Citation: | Xianxin Huang, Yanhong Wang, Helin Wang, Xinyan Shi, Chunlei Huang, Hanqin Yin, Yixian Shao, Ping Li. A Novel Selenite-Reducing Bacterium Bacillus pseudomycoides SA14 Isolated from Se-Enriched Soil and Its Potential Se Biofortification on Brassica chinensis L.. Journal of Earth Science, 2025, 36(4): 1756-1765. doi: 10.1007/s12583-022-1676-3 |
Microbial participation in biofortification can improve the availability of selenium (Se) in soil and contribute to the enrichment of Se in crops. In this study, a selenite (Se(Ⅳ)) reducing strain was isolated from Se-rich soil, and its Se transformation and bio-enhancement ability were studied. The strain was identified as
Araújo do Nascimento, C. W., Viera da Silva, F. B., de Brito Fabricio Neta, A., et al., 2021. Geopedology-Climate Interactions Govern the Spatial Distribution of Selenium in Soils: A Case Study in Northeastern Brazil. Geoderma, 399: 115119. https://doi.org/10.1016/j.geoderma.2021.115119 |
Bao, P., Su, J. Q., Hu, Z. Y., et al., 2014. Genome Sequence of the Anaerobic Bacterium Bacillus Sp. Strain ZYK, a Selenite and Nitrate Reducer from Paddy Soil. Standards in Genomic Sciences, 9(3): 646–654. https://doi.org/10.4056/sigs.3817480 |
Chauhan, R., Awasthi, S., Srivastava, S., et al., 2019. Understanding Selenium Metabolism in Plants and Its Role as a Beneficial Element. Critical Reviews in Environmental Science and Technology, 49(21): 1937–1958. https://doi.org/10.1080/10643389.2019.1598240 |
Chen, Y. H., Li, S. S., Liu, N., et al., 2021. Effects of Different Types of Microbial Inoculants on Available Nitrogen and Phosphorus, Soil Microbial Community, and Wheat Growth in High-P Soil. Environmental Science and Pollution Research International, 28(18): 23036–23047. https://doi.org/10.1007/s11356-020-12203-y |
Chilimba, A. D. C., Young, S. D., Black, C. R., et al., 2012. Agronomic Biofortification of Maize with Selenium (Se) in Malawi. Field Crops Research, 125: 118–128. https://doi.org/10.1016/j.fcr.2011.08.014 |
D'Amato, R., Regni, L., Falcinelli, B., et al., 2020. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. Journal of Agricultural and Food Chemistry, 68(14): 4075–4097. https://doi.org/10.1021/acs.jafc.0c00172 |
Deng, L., Wang, T., Luo, W., et al., 2021. Effects of a Compound Microbial Agent and Plants on Soil Properties, Enzyme Activities, and Bacterial Composition of Pisha Sandstone. Environmental Science and Pollution Research International, 28(38): 53353–53364. https://doi.org/10.1007/s11356-021-14533-x |
Dinh, Q. T., Wang, M. K., Tran, T. A. T., et al., 2019. Bioavailability of Selenium in Soil-Plant System and a Regulatory Approach. Critical Reviews in Environmental Science and Technology, 49(6): 443–517. https://doi.org/10.1080/10643389.2018.1550987 |
Dobias, J., Suvorova, E. I., Bernier-Latmani, R., 2011. Role of Proteins in Controlling Selenium Nanoparticle Size. Nanotechnology, 22(19): 195605. https://doi.org/10.1088/0957-4484/22/19/195605 |
Domínguez-Castillo, C., Alatorre-Cruz, J. M., Castañeda-Antonio, D., et al., 2021. Potential Seed Germination-Enhancing Plant Growth-Promoting Rhizobacteria for Restoration of Pinus Chiapensis Ecosystems. Journal of Forestry Research, 32(5): 2143–2153. https://doi.org/10.1007/s11676-020-01250-3 |
