indicate that the BADs in the Yingshan Formation were formed from slightly saline (i.e., mesosaline to penesaline) seawater, whereas the BACs were precipitated from nearly normal seawater. In addition to the anoxic condition, the presence of marine-sourced organic matter and sulfate-reducing bacteria, and a sufficient supply of dolomitizing fluids enriched in magnesium ions (Mg2+) and their Mg2+ concentration may have played a critical role in the formation of BADs. In the more permeable and disturbed burrow sediments as a result of burrowing, penetrating fluids with higher salinities and higher Mg2+ concentration relative to seawater favored dolomite precipitation. The fluids with seawater-like Mg2+ concentration, however, would lead to calcite precipitation. The progressive dolomitization of these burrowed sediments could have propagated the dolomitizing fronts and extended into ambient limestones, leading to the development of extensive dolomites. This dolomitization process can improve the petrophysical properties (porosity and permeability) and the potential as hydrocarbon reservoirs during the emplacement of hydrocarbons from underlying source rocks of the Cambrian to Lower Ordovician.

     

  • Electronic Supplementary Materials:
    Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-022-1673-6.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adams, J. E., Rhodes, M. L., 1960. Dolomitization by Seepage Refluxion. AAPG Bulletin, 44: 1912–1920. https://doi.org/10.1306/0bda6263-16bd-11d7-8645000102c1865d
    Al-Aasm, I. S., Taylor, B. E., South, B., 1990. Stable Isotope Analysis of Multiple Carbonate Samples Using Selective Acid Extraction. Chemical Geology: Isotope Geoscience Section, 80(2): 119–125. https://doi.org/10.1016/0168-9622(90)90020-D
    Baker, P. A., Burns, S. J., 1985. Occurrence and Formation of Dolomite in Organic-Rich Continental Margin Sediments. AAPG Bulletin, 69: 1917–1930. https://doi.org/10.1306/94885570-1704-11d7-8645000102c1865d
    Baldermann, A., Deditius, A. P., Dietzel, M., et al., 2015. The Role of Bacterial Sulfate Reduction during Dolomite Precipitation: Implications from Upper Jurassic Platform Carbonates. Chemical Geology, 412: 1–14. https://doi.org/10.1016/j.chemgeo.2015.07.020
    Baniak, G. M., Amskold, L., Konhauser, K. O., et al., 2014. Sabkha and Burrow-Mediated Dolomitization in the Mississippian Debolt Formation, Northwestern Alberta, Canada. Ichnos, 21(3): 158–174. https://doi.org/10.1080/10420940.2014.930036
    Baniak, G. M., Gingras, M. K., Pemberton, S. G., 2013. Reservoir Characterization of Burrow-Associated Dolomites in the Upper Devonian Wabamun Group, Pine Creek Gas Field, Central Alberta, Canada. Marine and Petroleum Geology, 48: 275–292. https://doi.org/10.1016/j.marpetgeo.2013.08.020
    Banner, J. L., 1995. Application of the Trace Element and Isotope Geochemistry of Strontium to Studies of Carbonate Diagenesis. Sedimentology, 42(5): 805–824. https://doi.org/10.1111/j.1365-3091.1995.tb00410.x
    Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123–3137. https://doi.org/10.1016/0016-7037(90)90128-8
    Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., et al., 2010. Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57(3): 824–844. https://doi.org/10.1111/j.1365-3091.2009.01121.x
    Bromley, R. G., 1996. Trace Fossils: Biology, Taphonomy and Applications (2nd Edition). Routledge, Chapman & Hall, London
