Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 4
Aug 2022
Turn off MathJax
Article Contents
Xiaolin Huang, Yuyang Peng, Chuang Cheng, Dun Wang, Qiang Yao. Determination and Comparison of ML, MS_BB, mB, MWp, MWW, Mdt, and M (GNSS) for the 22 May 2021 M7.4 Madoi, Qianghai, China Earthquake. Journal of Earth Science, 2022, 33(4): 847-856. doi: 10.1007/s12583-022-1680-7
Citation: Xiaolin Huang, Yuyang Peng, Chuang Cheng, Dun Wang, Qiang Yao. Determination and Comparison of ML, MS_BB, mB, MWp, MWW, Mdt, and M (GNSS) for the 22 May 2021 M7.4 Madoi, Qianghai, China Earthquake. Journal of Earth Science, 2022, 33(4): 847-856. doi: 10.1007/s12583-022-1680-7

Determination and Comparison of ML, MS_BB, mB, MWp, MWW, Mdt, and M (GNSS) for the 22 May 2021 M7.4 Madoi, Qianghai, China Earthquake

doi: 10.1007/s12583-022-1680-7
More Information
  • Corresponding author: Dun Wang, wangdun@cug.edu.cn; Qiang Yao, jonyau@cug.edu.cn
  • Received Date: 14 Sep 2021
  • Accepted Date: 08 May 2022
  • Available Online: 06 Aug 2022
  • Issue Publish Date: 30 Aug 2022
  • The 2021 Madoi M7.4 Earthquake in Qinghai is a major earthquake that occurred in the Bajankara Block of Qinghai-Tibet Plateau in the past 30 years, which spatially filled the seismogenic gap in the eastern section of the northern boundary of the block. Here we determined the values of ML, MS_BB, mB, MWp, MWW, Mdt, and M (GNSS) by abundant regional and global seismic and geodetic observations, which is 6.61, 7.43, 7.18, 7.33, 7.43, 7.38, and 7.4, respectively. To compare the time efficiency and stability of different magnitude scales, we generated a real-time environment, to iteratively determine the magnitudes over elapsed times. Some methods such as mB, MS_BB, MWp gave considerable variations of as large as 0.5 units for the determined magnitudes with elapsed time, as more data were included. Others such as MWW and Mdt were very stable with increasing data over time. The systematic calculations of various magnitude scales in this study quantitively evaluated the stability and accuracy of those methods, shading light on the adaptability and applicability of different magnitude scales.

     

