Citation: | Sakine Amraei, Majid Ghasemi Siani, Mohammad Yazdi, Liang Qiu, Bertrand Moine, Minghua Ren. Fe-Ti Oxide Mineralization in the XV Intrusion, Bafq Mining District, Central Iran: Insights from Mineralogy, Mineral Chemistry and S Isotopic Data. Journal of Earth Science, 2024, 35(5): 1704-1719. doi: 10.1007/s12583-022-1675-4 |
The mafic-ultramafic intrusion in the XV anomaly area, contains magmatic Fe-Ti oxides±(p) ore, is located in the Bafq mining district in the Central Iran. It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites. The mineral assemblages include clinopyroxene, Fe-Ti oxides, plagioclase, amphibole, apatite and sulfides (pyrite and chalcopyrite). The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite, which occurred as disseminated, intergrowth, lamellae (trellis and sandwich textures) and inclusions. Magnetite in the gabbroic rocks is from the near end-member of Fe3O4 (< 1 wt.% TiO2) to titanomagnetite containing up to 8 wt.% TiO2 (about 3.73 wt.% to 26.84 wt.% Ulvospinel (XUsp)). Magnetite in pyroxenite rocks is characterized with TiO2 range from 0.46 wt.% to 3.14 wt.% (XUsp varied from 1.76 wt.% to 10.46 wt.%). The abundances of V2O3 range from 0.03 wt.% to 1.29 wt.% and 0.24 wt.% to 1.00 wt.% for gabbro and pyroxenite, respectively. XUsp contents of magnetite show insignificant correlations with Al2O3 and MgO. The average XIlm in the ilmenite of gabbro is 92%, whereas it is 90.37% in the pyroxenite rocks. The MgO and V2O3 contents show a slightly positive correlation with TiO2 in ilmenite. The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg# ranging from 67 to 98 and 74 to 96, respectively. In both rock types, amphiboles are mainly pargasite and rarely actinolite. Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69 and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95 and labradorite with An50-63. The δ 34S isotopic values cover a limited range from +3.15‰ to +4.10‰ V-CDT consistent with magmatic origin. Fe-Ti mineralization is formed in two stages, minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage, whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase. Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro (base to top). The high contents of H2O, phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.
Aftabi, A., Mohseni, S., Babeki, A., et al., 2009. Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite-Magnetite Deposit, Central, Iran: A Discussion. Economic Geology, 104(1): 137–139. https://doi.org/10.2113/gsecongeo.104.1.137 |
Amraei, S., 2021. Geology, Geochemistry and Evolution of the Phosphate-Iron XV Anomaly, Bafq Area, Central Iran: [Dissertation]. Shahid Beheshti University, Tehran (in Presian with English Abstract) |
Amraei, S., Behzadi, M., Yazdi, M., et al., 2021. Ti-Fe Mineralization in Bafq Anomaly No. 15, Central Iran: Insights to Mineralogy and Mineral Chemistry. Petrological Journal, 12(1): 93–112. https://doi.org/10.22108/Ijp.2020.123784.1188 |
Amraei, S., Yazdi, M., Qiu, L., et al., 2024. Apatite U-Pb Geochronology and Whole Rock, Sr-Nd-Pb Isotopic Geochemistry of XV Mafic-Ultramafic Intrusion, Bafq, Central Iran: Implications for Petrogenesis and Tectonic Setting. Island Arc, 33(1): e12514. https://doi.org/10.1111/iar.12514 |