    Budd, D. A., 1997. Cenozoic Dolomites of Carbonate Islands: Their Attributes and Origin. Earth-Science Reviews, 42(1/2): 1–47. https://doi.org/10.1016/S0012-8252(96)00051-7
    Burke, W. H., Denison, R. E., Hetherington, E. A., et al., 1982. Variation of Seawater 87Sr/86Sr Throughout Phanerozoic Time. Geology, 10(10): 516–519. https://doi.org/10.1130/0091-7613(1982)10<516:vosstp>2.0.co;2 doi: 10.1130/0091-7613(1982)10<516:vosstp>2.0.co;2
    Chen, D. Z., Qing, H. R., Yang, C., 2004. Multistage Hydrothermal Dolomites in the Middle Devonian (Givetian) Carbonates from the Guilin Area, South China. Sedimentology, 51(5): 1029–1051. https://doi.org/10.1111/j.1365-3091.2004.00659.x
    Chow, N., Longstaffe, F. J., 1995. Dolomites of the Middle Devonian Elm Point Formation, Southern Manitoba: Intrinsic Controls on Early Dolomitization. Bulletin of Canadian Petroleum Geology, 43: 214–225. https://doi.org/10.35767/gscpgbull.43.2.214
    Coplen, T. B., Kendall, C., Hopple, J., 1983. Comparison of Stable Isotope Reference Samples. Nature, 302: 236–238. https://doi.org/10.1038/302236a0
    Corlett, H. J., Jones, B., 2012. Petrographic and Geochemical Contrasts between Calcite- and Dolomite-Filled Burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada: Implications for Dolomite Formation in Paleozoic Burrows. Journal of Sedimentary Research, 82(9): 648–663. https://doi.org/10.2110/jsr.2012.57
    Davies, G. R., Smith, L. B., Jr., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641–1690. https://doi.org/10.1306/05220605164
    Dickson, J. A. D., 1966. Carbonate Identification and Genesis as Revealed by Staining. SEPM Journal of Sedimentary Research, 36: 491–505. https://doi.org/10.1306/74d714f6-2b21-11d7-8648000102c1865d
    Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2020. Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science, 31(2): 342–353. https://doi.org/10.1007/s12583-018-0886-1
    Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013. Hydrothermal Alteration of Dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple Constraints from Petrology, Isotope Geochemistry and Fluid Inclusion Microthermometry. Marine and Petroleum Geology, 46: 270–286. https://doi.org/10.1016/j.marpetgeo.2013.06.013
    Dong, S. F., Chen, D. Z., Zhou, X. Q., et al., 2017. Tectonically Driven Dolomitization of Cambrian to Lower Ordovician Carbonates of the Quruqtagh Area, North-Eastern Flank of Tarim Basin, North-West China. Sedimentology, 64(4): 1079–1106. https://doi.org/10.1111/sed.12341
    Donovan, S. K., 1994. The Palaeobiology of Trace Fossils. Johns Hopkins University Press, Baltimore
    Ekdale, A. A., Muller, L. N., Novak, M. T., 1984. Quantitative Ichnology of Modern Pelagic Deposits in the Abyssal Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 45(2): 189–223. https://doi.org/10.1016/0031-0182(84)90040-3
    Fabricius, I. L., Borre, M. K., 2007. Stylolites, Porosity, Depositional Texture, and Silicates in Chalk Facies Sediments. Ontong Java Plateau-Gorm and Tyra Fields, North Sea. Sedimentology, 54(1): 183–205. https://doi.org/10.1111/j.1365-3091.2006.00828.x
    Fang, D. J., Shen, Z. Y., 2001. Panerozoic Apparent Polarander Paths of Tarim and Plate Motion. Journal of Zhejiang University: Science Edition, 28(1): 100–106 (in Chinese with English Abstract)
    Feng, Z. Z., Bao, Z. D., Wu, M. B., et al., 2007. Lithofacies Palaeogeography of the Ordovician in Tarim Area. Journal of Palaeogeography, 9(5): 447–460 (in Chinese with English Abstract)
    Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Berlin Heidelberg, Berlin, Heidelberg. 984. https://doi.org/10.1007/978-3-642-03796-2
