| Citation: | Peng Li, Dazhao Wang, Guanzhong Shi. Chronology, Geochemistry and Isotopic Compositions of the Cretaceous Zhangjiakou Diabase: Magmatic Derivation and Geodynamic Implications. Journal of Earth Science, 2025, 36(6): 2465-2478. doi: 10.1007/s12583-022-1684-3 |
Zircon U-Pb ages, major and trace elements and Sr-Nd-Hf isotope data of the diabase in the Zhangjiakou District were studied to investigate its derivation and tectonic implications. Zircon U-Pb ages indicate that the diabase was emplaced at ~130 Ma or younger, and captured zircons cluster at ~147, ~240, ~430 and ~465 Ma. The diabase is characterized by minor variations in SiO2 (49.35 wt.%–52.10 wt.%), TiO2 (1.65 wt.%–1.77 wt.%), Al2O3 (17.00 wt.%–18.26 wt.%), MgO (4.28 wt.%–4.93 wt.%), CaO (6.69 wt.%–7.90 wt.%) and Mg# (48–54). It has no significant Eu anomaly and displays enrichment in large ion lithophile elements (Rb, Ba and Sr) and depletion in high field strength elements (Nb, Ta, P and Ti). The diabase exhibits homogeneous Sr ((87Sr/86Sr)i = 0.706 06–0.707 01) and Nd (
| Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87–110. https://doi.org/10.1016/s1367-9120(02)00017-2 |
| Barnes, S. J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4): 303–323. https://doi.org/10.1016/0009-2541(85)90076-2 |
| Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7 |
| Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. https://doi.org/10.1007/s004100050278 |
| Cao, R., Zhao, H. Q., Lan, Z. W., 2023. Calcite U-Pb Geochronology Revealing Late Ediacaran–Early Paleozoic Hydrothermal Alteration in the Stenian-Tonian Carbonate of Northeastern North China Craton. Journal of Earth Science, 34(6): 1724–1731. https://doi.org/10.1007/s12583-023-1859-6 |
| Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3): 245–257. https://doi.org/10.1016/j.jseaes.2008.05.007 |
| Chen, X., Liu, J. J., Carranza, E. J. M., et al., 2019. Geology, Geochemistry, and Geochronology of the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China. Geological Journal, 54: 1254–1278. https://doi.org/10.1002/gj.3224 |
| Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32: 105–121. https://doi.org/10.1016/j.gr.2015.02.011 |
| Dobretsov, N. L., Buslov, M. M., Vernikovsky, V. A., 2003. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Research, 6(2): 143–159. https://doi.org/10.1016/s1342-937x(05)70966-7 |
| Eizenhöfer, P. R., Zhao, G. C., Sun, M., et al., 2015. Geochronological and Hf Isotopic Variability of Detrital Zircons in Paleozoic Strata across the Accretionary Collision Zone between the North China Craton and Mongolian Arcs and Tectonic Implications. Geological Society of America Bulletin, 127(9/10): 1422–1436. https://doi.org/10.1130/b31175.1 |
| Fisher, C. M., Vervoort, J. D., Hanchar, J. M., 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of these Data. Chemical Geology, 363: 125–133. https://doi.org/10.1016/j.chemgeo.2013.10.019 |
| Gan, W., Jin, Z. M., Fang, Z. Q., et al., 2023. Deformation of the Subcontinental Lithospheric Mantle in NE China: Constraints from Rheological and Fabric Study of Mantle Peridotite Xenoliths from Jiaohe, Jilin Province. Journal of Earth Science, 34(3): 767–775. https://doi.org/10.1007/s12583-020-1063-x |
| Gao, S., Zhang, B. R., Jin, Z. M., et al., 1998. How Mafic Is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1/2/3/4): 101–117. https://doi.org/10.1016/s0012-821x(98)00140-x |
| Hu, J., Jiang, N., Guo, J. H., et al., 2020. The Role of Basaltic Underplating in the Evolution of the Lower Continental Crust. Geochimica et Cosmochimica Acta, 275: 19–35. https://doi.org/10.1016/j.gca.2020.02.002 |
| Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h |
| Huang, S. Y., Xie, H. W., Hou, G. T., et al., 2023. Key Transition of Chinese Plate Configuration in Early Paleoproterozoic. Earth Science, 48(4): 1321–1329. https://doi.org/10.3799/dqkx.2022.394 (in Chinese with English Abstract) |
| Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 |
| Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259. https://doi.org/10.1016/j.lithos.2007.07.005 |
| Jiang, D. S., Xu, X. S., Xia, Y., et al., 2018. Magma Mixing in a Granite and Related Rock Association: Insight from Its Mineralogical, Petrochemical, and "Reversed Isotope" Features. Journal of Geophysical Research: Solid Earth, 123(3): 2262–2285. https://doi.org/10.1002/2017jb014886 |
| Jiang, N., Guo, J. H., 2010. Hannuoba Intermediate-Mafic Granulite Xenoliths Revisited: Assessment of a Mesozoic Underplating Model. Earth and Planetary Science Letters, 293(3/4): 277–288. https://doi.org/10.1016/j.epsl.2010.02.042 |
| Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591–2608. https://doi.org/10.1016/j.gca.2007.02.018 |
| Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from Ⅰ-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113–130. https://doi.org/10.1007/s00410-008-0373-2 |
| Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.1126/science.1136154 |
| Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. https://doi.org/10.1016/s0016-7037(96)00349-3 |
| Khain, E. V., Bibikova, E. V., Salnikova, E. B., et al., 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 122(1/2/3/4): 329–358. https://doi.org/10.1016/s0301-9268(02)00218-8 |
| Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26–35. https://doi.org/10.1016/j.gr.2011.01.004 |
| Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745 |
| Levashova, N. M., Van der Voo, R., Abrajevitch, A. V., et al., 2009. Paleomagnetism of Mid-Paleozoic Subduction-Related Volcanics from the Chingiz Range in NE Kazakhstan: The Evolving Paleogeography of the Amalgamating Eurasian Composite Continent. Geological Society of America Bulletin, 121(3/4): 555–573. https://doi.org/10.1130/b26354.1 |
| Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54–60. https://doi.org/10.1016/j.aca.2012.03.040 |
| Li, C. J., Bao, Z. W., Zhao, Z. Z., et al., 2012. Zircon U-Pb Age and Hf Isotopic Compositions of the Granitic Gneisses from the Sanggan Complex in the Zhangjiakou Area: Constraints on the Early Evolution of North China Craton. Acta Petrologica Sinica, 28: 1057–1072 (in Chinese with English Abstract) |
| Li, H., Li, J. W., Algeo, T. J., et al., 2018. Zircon Indicators of Fluid Sources and Ore Genesis in a Multi-Stage Hydrothermal System: The Dongping Au Deposit in North China. Lithos, 314/315: 463–478. https://doi.org/10.1016/j.lithos.2018.06.025 |
| Li, H., Wang, M., Li, J. Q., et al., 2024. Geochemistry and Zircon U-Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh-Pressure Metamorphic Belt, Northern Qaidam Basin. Journal of Earth Science, 35(3): 866–877. https://doi.org/10.1007/s12583-022-1791-1 |
| Li, W. B., Hu, C. S., Zhong, R. C., et al., 2015. U-Pb, 39Ar/40Ar Geochronology of the Metamorphosed Volcanic Rocks of the Bainaimiao Group in Central Inner Mongolia and Its Implications for Ore Genesis and Geodynamic Setting. Journal of Asian Earth Sciences, 97: 251–259. https://doi.org/10.1016/j.jseaes.2014.06.007 |
| Li, W. B., Zhong, R. C., Xu, C., et al., 2012. U-Pb and Re-Os Geochronology of the Bainaimiao Cu-Mo-Au Deposit, on the Northern Margin of the North China Craton, Central Asia Orogenic Belt: Implications for Ore Genesis and Geodynamic Setting. Ore Geology Reviews, 48: 139–150. https://doi.org/10.1016/j.oregeorev.2012.03.001 |
| Li, X. H., 1996. A Discussion on the Model and Isochron Ages of Sm-Nd Isotopic Systematics: Suitability and Limitation. Scientia Geologica Sinica, 31: 97–104 (in Chinese with English Abstract) |
| Liang, Y. Y., Xu, Z. J., Zhou, Y., et al., 2024. Detrital Zircon U-Pb Dating of Early Cretaceous Yingzuilazi Formation in Liuhe Basin, Northern Margin of North China Plate and Its Geological Significance. Earth Science, 49(3): 907–921. https://doi.org/10.3799/dqkx.2021.256 (in Chinese with English Abstract) |