Bagheri, S., Stampfli, G. M., 2008. The Anarak, Jandaq and Posht-E-Badam Metamorphic Complexes in Central Iran: New Geological Data, Relationships and Tectonic Implications. Tectonophysics, 451(1): 123–155. https://doi.org/10.1016/j.tecto.2007.11.047 |
Barrière, M., 1981. On Curved Laminae, Graded Layers, Convection Currents and Dynamic Crystal Sorting in the Ploumanac'h (Brittany) Subalkaline Granite. Contributions to Mineralogy and Petrology, 77(3): 214–224. https://doi.org/10.1007/bf00373537 |
Bogaerts, M., Schmidt, M. W., 2006. Experiments on Silicate Melt Immiscibility in the System Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and Implications for Natural Magmas. Contributions to Mineralogy and Petrology, 152(3): 257–274. https://doi.org/10.1007/s00410-006-0111-6 |
Bonyadi, Z., Davidson, G. J., Mehrabi, B., et al., 2011. Significance of Apatite REE Depletion and Monazite Inclusions in the Brecciated Se–Chahun Iron Oxide-Apatite Deposit, Bafq District, Iran: Insights from Paragenesis and Geochemistry. Chemical Geology, 281(3/4): 253–269. https://doi.org/10.1016/j.chemgeo.2010.12.013 |
Botcharnikov, R. E., Almeev, R. R., Koepke, J., et al., 2008. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt—Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9): 1687–1727. https://doi.org/10.1093/petrology/egn043 |
Buddington, A. F., Lindsley, D. H., 1964. Iron-Titanium Oxide Minerals and Synthetic Equivalents. Journal of Petrology, 5(2): 310–357. https://doi.org/10.1093/petrology/5.2.310 |
Carmichael, I. S. E., 1966. The Iron-Titanium Oxides of Salic Volcanic Rocks and Their Associated Ferromagnesian Silicates. Contributions to Mineralogy and Petrology, 14(1): 36–64. https://doi.org/10.1007/bf00370985 |
Cawthorn, R. G., Spies, L., 2003. Plagioclase Content of Cyclic Units in the Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology, 145(1): 47–60. https://doi.org/10.1007/s00410-002-0431-0 |
Charlier, B., Grove, T. L., 2012. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 164(1): 27–44. https://doi.org/10.1007/s00410-012-0723-y |
Charlier, B., Namur, O., Bolle, O., et al., 2015. Fe-Ti-V-P Ore Deposits Associated with Proterozoic Massif-Type Anorthosites and Related Rocks. Earth Science Reviews, 141: 56–81. https://doi.org/10.1016/j.earscirev.2014.11.005 |
Charlier, B., Namur, O., Grove, T. L., 2013. Compositional and Kinetic Controls on Liquid Immiscibility in Ferrobasalt-Rhyolite Volcanic and Plutonic Series. Geochimica et Cosmochimica Acta, 113: 79–93. https://doi.org/10.1016/j.gca.2013.03.017 |
Charlier, B., Namur, O., Toplis, M. J., et al., 2011. Large-Scale Silicate Liquid Immiscibility during Differentiation of Tholeiitic Basalt to Granite and the Origin of the Daly Gap. Geology, 39(10): 907–910. https://doi.org/10.1130/g32091.1 |
Claeson, D. T., 1998. Coronas, Reaction Rims, Symplectites and Emplacement Depth of the Rymmen Gabbro, Transscandinavian Igneous Belt, Southern Sweden. Mineralogical Magazine, 62(6): 743–757. https://doi.org/10.1180/002646198548133 |