    Folk, R. L., Land, L. S., 1975. Mg/Ca Ratio and Salinity: Two Controls over Crystallization of Dolomite. AAPG Bulletin, 59: 60–68. https://doi.org/10.1306/83d91c0e-16c7-11d7-8645000102c1865d
    Fu, Q. L., Qing, H. R., Bergman, K. M., 2006. Dolomitization of the Middle Devonian Winnipegosis Carbonates in South-Central Saskatchewan, Canada. Sedimentology, 53(4): 825–848. https://doi.org/10.1111/j.1365-3091.2006.00794.x
    Gao, D., Lin, C. S., Huang, L. L., et al., 2021. Depositional Facies and Diagenesis of the Lianglitage Formation in Northwestern Tazhong Uplift, Tarim Basin, China: Implications for the Genesis of Ultra-Deep Limestone Reservoir. Arabian Journal of Geosciences, 14(9): 750. https://doi.org/10.1007/s12517-021-07080-9
    Gao, Z. Q., Fan, T. L., Jiao, Z. F., et al., 2006. The Structural Types and Depositional Characteristics of Carbonate Platform in the Cambrian–Ordovician of Tarim Basin. Acta Sedimentologica Sinica, 24(1): 19–27 (in Chinese with English Abstract)
    Gingras, M. K., Mendoza, C. A., Pemberton, S. G., 2004a. Fossilized Worm Burrows Influence the Resource Quality of Porous Media. AAPG Bulletin, 88(7): 875–883. https://doi.org/10.1306/01260403065
    Gingras, M. K., Pemberton, S. G., Muelenbachs, K., et al., 2004b. Conceptual Models for Burrow-Related, Selective Dolomitization with Textural and Isotopic Evidence from the Tyndall Stone, Canada. Geobiology, 2(1): 21–30. https://doi.org/10.1111/j.1472-4677.2004.00022.x
    Golab, J. A., Smith, J. J., Clark, A. K., et al., 2017. Bioturbation-Influenced Fluid Pathways within a Carbonate Platform System: The Lower Cretaceous (Aptian–Albian) Glen Rose Limestone. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 138–155. https://doi.org/10.1016/j.palaeo.2016.10.025
    Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1/2/3/4): 159–193. https://doi.org/10.1016/S0024-4937(00)00044-X
    Gregg, J. M., Bish, D. L., Kaczmarek, S. E., et al., 2015. Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: A Review. Sedimentology, 62(6): 1749–1769. https://doi.org/10.1111/sed.12202
    Gregg, J. M., Shelton, K. L., 1990. Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. SEPM Journal of Sedimentary Research, 60: 549–562. https://doi.org/10.1306/212f91e2-2b24-11d7-8648000102c1865d
    Gregg, J. M., Sibley, D. F., 1984. Epigenetic Dolomitization and the Origin of Xenotopic Dolomite Texture. SEPM Journal of Sedimentary Research, 54: 908–931. https://doi.org/10.1306/212f8535-2b24-11d7-8648000102c1865d
    Gu, J., Chou, J., Yan, H., et al. 1994. Sedimentary Facies and Petroleum Accumulations: Petroleum Exploration in the Tarim Basin. Petroleum Industry Press, Beijing (in Chinese)
    Guo, C., Chen, D. Z., Dong, S. F., et al., 2017. Early Dolomitisation of the Lower–Middle Ordovician Cyclic Carbonates in Northern Tarim Basin, NW China. Science China Earth Sciences, 60(7): 1283–1298. https://doi.org/10.1007/s11430-017-9056-1
    Guo, C., Chen, D. Z., Qing, H. R., et al., 2016. Multiple Dolomitization and Later Hydrothermal Alteration on the Upper Cambrian–Lower Ordovician Carbonates in the Northern Tarim Basin, China. Marine and Petroleum Geology, 72: 295–316. https://doi.org/10.1016/j.marpetgeo.2016.01.023
    Guo, C., Chen, D. Z., Qing, H. R., et al., 2020. Early Dolomitization and Recrystallization of the Lower-Middle Ordovician Carbonates in Western Tarim Basin (NW China). Marine and Petroleum Geology, 111: 332–349. https://doi.org/10.1016/j.marpetgeo.2019.08.017