El-Ramady, H., Abdalla, N., Alshaal, T., et al., 2015. Selenium in Soils under Climate Change, Implication for Human Health. Environmental Chemistry Letters, 13(1): 1–19. https://doi.org/10.1007/s10311-014-0480-4 |
Erturk, Y., Ercisli, S., Haznedar, A., et al., 2010. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Rooting and Root Growth of Kiwifruit (Actinidia Deliciosa) Stem Cuttings. Biological Research, 43(1): 91–98 |
Golubkina, N. A., Folmanis, G. E., Tananaev, I. G., 2012. Comparative Evaluation of Selenium Accumulation by Allium Species after Foliar Application of Selenium Nanoparticles, Sodium Selenite and Sodium Selenate. Doklady Biological Sciences, 444: 176–179. https://doi.org/10.1134/S0012496612030076 |
Hapuarachchi, S., Swearingen, J., Chasteen, T. G., 2004. Determination of Elemental and Precipitated Selenium Production by a Facultative Anaerobe Grown under Sequential Anaerobic/Aerobic Conditions. Process Biochemistry, 39(11): 1607–1613. https://doi.org/10.1016/S0032-9592(03)00298-X |
Hockin, S. L., Gadd, G. M., 2003. Linked Redox Precipitation of Sulfur and Selenium under Anaerobic Conditions by Sulfate-Reducing Bacterial Biofilms. Applied and Environmental Microbiology, 69(12): 7063–7072. https://doi.org/10.1128/AEM.69.12.7063-7072.2003 |
Huang, C. L., Wang, H. L., Shi, X. Y., et al., 2021. Two New Selenite Reducing Bacterial Isolates from Paddy Soil and the Potential Se Biofortification of Paddy Rice. Ecotoxicology, 30(7): 1465–1475. https://doi.org/10.1007/s10646-020-02273-6 |
Huang, Y. P., Wang, Q. Q., Zhang, W. J., et al., 2021. Stoichiometric Imbalance of Soil Carbon and Nutrients Drives Microbial Community Structure under Long-Term Fertilization. Applied Soil Ecology, 168: 104119. https://doi.org/10.1016/j.apsoil.2021.104119 |
Huber, R., Sacher, M., Vollmann, A., et al., 2000. Respiration of Arsenate and Selenate by Hyperthermophilic Archaea. Systematic and Applied Microbiology, 23(3): 305–314. https://doi.org/10.1016/S0723-2020(00)80058-2 |
Hunter, W. J., Kuykendall, L. D., 2007. Reduction of Selenite to Elemental Red Selenium by Rhizobium Sp. Strain B1. Current Microbiology, 55(4): 344–349. https://doi.org/10.1007/s00284-007-0202-2 |
Ike, M., Takahashi, K., Fujita, T., et al., 2000. Selenate Reduction by Bacteria Isolated from Aquatic Environment Free from Selenium Contamination. Water Research, 34(11): 3019–3025. https://doi.org/10.1016/S0043-1354(00)00041-5 |
Jiang, D. W., Li, P., Jiang, Z., et al., 2015. Chemolithoautotrophic Arsenite Oxidation by a Thermophilic Anoxybacillus Flavithermus Strain TCC9-4 from a Hot Spring in Tengchong of Yunnan, China. Frontiers in Microbiology, 6: 360. https://doi.org/10.3389/fmicb.2015.00360 |
Kamei-Ishikawa, N., Tagami, K., Uchida, S., 2007. Sorption Kinetics of Selenium on Humic Acid. Journal of Radioanalytical and Nuclear Chemistry, 274(3): 555–561. https://doi.org/10.1007/s10967-006-6951-8 |
Kashiwa, M., Ike, M., Mihara, H., et al., 2001. Removal of Soluble Selenium by a Selenate-Reducing Bacterium Bacillus Sp. SF-1. BioFactors, 14(1/2/3/4): 261–265. https://doi.org/10.1002/biof.5520140132 |
Kulikova, N. A., Perminova, I. V., 2021. Interactions between Humic Substances and Microorganisms and Their Implications for Nature-Like Bioremediation Technologies. Molecules, 26(9): 2706. https://doi.org/10.3390/molecules26092706 |