Daliran, F., Stosch, H., Williams, P., 2009. A Review of the Early Cambrian Magmatic and Metasomatic Events and Their Bearing on the Genesis of the Fe Oxide-REE-Apetite Deposits (IOA) of the Bafq District, Iran. In: Williams et al., ed., Smart Science for Exploration and Mining: Proceedings of the 10th Biennial SGA Meeting, Townsville, 623–625 |
Daliran, F., Stosch, H. G., Williams, P., 2010. Early Cambrian iron Oxide-Apatite-REE (U) Deposits of the Bafq District, East Central Iran. In: Corriveau, L., Mumin, H., eds., Exploring for Iron Oxide Copper Gold Deposits: Canada and Global Analogues. Geological Association of Canada, 20: 143–155 (Short Course Notes) |
Deymar, S., Yazdi, M., Rezvanianzadeh, M. R., et al., 2018. Alkali Metasomatism as a Process for Ti-REE-Y-U-Th Mineralization in the Saghand Anomaly 5, Central Iran: Insights from Geochemical, Mineralogical, and Stable Isotope Data. Ore Geology Reviews, 93: 308–336. https://doi.org/10.1016/j.oregeorev.2018.01.008 |
Duchesne, J. C., Liégeois, J. P., 2015. The Origin of Nelsonite and High-Zr Ferrodiorite Associated with Proterozoic Anorthosite. Ore Geology Reviews, 71: 40–56. https://doi.org/10.1016/j.oregeorev.2015.05.005 |
Emslie, D. P., 1980. The Mineralogy and Geochemistry of the Copper Lead and Zinc Sulphides of the Otavi Mountainland (No. NIM-2056). National Institue for Metallurgy |
Ernst, R. E., Jowitt, S. M., 2013. Large Igneous Provinces (LIPs) and Metallogeny. Society of Economic Geologists Special Publication, 17: 17–51 |
Ganino, C., Arndt, N. T., Zhou, M. F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677–694. https://doi.org/10.1007/s00126-008-0191-5 |
Haggerty, S. E., 1991. Oxide Minerals: Petrologic and Magnetic Significance. Rev. Mineral, 25(1): 355–416 |
Haghipour, A., 1974. Etude Géologique de la Région de Biabanak-Bafq (Iran Central): Pétrologie et Tectonique du Socle Précambrien et de sa Couverture: [Dissertation]. Université Scientifique et Médicale de Grenoble, Grenoble |
Haghipour, A., 1977. Etude Geologique de la Region de Biabanak-Bafq (Iran Central). Petrologie et Tectonique du Socle Precambrian et de sa Couverture. Geological Survey of Iran, 34–403 |
Haghipour, A., Pelissier, G., 1977. Geology of the Saghand Sector, In: Haghipour, A., Valeh, N., Pelissier, G., eds, Explanatory Text of the Ardekan Quadrangle Map. Geological Survey of Iran, H8: 10–68 |
Halim, A. H. A., Helmy, H. M., Abd El-Rahman, Y. M., et al., 2016. Petrology of the Motaghairat Mafic-Ultramafic Complex, Eastern Desert, Egypt: A High-Mg Post-Collisional Extension-Related Layered Intrusion. Journal of Asian Earth Sciences, 116: 164–180. https://doi.org/10.1016/j.jseaes.2015.11.015 |
Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048. https://doi.org/10.2138/am.2012.4276 |
Heidarian, H., Lentz, D., Alirezaei, S., et al., 2018. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology. Minerals, 8(3): 87. https://doi.org/10.3390/min8030087 |
Helmy, H. M., Yoshikawa, M., Shibata, T., et al., 2008. Corona Structure from Arc Mafic-Ultramafic Cumulates: The Role and Chemical Characteristics of Late-Magmatic Hydrous Liquids. Journal of Mineralogical and Petrological Sciences, 103(5): 333–344. https://doi.org/10.2465/jmps.070906 |