    Guo, C., Chen, D. Z., Song, Y. F., et al., 2018a. Depositional Environments and Cyclicity of the Early Ordovician Carbonate Ramp in the Western Tarim Basin (NW China). Journal of Asian Earth Sciences, 158: 29–48. https://doi.org/10.1016/j.jseaes.2018.02.006
    Guo, C., Chen, D. Z., Zhou, X. Q., et al., 2018b. Depositional Facies and Cyclic Patterns in a Subtidal-Dominated Ramp during the Early–Middle Ordovician in the Western Tarim Basin (NW China). Facies, 64(3): 16. https://doi.org/10.1007/s10347-018-0529-0
    Guo, F., Lai, S. H., Guo, L., 2010. Ordovician Sequence Stratigraphy and Sedimentology in the Dabantage Area, Tarim Basin. Journal of Stratigraphy, 34(2): 135–144. https://doi.org/10.19839/j.cnki.dcxzz.2010.02.003 (in Chinese with English Abstract)
    Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265–1279. https://doi.org/10.1016/j.gca.2003.09.012
    Hardie, L. A., 1987. Dolomitization: A Critical View of Some Current Views. Journal of Sedimentary Research, 57(1): 166–183. https://doi.org/10.1306/212f8ad5-2b24-11d7-8648000102c1865d
    He, Y., Li, W. Q., Liu, H. C., et al., 2025. Petrogenesis of the Dengying Formation Dolomite in Northeast Sichuan Basin, SW China: Constraints from Carbon-Oxygen Isotopic and Trace Elemental Data. Journal of Earth Science, 36(1): 75–88. https://doi.org/10.1007/s12583-022-1732-z
    He, Z., Mao, H., Zhou, X., et al., 2000. Complex Petroleum System and Muticycle Basin in Tarim. Oil & Gas Geology, 21: 207–213 (in Chinese with English Abstract)
    Horbury, A. D., Qing, H. R., 2004. 'Pseudobreccias' Revealed as Calcrete Mottling and Bioturbation in the Late Dinantian of the Southern Lake District, UK. Sedimentology, 51(1): 19–38. https://doi.org/10.1046/j.1365-3091.2003.00607.x
    Hu, M. Y., Hu, Z. G., Li, S. T., et al., 2011. Geochemical Characteristics and Genetic Mechanism of the Ordovician Dolostone in the Tazhong Area, Tarim Basin. Acta Geologica Sinica, 85(12): 2060–2069 (in Chinese with English Abstract)
    Hu, M. Y., Ngia, N. R., Gao, D., 2019. Dolomitization and Hydrotectonic Model of Burial Dolomitization of the Furongian-Lower Ordovician Carbonates in the Tazhong Uplift, Central Tarim Basin, NW China: Implications from Petrography and Geochemistry. Marine and Petroleum Geology, 106: 88–115. https://doi.org/10.1016/j.marpetgeo.2019.04.018
    Jia, C. Z., Wei, G. Q., 2002. Structural Characteristics and Hydrocarbon of Tarim Basin. Chinese Science Bulletin, 47(S1): 1–8 (in Chinese)
    Jia, L. Q., Cai, C. F., Jiang, L., et al., 2016. Petrological and Geochemical Constraints on Diagenesis and Deep Burial Dissolution of the Ordovician Carbonate Reservoirs in the Tazhong Area, Tarim Basin, NW China. Marine and Petroleum Geology, 78: 271–290. https://doi.org/10.1016/j.marpetgeo.2016.09.031
    Jiang, L., Cai, C. F., Worden, R. H., et al., 2013. Reflux Dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China. Geofluids, 13(2): 232–245. https://doi.org/10.1111/gfl.12034
    Jiang, L., Cai, C. F., Worden, R. H., et al., 2016. Multiphase Dolomitization of Deeply Buried Cambrian Petroleum Reservoirs, Tarim Basin, North-West China. Sedimentology, 63(7): 2130–2157. https://doi.org/10.1111/sed.12300
    Jin, Z. J., Zhu, D. Y., Hu, W. X., et al., 2006. Geological and Geochemical Signatures of Hydrothermal Activity and Their Influence on Carbonate Reservoir Beds in the Tarim Basin. Acta Geologica Sinica, 80(2): 245–253, 314 (in Chinese with English Abstract).