  • loading
  • Bormann, P., Saul, J., 2014. Earthquake Magnitude. Encyclopedia of Complexity and Systems Science. Springer, New York. 1–32. https://doi.org/10.1007/978-3-642-27737-5_151-2
    Crowell, B. W., Melgar, D., Bock, Y., et al., 2013. Earthquake Magnitude Scaling Using Seismogeodetic Data. Geophysical Research Letters, 40(23): 6089–6094. https://doi.org/10.1002/2013gl058391 doi: 10.1002/2013GL058391
    Duputel, Z., Rivera, L., Kanamori, H., et al., 2012. W Phase Source Inversion for Moderate to Large Earthquakes (1990–2010). Geophysical Journal International, 189(2): 1125–1147. https://doi.org/10.1111/j.1365-246x.2012.05419.x doi: 10.1111/j.1365-246X.2012.05419.x
    Fan, W. Y., Shearer, P. M., 2017. Investigation of Back-Projection Uncertainties with M6 Earthquakes. Journal of Geophysical Research: Solid Earth, 122(5854): 7966–7986. https://doi.org/10.1002/2017jb014495
    Gutenberg, B., 1945a. Amplitudes of Surface Waves and Magnitudes of Shallow Earthquakes. Bulletin of the Seismological Society of America, 35(1): 3–12. https://doi.org/10.1785/bssa0350010003 doi: 10.1785/BSSA0350010003
    Gutenberg, B., 1945b. Amplitudes of P, PP, and S and Magnitude of Shallow Earthquakes. Bulletin of the Seismological Society of America, 35(2): 57–69. https://doi.org/10.1785/bssa0350020057 doi: 10.1785/BSSA0350020057
    Gutenberg, B., Richter, C. F., 1955. Magnitude and Energy of Earthquakes. Nature, 176(4486): 795. https://doi.org/10.1038/176795a0
    Hadley, D., Kanamori, H., 1977. Seismic Structure of the Transverse Ranges, California. Geological Society of America Bulletin, 88(10): 1469–1478. https://doi.org/10.1130/0016-7606(1977)88<1469:ssottr>2.0.co;2 doi: 10.1130/0016-7606(1977)88<1469:ssottr>2.0.co;2
    Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research, 84(B5): 2348–2350. https://doi.org/10.1029/jb084ib05p02348 doi: 10.1029/JB084iB05p02348
    Hara, T., 2007. Measurement of the Duration of High-Frequency Energy Radiation and Its Application to Determination of the Magnitudes of Large Shallow Earthquakes. Earth, Planets and Space, 59(4): 227–231. https://doi.org/10.1186/bf03353099 doi: 10.1186/BF03353099
    Hara, T., 2009. Erratum to: Magnitude Determination Using Duration of High Frequency Energy Radiation and Displacement Amplitude: Application to Tsunami Earthquakes. Earth, Planets and Space, 61(6): 803–804. https://doi.org/10.1186/bf03353186 doi: 10.1186/BF03353186
    Hara, T., 2011. Magnitude Determination Using Duration of High Frequency Energy Radiation and Displacement Amplitude: Application to the 2011 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space, 63(3): 525–528. https://doi.org/10.5047/eps.2011.05.014
    Hayes, G. P., Rivera, L., Kanamori, H., 2009. Source Inversion of the W-Phase: Real-Time Implementation and Extension to Low Magnitudes. Seismological Research Letters, 80(5): 817–822. https://doi.org/10.1785/gssrl.80.5.817
    Hirshorn, B., Weinstein, S., Wang, D. L., et al., 2019. Earthquake Source Parameters, Rapid Estimates for Tsunami Forecasts and Warnings. Encyclopedia of Complexity and Systems Science. Springer, Berlin Heidelberg. 1–35. https://doi.org/10.1007/978-3-642-27737-5_160-2
    Hu M. Z., Hao H. T., Han Y. F., et al., 2021. Gravity Flexural Isostasy Background of the 2021 Madoi(Qinghai) MS7.4 Earthquake and Gravity Change before the Earthquake. Chinese Journal of Geophysics, 64(9): 3135–3149. https://doi.org/10.6038/cjg2021O0527 (in Chinese with English Abstract)
    Jiang, C., Fang, L. H., Fan, L. P., et al., 2021. Comparison of the Earthquake Detection Effects of PhaseNet and EQTransformer Considering the Yangbi and Maduo Earthquakes. Earthquake Science, 34(5): 425–435. https://doi.org/10.29382/eqs-2021-0038
    Kanamori, H., Rivera, L., 2008. Source Inversion of W Phase: Speeding up Seismic Tsunami Warning. Geophysical Journal International, 175(1): 222–238. https://doi.org/10.1111/j.1365-246x.2008.03887.x doi: 10.1111/j.1365-246X.2008.03887.x
    Melgar, D., Crowell, B. W., Geng, J. H., et al., 2015. Earthquake Magnitude Calculation without Saturation from the Scaling of Peak Ground Displacement. Geophysical Research Letters, 42(13): 5197–5205. https://doi.org/10.1002/2015gl064278 doi: 10.1002/2015GL064278
    Richter, C. F., 1935. An Instrumental Earthquake Magnitude Scale. Bulletin of the Seismological Society of America, 25(1): 1–32. https://doi.org/10.1785/bssa0250010001 doi: 10.1785/BSSA0250010001
    Ruhl, C. J., Melgar, D., Geng, J. H., et al., 2019. A Global Database of Strong‐Motion Displacement GNSS Recordings and an Example Application to PGD Scaling. Seismological Research Letters, 90(1): 271–279. https://doi.org/10.1785/0220180177
    Song, C., Yao, Q., Wang, D., 2019. Magnitude of the 23 January 2018 M7.9 Alaska Earthquake Estimated from Local Dense Seismic Records in Alaska. Journal of Earth Science, 30(5): 1005–1009. https://doi.org/10.1007/s12583-019-1215-z
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978
    Tsuboi, S., Abe, K., Takano, K., et al., 1995. Rapid Determination of Mw from Broadband P Waveforms. Bulletin of the Seismological Society of America, 85(2): 606–613
    Wang, D., Kawakatsu, H., Zhuang, J. C., et al., 2017. Automated Determination of Magnitude and Source Length of Large Earthquakes Using Backprojection and P Wave Amplitudes. Geophysical Research Letters, 44(11): 5447–5456. https://doi.org/10.1002/2017gl073801 doi: 10.1002/2017GL073801
    Wang, W. L., Fang, L. H., Wu, J. P., et al., 2021. Aftershock Sequence Relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Science China Earth Sciences, 64(8): 1371–1380. https://doi.org/10.1007/s11430-021-9803-3
    Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556–5564. https://doi.org/10.1029/2019gc008515 doi: 10.1029/2019GC008515
    Yao, Q., Wang, D., Fang, L. H., et al., 2019. Rapid Estimation of Magnitudes of Large Damaging Earthquakes in and around Japan Using Dense Seismic Stations in China. Bulletin of the Seismological Society of America, 109(6): 2545–2555. https://doi.org/10.1785/0120190107
    Zang, J. F., Xu, C. J., Li, X. X., 2020. Scaling Earthquake Magnitude in Real Time with High-Rate GNSS Peak Ground Displacement from Variometric Approach. GPS Solutions, 24(4): 101. https://doi.org/10.1007/s10291-020-01013-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(6) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return