Kuroda, M., Notaguchi, E., Sato, A., et al., 2011. Characterization of Pseudomonas Stutzeri NT-I Capable of Removing Soluble Selenium from the Aqueous Phase under Aerobic Conditions. Journal of Bioscience and Bioengineering, 112(3): 259–264. https://doi.org/10.1016/j.jbiosc.2011.05.012 |
Li, J. H., Yang, W. P., Guo, A. N., et al., 2021a. Combined Foliar and Soil Selenium Fertilizer Increased the Grain Yield, Quality, Total Se, and Organic Se Content in Naked Oats. Journal of Cereal Science, 100: 103265. https://doi.org/10.1016/j.jcs.2021.103265 |
Li, J. H., Yang, W. P., Guo, A. N., et al., 2021b. Combined Foliar and Soil Selenium Fertilizer Improves Selenium Transport and the Diversity of Rhizosphere Bacterial Community in Oats. Environmental Science and Pollution Research International, 28(45): 64407–64418. https://doi.org/10.1007/s11356-021-15439-4 |
Li, S. H., Xiao, T. F., Zheng, B. S., 2012. Medical Geology of Arsenic, Selenium and Thallium in China. Science of the Total Environment, 421: 31–40. https://doi.org/10.1016/j.scitotenv.2011.02.040 |
Li, Z., Kawamura, Y., Shida, O., et al., 2002. Bacillus Okuhidensis Sp. Nov., Isolated from the Okuhida Spa Area of Japan. International Journal of Systematic and Evolutionary Microbiology, 52(pt 4): 1205–1209. 10.1099/00207713-52-4-1205 doi: 10.1099/00207713-52-4-1205 |
Li, Z., Liang, D. L., Peng, Q., et al., 2017. Interaction between Selenium and Soil Organic Matter and Its Impact on Soil Selenium Bioavailability: A Review. Geoderma, 295: 69–79. https://doi.org/10.1016/j.geoderma.2017.02.019 |
Lloyd, J. R., 2003. Microbial Reduction of Metals and Radionuclides. FEMS Microbiology Reviews, 27(2/3): 411–425. https://doi.org/10.1016/S0168-6445(03)00044-5 |
Losi, M. E., Frankenberger, W. T., 1997. Reduction of Selenium Oxyanions by Enterobacter Cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles. Applied and Environmental Microbiology, 63(8): 3079–3084. https://doi.org/10.1128/aem.63.8.3079-3084.1997 |
Muleya, M., Young, S. D., Reina, S. V., et al., 2021. Selenium Speciation and Bioaccessibility in Se-Fertilised Crops of Dietary Importance in Malawi. Journal of Food Composition and Analysis, 98: 103841. https://doi.org/10.1016/j.jfca.2021.103841 |
Nielsen, P., Fritze, D., Priest, F. G., 1995. Phenetic Diversity of Alkaliphilic Bacillus Strains: Proposal for Nine New Species. Microbiology, 141(7): 1745–1761. https://doi.org/10.1099/13500872-141-7-1745 |
Painter, E. P., 1941. The Chemistry and Toxicity of Selenium Compounds, with Special Reference to the Selenium Problem. Chemical Reviews, 28(2): 179–213. https://doi.org/10.1021/cr60090a001 |
Pettine, M., Gennari, F., Campanella, L., et al., 2012. The Reduction of Selenium(Ⅳ) by Hydrogen Sulfide in Aqueous Solutions. Geochimica et Cosmochimica Acta, 83: 37–47. https://doi.org/10.1016/j.gca.2011.12.024 |
Rolewicz, M., Rusek, P., Borowik, K., 2018. Obtaining of Granular Fertilizers Based on Ashes from Combustion of Waste Residues and Ground Bones Using Phosphorous Solubilization by Bacteria Bacillus Megaterium. Journal of Environmental Management, 216: 128–132. https://doi.org/10.1016/j.jenvman.2017.05.004 |
Ryu, J. H., Jung, J. H., Park, K. Y., et al., 2021. Humic Acid Removal and Microbial Community Function in Membrane Bioreactor. Journal of Hazardous Materials, 417: 126088. https://doi.org/10.1016/j.jhazmat.2021.126088 |
Sharma, V. K., McDonald, T. J., Sohn, M., et al., 2015. Biogeochemistry of Selenium. a Review. Environmental Chemistry Letters, 13(1): 49–58. https://doi.org/10.1007/s10311-014-0487-x |