    Jones, G. D., Whitaker, F., Smart, P., et al., 2000. Numerical Modelling of Geothermal and Reflux Circulation in Enewetak Atoll: Implications for Dolomitization. Journal of Geochemical Exploration, 69: 71–75. https://doi.org/10.1016/S0375-6742(00)00010-8
    Kaufman, J., 1994. Numerical Models of Fluid Flow in Carbonate Platforms: Implications for Dolomitization. SEPM Journal of Sedimentary Research, 64: 128–139. https://doi.org/10.1306/d4267d2f-2b26-11d7-8648000102c1865d
    Kerans, C., 1988. Karst-Controlled Reservoir Heterogeneity in Ellenburger Group Carbonates of West Texas. AAPG Bulletin, 72: 1160–1183. https://doi.org/10.1306/703c996f-1707-11d7-8645000102c1865d
    Kohout, F. A., Henry, H. R., Banks, J. E., 1977. Hydrogeology Related to Geothermal Conditions of the Floridan Plateau, In: Smith, K. L., Griffin, G. M., eds., The Geothermal Nature of the Floridan Plateau. Florida Department of Natural Resources Bureau: Geological Special Publication, 21: 1–34
    Kupecz, J. A., Land, L. S., 1991. Late-Stage Dolomitization of the Lower Ordovician Ellenburger Group, West Texas. SEPM Journal of Sedimentary Research, 61: 551–574. https://doi.org/10.1306/d426775d-2b26-11d7-8648000102c1865d
    Lan, X. D., Liu, H., Lü, X. X., et al., 2018. Dolomites of the Yingshan Formation in the Tazhong Low Rise, Tarim Basin: Dolomitisation and Reformation Model. Geosciences Journal, 22(1): 47–64. https://doi.org/10.1007/s12303-017-0027-3
    Land, L. S., 1980. The Isotopic and Trace Element Geochemistry of Dolomite: The State of the Art. In: Zenger, D. H., Dunham, J. B., Ethington, R. L. eds., Concepts and Models of Dolomitization. SEPM Special Publication, 28: 87–110
    Land, L. S., 1983. The Application of Stable Isotopes to Studies of the Origin of Dolomite and to Problems of Diagenesis of Clastic Sediments. In: Arthur, M. A., Anderson, T. F., Kaplan, I. R., et al., eds., Stable Isotopes in the Sedimentary Geology. SEPM Short Course Notes, 10: 4.1–4.22
    Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2): 112–125. https://doi.org/10.5408/0022-1368-33.2.112
    Li, H. L., Qiu, N. S., Jin, Z. J., et al., 2005. Geothermal History of Tarim Basin. Oil & Gas Geology, 26(5): 613–617 (in Chinese with English Abstract)
    Li, K., Cai, C., He, H., et al., 2011. Origin of Palaeo-Waters in the Ordovician Carbonates in Tahe Oilfield, Tarim Basin: Constraints from Fluid Inclusions and Sr, C and O Isotopes. Geofluids, 11(1): 71–86. https://doi.org/10.1111/j.1468-8123.2010.00312.x
    Li, Y., Li, Q., Zhang, H., et al., 1995. Palaeomagnetic Study of Tarim and Its Adjacent Area as Well as the Formation and Evolution of Tarim Basin. Xijiang Geology, 13(4): 293–376 (in Chinese with English Abstract)
    Lin, C. S., Yang, H. J., Cai, Z. Z., et al., 2013. Evolution of Depositional Architecture of the Ordovician Carbonate Platform in the Tarim Basin and Its Response to Basin Processes. Acta Sedimentologica Sinica, 31(5): 907–919. https://doi.org/10.14027/j.cnki.cjxb.2013.05.017 (in Chinese with English Abstract)
    Lucia, F. J., Major, R., 1994. Porosity Evolution through Hypersaline Reflux Dolomitization. In: Purser, B. H., Tucker, M. E., Zenger, D. H., eds., Dolomites: A Volume in Honor of Dolomieu. The International Association of Sedimentologists: Special Publication, 21: 325–341
    Machel, H. G., 1985. Cathodoluminescence in Calcite and Dolomite and Its Chemical Interpretation. Geoscience Canada, 12: 139–147. https://journals.lib.unb.ca/index.php/GC/article/view/3427 https://journals.lib.unb.ca/index.php/GC/article/view/3427
    Machel, H. G., 1997. Recrystallization Versus Neomorphism, and the Concept of 'Significant Recrystallization' in Dolomite Research. Sedimentary Geology, 113(3/4): 161–168. https://doi.org/10.1016/S0037-0738(97)00078-X