Hou, T., Charlier, B., Holtz, F., et al., 2018. Immiscible Hydrous Fe-Ca-P Melt and the Origin of Iron Oxide-Apatite Ore Deposits. Nature Communications, 9(1): 1–8. https://doi.org/10.1038/s41467-018-03761-4 |
Howarth, G. H., Prevec, S. A., 2013. Hydration Vs. Oxidation: Modelling Implications for Fe-Ti Oxide Crystallisation in Mafic Intrusions, with Specific Reference to the Panzhihua Intrusion, SW China. Geoscience Frontiers, 4(5): 555–569. https://doi.org/10.1016/j.gsf.2013.03.002 |
Howarth, G. H., Prevec, S. A., Zhou, M. F., 2013. Timing of Ti-Magnetite Crystallisation and Silicate Disequilibrium in the Panzhihua Mafic Layered Intrusion: Implications for Ore-Forming Processes. Lithos, 170/171: 73–89. https://doi.org/10.1016/j.lithos.2013.02.020 |
Irvine, T. N., 1980. Magmatic Density Currents and Cumulus Processes. American Journal of Science, 280: 1–58 doi: 10.2475/ajs.280.1.1 |
Irvine, T. N., Andersen, J. C. Ø., Brooks, C. K., 1998. Included Blocks (and Blocks within Blocks) in the Skaergaard Intrusion: Geologic Relations and the Origins of Rhythmic Modally Graded Layers. Bulletin of the Geological Society of America, 110(11): 1398–1447 doi: 10.1130/0016-7606(1998)110<1398:IBABWB>2.3.CO;2 |
Jakobsen, J. K., Veksler, I. V., Tegner, C., et al., 2005. Immiscible Iron- and Silica-Rich Melts in Basalt Petrogenesis Documented in the Skaergaard Intrusion. Geology, 33(11): 885–888. https://doi.org/10.1130/g21724.1 |
Jakobsen, J. K., Veksler, I. V., Tegner, C., et al., 2011. Crystallization of the Skaergaard Intrusion from an Emulsion of Immiscible Iron- and Silica-Rich Liquids: Evidence from Melt Inclusions in Plagioclase. Journal of Petrology, 52(2): 345–373. https://doi.org/10.1093/petrology/egq083 |
Jami, M., 2005. Geology, Geochemistry and Evolution of the Esfordi Phosphate-Iron Deposit, Bafq Area, Central Iran: [Dissertation]. University of New South Wales, Sydney |
Jennings, E. S., Holland, T. J. B., Shorttle, O., et al., 2016. The Composition of Melts from a Heterogeneous Mantle and the Origin of Ferropicrite: Application of a Thermodynamic Model. Journal of Petrology, 57(11/12): 2289–2310. https://doi.org/10.1093/petrology/egw065 |
Joesten, R., 1986. The Role of Magmatic Reaction, Diffusion and Annealing in the Evolution of Coronitic Microstructure in Troctolitic Gabbro from Risör, Norway. Mineralogical Magazine, 50(357): 441–467. https://doi.org/10.1180/minmag.1986.050.357.08 |
Khedr, M. Z., Arai, S., 2016. Chemical Variations of Mineral Inclusions in Neoproterozoic High-Cr Chromitites from Egypt: Evidence of Fluids during Chromitite Genesis. Lithos, 240/241/242/243: 309–326. https://doi.org/10.1016/j.lithos.2015.11.029 |
Khedr, M. Z., El-Awady, A., Arai, S., et al., 2020. Petrogenesis of the ~740 Korab Kansi Mafic-Ultramafic Intrusion, South Eastern Desert of Egypt: Evidence of Ti-Rich Ferropicritic Magmatism. Gondwana Research, 82: 48–72. https://doi.org/10.1016/j.gr.2019.12.013 |
Kogarko, L. N., Khapaev, V. V., 1987. The Modelling of Formation of Apatite Deposits of the Khibina Massif (Kola Peninsula). Parsons I, Origins of Igneous Layering. Springer, Dordrecht. 1987: 589–611. |
Lindsley, D. H., Epler, N., 2017. Do Fe-Ti-Oxide Magmas Exist? Probably Not!. American Mineralogist, 102(11): 2157–2169. https://doi.org/10.2138/am-2017-6091 |