Song, D. G., Li, X. X., Cheng, Y. Z., et al., 2017. Aerobic Biogenesis of Selenium Nanoparticles by Enterobacter Cloacae Z0206 as a Consequence of Fumarate Reductase Mediated Selenite Reduction. Scientific Reports, 7(1): 3239. https://doi.org/10.1038/s41598-017-03558-3 |
Song, L., Liu, H. C., Wang, J., et al., 2016. Bacillus Oceani Sp. Nov., Isolated from Seawater. International Journal of Systematic and Evolutionary Microbiology, 66(2): 796–800. https://doi.org/10.1099/ijsem.0.000793 |
Stolz, J. F., Basu, P., Oremland, R. S., 2002. Microbial Transformation of Elements: The Case of Arsenic and Selenium. International Microbiology, 5(4): 201–207. https://doi.org/10.1007/s10123-002-0091-y |
Stolz, J. F., Basu, P., Santini, J. M., et al., 2006. Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 60: 107–130. https://doi.org/10.1146/annurev.micro.60.080805.142053 |
Tan, Y. Q., Yao, R., Wang, R., et al., 2016. Reduction of Selenite to Se(0) Nanoparticles by Filamentous Bacterium Streptomyces Sp. ES2-5 Isolated from a Selenium Mining Soil. Microbial Cell Factories, 15(1): 157. https://doi.org/10.1186/s12934-016-0554-z |
Tejo Prakash, N., Sharma, N., Prakash, R., et al., 2009. Aerobic Microbial Manufacture of Nanoscale Selenium: Exploiting Nature's Bio-Nanomineralization Potential. Biotechnology Letters, 31(12): 1857–1862. https://doi.org/10.1007/s10529-009-0096-0 |
Turanov, A. A., Xu, X. M., Carlson, B. A., et al., 2011. Biosynthesis of Selenocysteine, the 21st Amino Acid in the Genetic Code, and a Novel Pathway for Cysteine Biosynthesis. Advances in Nutrition, 2(2): 122–128. https://doi.org/10.3945/an.110.000265 |
Ullah, A., Sun, B., Wang, F. H., et al., 2020. Isolation of Selenium-Resistant Bacteria and Advancement under Enrichment Conditions for Selected Probiotic Bacillus Subtilis (BSN313). Journal of Food Biochemistry, 44(6): e13227. https://doi.org/10.1111/jfbc.13227 |
Wadgaonkar, S. L., Nancharaiah, Y. V., Jacob, C., et al., 2019. Microbial Transformation of Se Oxyanions in Cultures of Delftia Lacustris Grown under Aerobic Conditions. Journal of Microbiology, 57(5): 362–371. https://doi.org/10.1007/s12275-019-8427-x |
Wang, D., Rensing, C., Zheng, S. X., 2022. Microbial Reduction and Resistance to Selenium: Mechanisms, Applications and Prospects. Journal of Hazardous Materials, 421: 126684. https://doi.org/10.1016/j.jhazmat.2021.126684 |
Wang, Q., Yu, Y., Li, J. X., et al., 2017. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System. Journal of Agricultural and Food Chemistry, 65(6): 1116–1123. https://doi.org/10.1021/acs.jafc.6b05149 |
Wang, Q., Zhan, S., Han, F., et al., 2022. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biological Trace Element Research, 200(5): 2069–2083. https://doi.org/10.1007/s12011-021-02851-7 |
Wang, S. M., Cui, J. T., Li, X. Y., Cheng, W., 2016. Effect of Microorganism on the Degradation and Formation of Humic Acid in Landfill Leachate. Science & Technology Vision, 7: 86–87 (in Chinese with English Abstract) |
Wang, X., Ning, Y. J., Zhang, P., et al., 2019. Hair Multi-Bioelement Profile of Kashin-Beck Disease in the Endemic Regions of China. Journal of Trace Elements in Medicine and Biology, 54: 79–97. https://doi.org/10.1016/j.jtemb.2019.04.002 |