    Machel, H. G., 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. In: Braithwaite, C. J. R., Rizzi, G., Darke, G., eds., The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 235(1): 7–63. https://doi.org/10.1144/gsl.sp.2004.235.01.02
    Malone, M. J., Baker, P. A., Burns, S. J., 1996. Hydrothermal Dolomitization and Recrystallization of Dolomite Breccias from the Miocene Monterey Formation, Tepusquet Area, California. SEPM Journal of Sedimentary Research, 66: 976–990. https://doi.org/10.1306/d426845a-2b26-11d7-8648000102c1865d
    Mattes, B. W., Mountjoy, E. W., 1980. Burial Dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta. In: Zenger, D. H., Dunham, J. B., Ethington, R. L., eds., Concepts and Models of Dolomitization. SEPM Special Publication, 28: 259–297. https://doi.org/10.2110/pec.80.28.0259
    Mazzullo, S. J., 2000. Organogenic Dolomitization in Peritidal to Deep-Sea Sediments: PERSPECTIVES. SEPM Journal of Sedimentary Research, 70: 10–23. https://doi.org/10.1306/d4268b71-2b26-11d7-8648000102c1865d
    McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18(6): 849–857. https://doi.org/10.1063/1.1747785
    Meister, P., McKenzie, J. A., Vasconcelos, C., et al., 2007. Dolomite Formation in the Dynamic Deep Biosphere: Results from the Peru Margin. Sedimentology, 54(5): 1007–1032. https://doi.org/10.1111/j.1365-3091.2007.00870.x
    Mirsal, I. A., Zankl, H., 1985. Some Phenomenological Aspects of Carbonate Geochemistry. The Control Effect of Transition Metals. Geologische Rundschau, 74: 367–377. https://doi.org/10.1007/bf01824903
    Montañez, I. P., Read, J. F., 1992. Fluid-Rock Interaction History during Stabilization of Early Dolomites, Upper Knox Group (Lower Ordovician), U. S. Appalachians. SEPM Journal of Sedimentary Research, 62: 753–778. https://doi.org/10.1306/d42679d3-2b26-11d7-8648000102c1865d
    Morrow, D. W., 1982. Diagenesis 2. Dolomite-Part 2: Dolomitization Models and Ancient Dolostones. Geoscience Canada, 9: 95–107. https://id.erudit.org/iderudit/geocan9_2art01 https://id.erudit.org/iderudit/geocan9_2art01
    Mountjoy, E. W., Green, D., Machel, H. G., et al., 1999. Devonian Matrix Dolomites and Deep Burial Carbonate Cements: A Comparison between the Rimbey-Meadowbrook Reef Trend and the Deep Basin of West-Central Alberta. Bulletin of Canadian Petroleum Geology, 47(4): 487–509
    Mountjoy, E. W., Halim-Dihardja, M. K., 1991. Multiple Phase Fracture and Fault-Controlled Burial Dolomitization, Upper Devonian Wabamun Group, Alberta. SEPM Journal of Sedimentary Research, 61: 590–612. https://doi.org/10.1306/d426776c-2b26-11d7-8648000102c1865d
    Purser, B. H., Tucker, M. E., Zenger, D. H., 1994. Problems, Progress and Future Research Concerning Dolomites and Dolomitization, In: Purser, B. H., Tucker, M. E., Zenger, D. H, eds., Dolomites. The International Association of Sedimentologists: Special Publication, 21: 3–20
    Qiao, Z. F., Shen, A. J., Zheng, J. F., et al., 2012. Classification and Origin of the Lower Ordovician Dolostone in Tarim Basin. Journal of Palaeogeography (Chinese Edition), 14(1): 21–32 (in Chinese with English Abstract)
    Qing, H. R., Bosence, D. W. J., Rose, E. P. F., 2001. Dolomitization by Penesaline Sea Water in Early Jurassic Peritidal Platform Carbonates, Gibraltar, Western Mediterranean. Sedimentology, 48(1): 153–163. https://doi.org/10.1046/j.1365-3091.2001.00361.x
    Qing, H. R., Veizer, J., 1994. Oxygen and Carbon Isotopic Composition of Ordovician Brachiopods: Implications for Coeval Seawater. Geochimica et Cosmochimica Acta, 58(20): 4429–4442. https://doi.org/10.1016/0016-7037(94)90345-X
    Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789–821. https://doi.org/10.1306/09071111029
    Rameil, N., 2008. Early Diagenetic Dolomitization and Dedolomitization of Late Jurassic and Earliest Cretaceous Platform Carbonates: A Case Study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212(1/2/3/4): 70–85. https://doi.org/10.1016/j.sedgeo.2008.10.004