Lindsley, D. H., Spencer K. J., 1982. Fe-Ti Oxide Geothermometry: Reducing Analyses of Coexisting Ti-Magnetite (Mt) and Ilmenite (Ilm): Abstract AGU 1982 Spring Meeting Eos Transactions. American Geophysical Union, 63: 471 |
Locock, A. J., 2014. An Excel Spreadsheet to Classify Chemical Analyses of Amphiboles Following the IMA 2012 Recommendations. Computers & Geosciences, 62(C): 1–11 |
Masoodi, M., Yassaghi, A., Ali Akbar Nogole Sadat, M., et al., 2013. Cimmerian Evolution of the Central Iranian Basement: Evidence from Metamorphic Units of the Kashmar-Kerman Tectonic Zone. Tectonophysics, 588: 189–208. https://doi.org/10.1016/j.tecto.2012.12.012 |
Mathez, E. A., 1976. Sulfur Solubility and Magmatic Sulfides in Submarine Basalt Glass. Journal of Geophysical Research, 81(23): 4269–4276. https://doi.org/10.1029/jb081i023p04269 |
Mehdipour Ghazi, J., Harris, C., Rahgoshay, M., et al., 2019. Combined Igneous and Hydrothermal Source for the Kiruna-Type Bafq Magnetite-Apatite Deposit in Central Iran; Trace Element and Oxygen Isotope Studies of Magnetite. Ore Geology Reviews, 105: 590–604. https://doi.org/10.1016/j.oregeorev.2019.01.006 |
Mohan, M. R., Singh, S. P., Santosh, M., et al., 2012. TTG Suite from the Bundelkhand Craton, Central India: Geochemistry, Petrogenesis and Implications for Archean Crustal Evolution. Journal of Asian Earth Sciences, 58: 38–50. https://doi.org/10.1016/j.jseaes.2012.07.006 |
Mokhtari, M. A. A., Zadeh, G. H., Emami, M. H., 2013. Genesis of Iron-Apatite Ores in Posht-E-Badam Block (Central Iran) Using REE Geochemistry. Journal of Earth System Science, 122(3): 795–807. https://doi.org/10.1007/s12040-013-0313-z |
Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. Mineralogical Magazine, 52(367): 535–550. https://doi.org/10.1180/minmag.1988.052.367.15 |
Nadimi, A., 2007. Evolution of the Central Iranian Basement. Gondwana Research, 12(3): 324–333. https://doi.org/10.1016/j.gr.2006.10.012 |
Naldrett, A. J., 2010. Secular Variation of Magmatic Sulfide Deposits and Their Source Magmas. Economic Geology, 105(3): 669–688. https://doi.org/10.2113/gsecongeo.105.3.669 |
Namur, O., Charlier, B., Toplis, M. J., et al., 2010. Crystallization Sequence and Magma Chamber Processes in the Ferrobasaltic Sept Iles Layered Intrusion, Canada. Journal of Petrology, 51(6): 1203–1236. https://doi.org/10.1093/petrology/egq016 |
Niktabar, S. M., Rashidnejad Omran, N., 2018. Geochemistry and Petrology of Rift-Related Mafic Sills and Arc-Related Gabbro-Diorite Bodies, Northern Bafq District, Central Iran. Acta Geochimica, 37(2): 180–192. https://doi.org/10.1007/s11631-017-0191-1 |
Nilsson, K., Peach, C. L., 1993. Sulfur Speciation, Oxidation State, and Sulfur Concentration in Backarc Magmas. Geochimica et Cosmochimica Acta, 57(15): 3807–3813. https://doi.org/10.1016/0016-7037(93)90158-s |
NISCO (National Iranian Steel Corporation), 1980. A Brief Account on the Bafq Iron Ore Region of Central Iran, Unpublished. Report, Tehran (in Persian) |
Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551–578. https://doi.org/10.2113/gsecongeo.67.5.551 |
Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon, In: Barnes, H. L., ed., and Geochemistry of Hydrothermal Ore Deposits (Ⅱ). John Wiley and Sons, New York |