Wang, Y. H., Shi, X. Y., Huang, X. X., et al., 2022. Linking Microbial Community Composition to Farming Pattern in Selenium-Enriched Region: Potential Role of Microorganisms on Se Geochemistry. Journal of Environmental Sciences, 112: 269–279. https://doi.org/10.1016/j.jes.2021.05.015 |
Wang, Z., Huang, W., Pang, F., 2022. Selenium in Soil-Plant-Microbe: A Review. Bulletin of Environmental Contamination and Toxicology, 108(2): 167–181. https://doi.org/10.1007/s00128-021-03386-2 |
Weisburg, W. G., Barns, S. M., Pelletier, D. A., et al., 1991. 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173(2): 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991 |
Won, S., Ha, M. G., Nguyen, D. D., et al., 2021. Biological Selenite Removal and Recovery of Selenium Nanoparticles by Haloalkaliphilic Bacteria Isolated from the Nakdong River. Environmental Pollution, 280: 117001. https://doi.org/10.1016/j.envpol.2021.117001 |
Yin, K., Wang, Q. N., Lv, M., et al., 2019. Microorganism Remediation Strategies towards Heavy Metals. Chemical Engineering Journal, 360: 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226 |
Zhang, G. L., Zhou, L. L., Cai, D. Q., et al., 2018. Anion-Responsive Carbon Nanosystem for Controlling Selenium Fertilizer Release and Improving Selenium Utilization Efficiency in Vegetables. Carbon, 129: 711–719. https://doi.org/10.1016/j.carbon.2017.12.062 |
Zhang, J., Wang, Y., Shao, Z. Y., et al., 2019. Two Selenium Tolerant Lysinibacillus Sp. Strains Are Capable of Reducing Selenite to Elemental Se Efficiently under Aerobic Conditions. Journal of Environmental Sciences, 77: 238–249. https://doi.org/10.1016/j.jes.2018.08.002 |
Zhang, L., Li, D. P., Gao, P., 2012. Expulsion of Selenium/Protein Nanoparticles through Vesicle-Like Structures by Saccharomyces Cerevisiae under Microaerophilic Environment. World Journal of Microbiology & Biotechnology, 28(12): 3381–3386. https://doi.org/10.1007/s11274-012-1150-y |
Zhang, X. M., Guo, J. H., Vogt, R. D., et al., 2020. Soil Acidification as an Additional Driver to Organic Carbon Accumulation in Major Chinese Croplands. Geoderma, 366: 114234. https://doi.org/10.1016/j.geoderma.2020.114234 |
Zhang, X., Wang, T., Li, S. E., et al., 2019. A Spatial Ecology Study of Keshan Disease and Hair Selenium. Biological Trace Element Research, 189(2): 370–378. https://doi.org/10.1007/s12011-018-1495-7 |
Zhao, B., Xing, C., Zhou, S. B., et al., 2020. Sources, Fraction Distribution and Health Risk Assessment of Selenium (Se) in Dashan Village, a Se-Rich Area in Anhui Province, China. Bulletin of Environmental Contamination and Toxicology, 104(4): 545–550. https://doi.org/10.1007/s00128-020-02827-8 |
Zheng, S. X., Su, J., Wang, L., et al., 2014. Selenite Reduction by the Obligate Aerobic Bacterium Comamonas Testosteroni S44 Isolated from a Metal-Contaminated Soil. BMC Microbiology, 14: 204. https://doi.org/10.1186/s12866-014-0204-8 |
Zhong, X. L., Gan, Y. Q., Deng, Y. M., 2021. Distribution, Origin and Speciation of Soil Selenium in the Black Soil Region of Northeast China. Environmental Geochemistry and Health, 43(3): 1257–1271. https://doi.org/10.1007/s10653-020-00691-3 |
Zhou, F., Li, Y. N., Ma, Y. Z., et al., 2021. Selenium Bioaccessibility in Native Seleniferous Soil and Associated Plants: Comparison between in Vitro Assays and Chemical Extraction Methods. Science of the Total Environment, 762: 143119. https://doi.org/10.1016/j.scitotenv.2020.143119 |