    Ren, P., Lin, C., Han, J., et al., 2015. Microfacies Characteristics and Depositional Evolution of the Lower Ordovician Yingshan Formation in North Slope of Tazhong Area, Tarim Basin. Natural Gas Geoscience, 26: 241–251 (in Chinese with English Abstract)
    Richter, D. K., Götte, T. H., Götze, J., et al., 2003. Progress in Application of Cathodoluminescence (CL) in Sedimentary Petrology. Mineralogy and Petrology, 79(3): 127–166. https://doi.org/10.1007/s00710-003-0237-4
    Rosenbaum, J., Sheppard, S. M. F., 1986. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochimica et Cosmochimica Acta, 50(6): 1147–1150. https://doi.org/10.1016/0016-7037(86)90396-0
    Saller, A. H., Henderson, N., 1998. Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas. AAPG Bulletin, 82: 1528–1550. https://doi.org/10.1306/1d9bcb01-172d-11d7-8645000102c1865d
    Schulz, H. D., Zabel, M., 2006. Marine Geochemistry. Springer-Verlag, New York. https://doi.org/10.1007/3-540-32144-6
    Scotese, C. R., McKerrow, W. S., 1990. Revised World Maps and Introduction. Geological Society, London, Memoirs, 12(1): 1–21. https://doi.org/10.1144/gsl.mem.1990.012.01.01
    Shao, L., He, H., Peng, S., et al., 2002. Types and Origin of Dolostones of the Cambrian and Ordovician of Bachu Uplift Area in Tarim Basin. Journal of Palaeogeography, 4(2): 19–30 (in Chinese with English Abstract)
    Shields, G. A., Carden, G. A. F., Veizer, J., et al., 2003. Sr, C, and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotopic Event around the Middle–Late Ordovician Transition. Geochimica et Cosmochimica Acta, 67(11): 2005–2025. https://doi.org/10.1016/S0016-7037(02)01116-X
    Sibley, D. F., Gregg, J. M., 1987. Classification of Dolomite Rock Textures. SEPM Journal of Sedimentary Research, 57: 967–975. https://doi.org/10.1306/212f8cba-2b24-11d7-8648000102c1865d
    Slaughter, M., Hill, R. J., 1991. The Influence of Organic Matter in Organogenic Dolomitization. Journal of Sedimentary Research, 61(2): 296–303. https://doi.org/10.1306/d42676f9-2b26-11d7-8648000102c1865d
    Sun, S. Q., 1994. A Reappraisal of Dolomite Abundance and Occurrence in the Phanerozoic: PERSPECTIVE. Journal of Sedimentary Research, 64A: 396–404. https://doi.org/10.1306/d4267db1-2b26-11d7-8648000102c1865d
    Swart, P. K., Burns, S. J., Leder, J. J., 1991. Fractionation of the Stable Isotopes of Oxygen and Carbon in Carbon Dioxide during the Reaction of Calcite with Phosphoric Acid as a Function of Temperature and Technique. Chemical Geology: Isotope Geoscience Section, 86(2): 89–96. https://doi.org/10.1016/0168-9622(91)90055-2
    Tang, L., 1997. Major Evolution Stages of Tarim Basin in Phanerozoic Time. Earth Science Frontiers, 4: 318–324 (in Chinese with English Abstract)
    Török, A., 2000. Formation of Dolomite Mottling in Middle Triassic Ramp Carbonates (Southern Hungary). Sedimentary Geology, 131(3/4): 131–145. https://doi.org/10.1016/S0037-0738(99)00137-2
    Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Scientific Publication, Oxford. 482
    van Lith, Y., Warthmann, R., Vasconcelos, C., et al., 2003. Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation. Geobiology, 1(1): 71–79. https://doi.org/10.1046/j.1472-4669.2003.00003.x
    Vasconcelos, C., McKenzie, J. A., 1997. Microbial Mediation of Modern Dolomite Precipitation and Diagenesis under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). SEPM Journal of Sedimentary Research, 67: 378–390. https://doi.org/10.1306/d4268577-2b26-11d7-8648000102c1865d
    Vasconcelos, C., McKenzie, J. A., Bernasconi, S., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377: 220–222. https://doi.org/10.1038/377220a0
    Vasconcelos, C., McKenzie, J. A., Warthmann, R., et al., 2005. Calibration of the δ18O Paleothermometer for Dolomite Precipitated in Microbial Cultures and Natural Environments. Geology, 33(4): 317–320. https://doi.org/10.1130/g20992.1
    Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1/2/3): 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9
    Vinci, F., Iannace, A., Parente, M., et al., 2017. Early Dolomitization in the Lower Cretaceous Shallow-Water Carbonates of Southern Apennines (Italy): Clues about Palaeoclimatic Fluctuations in Western Tethys. Sedimentary Geology, 362: 17–36. https://doi.org/10.1016/j.sedgeo.2017.10.007
    Wang, Z. H., Qi, Y. P., Bergström, S. M., 2007. Ordovician Conodonts of the Tarim Region, Xinjiang, China: Occurrence and Use as Paleoenvironment Indicators. Journal of Asian Earth Sciences, 29(5/6): 832–843. https://doi.org/10.1016/j.jseaes.2006.05.007
    Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3): 1–81. https://doi.org/10.1016/S0012-8252(00)00022-2
    Weyl, P. K., 1960. Porosity through Dolomitization: Conservation-of-Mass Requirements. SEPM Journal of Sedimentary Research, 30: 85–90. https://doi.org/10.1306/74d709cf-2b21-11d7-8648000102c1865d
    Wright, D. T., Wacey, D., 2005. Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region, South Australia: Significance and Implications. Sedimentology, 52(5): 987–1008. https://doi.org/10.1111/j.1365-3091.2005.00732.x
    Yan, W., Wang, X., Wang, Z., et al., 2010. New Evidence on the Sedimentary Framework of the Early Ordovician in Central Tarim and Adjacent Area. Acta Sedimentologica Sinica, 28: 1090–1097 (in Chinese with English abstract).
    Yang, H. J., Zhu, G. Y., Han, J. F., et al., 2011. Conditions and Mechanism of Hydrocarbon Accumulation in Large Reef-Bank Karst Oil/Gas Fields of Tazhong Area, Tarim Basin. Acta Petrologica Sinica, 27: 1865–1885 (in Chinese with English Abstract)
    Ye, D., 1994. Deep Dissolution of Cambrian–Ordovician Carbonates in the Northern Tarim Basin. Acta Sedimentologica Sinica, 12: 66–71 (in Chinese with English Abstract)
    Zenger, D. H., Dunham, J. D., Ethington, R. L., 1980. Concepts and Models of Dolomitization. SEPM Special Publication. 320
    Zhang, W., Guan, P., Jian, X., et al., 2014. In situ Geochemistry of Lower Paleozoic Dolomites in the Northwestern Tarim Basin: Implications for the Nature, Origin, and Evolution of Diagenetic Fluids. Geochemistry, Geophysics, Geosystems, 15(7): 2744–2764. https://doi.org/10.1002/2013GC005194
    Zhang, Y. D., Munnecke, A., 2016. Ordovician Stable Carbon Isotope Stratigraphy in the Tarim Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 154–175. https://doi.org/10.1016/j.palaeo.2015.09.001
    Zhang, Y. Y., Li, Y., Wang, G., et al., 2017. Windward and Leeward Margins of an Upper Ordovician Carbonate Platform in the Central Tarim Uplift, Xinjiang, Northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 79–88. https://doi.org/10.1016/j.palaeo.2016.12.040
    Zhao, Z. J., Zhao, Z., Huang, Z., 2006. Ordovician Conodont Zones and Sedimentary Sequences of the Tarim Basin, Xinjiang, NW China. Journal of Stratigraphy, 30: 193–203 (in Chinese with English Abstract)
    Zheng, J., Shen, A., Qiao, Z., et al., 2014. Characteristics and Pore Genesis of Dolomite in the Penglaiba Formation in Keping-Bachu Outcrop Area. Acta Petrolei Sinica, 35(4): 664–672 (in Chinese with English Abstract)
    Zhu, D. Y., Meng, Q. Q., Jin, Z. J., et al., 2015. Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China. Marine and Petroleum Geology, 59: 232–244. https://doi.org/10.1016/j.marpetgeo.2014.08.022
    Zhu, D., Jin, Z., Hu, W., 2010. Hydrothermal Recrystallization of the Lower Ordovician Dolomite and Its Significance to Reservoir in Northern Tarim Basin. Science China: Earth Sciences, 40: 156–170. https://doi.org/10.1007/s11430-010-0028-9 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views(205) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return