Pang, K. N., Li, C. S., Zhou, M. F., et al., 2008a. Abundant Fe-Ti Oxide Inclusions in Olivine from the Panzhihua and Hongge Layered Intrusions, SW China: Evidence for Early Saturation of Fe-Ti Oxides in Ferrobasaltic Magma. Contributions to Mineralogy and Petrology, 156(3): 307–321. https://doi.org/10.1007/s00410-008-0287-z |
Pang, K. N., Zhou, M. F., Lindsley, D., et al., 2008b. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295–313. https://doi.org/10.1093/petrology/egm082 |
Pang, K. N., Li, C. S., Zhou, M. F., et al., 2009. Mineral Compositional Constraints on Petrogenesis and Oxide Ore Genesis of the Late Permian Panzhihua Layered Gabbroic Intrusion, SW China. Lithos, 110(1/2/3/4): 199–214. https://doi.org/10.1016/j.lithos.2009.01.007 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 |
Philpotts, A. R., 1967. Origin of Certain Iron-Titanium Oxide and Apatite Rocks. Economic Geology, 62(3): 303–315. https://doi.org/10.2113/gsecongeo.62.3.303 |
Poshtkoohi, M., Ahmad, T., Choudhary, A. K., 2018. Geochemistry and Petrogenesis of Biabanak-Bafq Mafic Magmatism: Implication for the Evolution of Central Iranian Terrane. Journal of Earth System Science, 127(5): 1–30. https://doi.org/10.1007/s12040-018-0969-5 |
Rajabi, A., Canet, C., Rastad, E., et al., 2015. Basin Evolution and Stratigraphic Correlation of Sedimentary-Exhalative Zn-Pb Deposits of the Early Cambrian Zarigan-Chahmir Basin, Central Iran. Ore Geology Reviews, 64: 328–353. https://doi.org/10.1016/j.oregeorev.2014.07.013 |
Ramezani, J., 1997. Regional Geology, Geochronology and Geochemistry of the Igneous and Metamorphic Rock Suites of the Saghand Area, Central Iran: [Dissertation]. Washington University, Missouri |
Ramezani, J., Tucker, R. D., 2003. The Saghand Region, Central Iran: U-Pb Geochronology, Petrogenesis and Implications for Gondwana Tectonics. American Journal of Science, 303(7): 622–665. https://doi.org/10.2475/ajs.303.7.622 |
Reynolds, I., 1985. Vanadium-Bearing Titaniferous Iron Ores of the Rooiwater Complex, North-Eastern Transvaal. In: Anhaeusser, C. R., Maske, S., eds., Mineral Deposits of Southern Africa. Geological Society of South Africa, Johannesburg |
Robinson, P. T., Zhou, M. F., Malpas, J., et al., 1997. Podiform Chromitites: Their Composition, Origin and Environment of Formation. Episodes, 20(4): 247–252. https://doi.org/10.18814/epiiugs/1997/v20i4/007 |
Samani, B. A., 1984. Recognition of Uraniferous Provinces from the Precambrian of Iran. 27th IGC, Moscow |
Samani, B. A., 1993. Saghand formation, a Riftogenic Unit of Upper Precambrian in Central Iran. Scintific Quartery Journal of Geosciences, 6: 32–45 (in Persian with English Abstract) |
Scoon, R. N., Mitchell, A. A., 1994. Discordant Iron-Rich Ultramafic Pegmatites in the Bushveld Complex and Their Relationship to Iron-Rich Intercumulus and Residual Liquids. Journal of Petrology, 35(4): 881–917. https://doi.org/10.1093/petrology/35.4.881 |
Sepidbar, F., Ghorbani, G., Simon, A. C., et al., 2022. Formation of the Chah-Gaz Iron Oxide-Apatite Ore (IOA) Deposit, Bafq District, Iran: Constraints from Halogens, Trace Element Concentrations, and Sr-Nd Isotopes of Fluorapatite. Ore Geology Reviews, 140: 104599. https://doi.org/10.1016/j.oregeorev.2021.104599 |
Shellnutt, J. G., Wang, K. L., Zellmer, G. F., et al., 2011. Three Fe-Ti Oxide Ore-Bearing Gabbro-Granitoid Complexes in the Panxi Region of the Permian Emeishan Large Igneous Province, SW China. American Journal of Science, 311(9): 773–812. https://doi.org/10.2475/09.2011.02 |
Song, X. Y., Qi, H. W., Hu, R. Z., et al., 2013. Formation of Thick Stratiform Fe-Ti Oxide Layers in Layered Intrusion and Frequent Replenishment of Fractionated Mafic Magma: Evidence from the Panzhihua Intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712–732. https://doi.org/10.1002/ggge.20068 |
Tegner, C., Cawthorn, R. G., Kruger, F. J., 2006. Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: Crystallization from a Zoned Magma Sheet. Journal of Petrology, 47(11): 2257–2279. https://doi.org/10.1093/petrology/egl043 |
Tessalina, S. G., Bourdon, B., Maslennikov, V. V., et al., 2008. Osmium Isotope Distribution within the Palaeozoic Alexandrinka Seafloor Hydrothermal System in the Southern Urals, Russia. Ore Geology Reviews, 33(1): 70–80. https://doi.org/10.1016/j.oregeorev.2005.05.003 |
Tollari, N., Toplis, M. J., Barnes, S. J., 2006. Predicting Phosphate Saturation in Silicate Magmas: An Experimental Study of the Effects of Melt Composition and Temperature. Geochimica et Cosmochimica Acta, 70(6): 1518–1536. https://doi.org/10.1016/j.gca.2005.11.024 |
Toplis, M. J., Carroll, M. R., 1995. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral—Melt Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36(5): 1137–1170. https://doi.org/10.1093/petrology/36.5.1137 |
Toplis, M. J., Dingwell, D. B., Libourel, G., 1994. The Effect of Phosphorus on the Iron Redox Ratio, Viscosity, and Density of an Evolved Ferro-Basalt. Contributions to Mineralogy and Petrology, 117(3): 293–304. https://doi.org/10.1007/bf00310870 |
Torab, F. M., Lehmann, B., 2007. Magnetite-Apatite Deposits of the Bafq District, Central Iran: Apatite Geochemistry and Monazite Geochronology. Mineralogical Magazine, 71(3): 347–363. https://doi.org/10.1180/minmag.2007.071.3.347 |
van Lamoen, H., 1979. Coronas in Olivine Gabbros and Iron Ores from Susimäki and Riuttamaa, Finland. Contributions to Mineralogy and Petrology, 68(3): 259–268. https://doi.org/10.1007/bf00371546 |
Visser, W., Koster van Groos, A., 1977. Liquid Immiscibility in K2O-FeO-Al2O3-SiO2 (Reply). Nature, 267(5611): 560. https://doi.org/10.1038/267560a0 |
Von Gruenewaldt, G., 1993. Ilmenite-Apatite Enrichments in the Upper Zone of the Bushveld Complex: A Major Titanium-Rock Phosphate Resource. International Geology Review, 35(11): 987–1000. https://doi.org/10.1080/00206819309465570 |
Xie, Q. H., Zhang, Z. C., Cheng, Z. G., et al., 2017. Interstitial Microstructures in Ji'nan Mafic Intrusion, North China Craton: Magmatic or Hydrothermal Origin? European Journal of Mineralogy, 29(5): 839–850. https://doi.org/10.1127/ejm/2017/0029-2656 |
Zhou, M. F., Chen, W. T., Wang, C. Y., et al., 2013. Two Stages of Immiscible Liquid Separation in the Formation of Panzhihua-Type Fe-Ti-V Oxide Deposits, SW China. Geoscience Frontiers, 4(5): 481–502. https://doi.org/10.1016/j.gsf.2013.04.006 |