| Liu, C. F., Liu, W. C., Wang, H. P., et al., 2014. Geochronology and Geochemistry of the Bainaimiao Metavolcanic Rocks in the Northern Margin of North China Craton. Acta Geologica Sinica, 88: 1274–1287 (in Chinese with English Abstract) |
| Liu, D. Y., Jian, P., Zhang, Q., et al., 2003. SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia: Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77: 317–327 (in Chinese with English Abstract) |
| Liu, Q., Zhao, G. C., Sun, M., et al., 2016. Early Paleozoic Subduction Processes of the Paleo-Asian Ocean: Insights from Geochronology and Geochemistry of Paleozoic Plutons in the Alxa Terrane. Lithos, 262: 546–560. https://doi.org/10.1016/j.lithos.2016.07.041 |
| Liu, S., Hu, R. Z., Gao, S., et al., 2008a. Zircon U-Pb Geochronology and Major, Trace Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mafic Dykes in Western Shandong Province, East China: Constrains on Their Petrogenesis and Geodynamic Significance. Chemical Geology, 255(3/4): 329–345. https://doi.org/10.1016/j.chemgeo.2008.07.006 |
| Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082 |
| Liu, Y. S., Gao, S., Yuan, H. L., et al., 2004. U-Pb Zircon Ages and Nd, Sr, and Pb Isotopes of Lower Crustal Xenoliths from North China Craton: Insights on Evolution of Lower Continental Crust. Chemical Geology, 211(1/2): 87–109. https://doi.org/10.1016/j.chemgeo.2004.06.023 |
| Liu, Z. F., Wang, J. M., Lv, J. B., et al., 2006. Geological Features and Age of the Wenquan Rapakivi Granite, Chicheng County, Hebei. Geology in China, 33: 1052–1058 (in Chinese with English Abstract) |
| Lu, L., Qian, C., Zhao, Z., 2023. Petrogenesis of Hekanzi Alkaline Complex in Lingyuan, West Liaoning. Earth Science, 48(10): 3671–3688. https://doi.org/10.3799/dqkx.2021.168 (in Chinese with English Abstract) |
| Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4. 72 |
| Luo, Z. K., Miao, L. C., Guan, K., et al., 2001. SHRIMP Chronological Study of Shuiquangou Intrusive Body in Zhangjiakou Area, Hebei Province and Its Geochemical Significance. Geochimica, 30: 116–122 (in Chinese with English Abstract) |
| Miao, L. C., Qiu, Y. M., McNaughton, N., et al., 2002. SHRIMP U-Pb Zircon Geochronology of Granitoids from Dongping Area, Hebei Province, China: Constraints on Tectonic Evolution and Geodynamic Setting for Gold Metallogeny. Ore Geology Reviews, 19(3/4): 187–204. https://doi.org/10.1016/s0169-1368(01)00041-5 |
| Niu, B. G., He, Z. J., Song, B., et al., 2004. SHRIMP Geochronology of Volcanics of the Zhangjiakou and Yixian Formations, Northern Hebei Province, with a Discussion on the Age of the Xing'anling Group of the Great Hinggan Mountains and Volcanic Strata of the Southeastern Coastal Area of China. Acta Geologica Sinica—English Edition, 78(6): 1214–1228. https://doi.org/10.1111/j.1755-6724.2004.tb00778.x |
| Pankhurst, R. J., Rapela, C. R., 1995. Production of Jurassic Rhyolite by Anatexis of the Lower Crust of Patagonia. Earth and Planetary Science Letters, 134(1/2): 23–36. https://doi.org/10.1016/0012-821x(95)00103-j |
| Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destruction Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons. 528–548 |
| Qin, J. F., Lai, S. C., Grapes, R., et al., 2009. Geochemical Evidence for Origin of Magma Mixing for the Triassic Monzonitic Granite and Its Enclaves at Mishuling in the Qinling Orogen (Central China). Lithos, 112(3/4): 259–276. https://doi.org/10.1016/j.lithos.2009.03.007 |
| Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
| Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., The Crust: Treatise on the Geochemistry. Elsevier-Pergamon, Oxford. 1–51 |
| Safonova, I., Seltmann, R., Kröner, A., et al., 2011. A New Concept of Continental Construction in the Central Asian Orogenic Belt. Episodes, 34(3): 186–196. https://doi.org/10.18814/epiiugs/2011/v34i3/005 |
| Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0 |
| Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| Sun, X., Liu, C. H., Duan, R. H., 2024. The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology. Earth Science, 49(9): 3122–3139. https://doi.org/10.3799/dqkx.2023.095 (in Chinese with English Abstract) |
| Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Oxford Press, Blackwell |
| Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95rg00262 |
| Teng, X. M., Yang, Q. Y., Santosh, M., 2015. Devonian Magmatism Associated with Arc-Continent Collision in the Northern North China Craton: Evidence from the Longwangmiao Ultramafic Intrusion in the Damiao Area. Journal of Asian Earth Sciences, 113: 626–643. https://doi.org/10.1016/j.jseaes.2015.04.032 |
| Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1/2): 1–15. https://doi.org/10.1016/0009-2541(88)90082-4 |
| Tian, W., Chen, B., Liu, C. Q., et al., 2007. Zircon U-Pb Age and Hf Isotopic Composition of the Xiaozhangjiakou Ultramafic Pluton in Northern Hebei. Acta Petrologica Sinica, 23: 583–590 (in Chinese with English Abstract) |
| Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9 |
| Wang, B., Chen, Y., Zhan, S., et al., 2007. Primary Carboniferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3/4): 288–308. https://doi.org/10.1016/j.epsl.2007.08.037 |
| Wang, X. L., Jiang, S. Y., Dai, B. Z., et al., 2011. Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton. Precambrian Research, 190(1/2/3/4): 35–47. https://doi.org/10.1016/j.precamres.2011.08.004 |
| Wang, Y. H., Zhao, C. B., Zhang, F. F., et al., 2015. SIMS Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope, and Whole-Rock Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit and Granitoids in NE China and Their Geological Significance. Gondwana Research, 28(3): 1228–1245. https://doi.org/10.1016/j.gr.2014.10.001 |
| Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2): 61–77. https://doi.org/10.1016/j.jseaes.2007.10.018 |
| Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 |
| Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022 |
| Wu, C., Liu, C. F., Zhu, Y., et al., 2016. Early Paleozoic Magmatic History of Central Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeast Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(5): 1307–1327. https://doi.org/10.1007/s00531-015-1250-7 |
| Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019 |
| Wu, F. Y., Xu, Y. G., Gao, S., et al., 2008. Lithospheric Thinning and Destruction of the North China Craton. Acta Petrologica Sinica, 24: 1145–1174 (in Chinese with English Abstract) |
| Wu, J. H., Li, H., Xi, X. S., et al., 2017. Geochemistry and Geochronology of the Mafic Dikes in the Taipusi Area, Northern Margin of North China Craton: Implications for Silurian Tectonic Evolution of the Central Asian Orogen. Journal of Earth System Science, 126(5): 64. https://doi.org/10.1007/s12040-017-0841-z |
| Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122 |
| Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012 |
| Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 2002TC001484. https://doi.org/10.1029/2002tc001484 |
| Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217. https://doi.org/10.1007/s00531-008-0407-z |
| Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477–507. https://doi.org/10.1146/annurev-earth-060614-105254 |
| Yang, F., Santosh, M., Kim, S. W., et al., 2020. Late Mesozoic Intraplate Rhyolitic Volcanism in the North China Craton: Far-Field Effect of the Westward Subduction of the Paleo-Pacific Plate. GSA Bulletin, 132(1/2): 291–309. https://doi.org/10.1130/b35123.1 |
| Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. In-situ Dating and Hf Isotopic Analyses of Zircons from Volcanic Rocks of the Houcheng and Zhangjiakou Formations in the Zhang-Xuan Area, Northeast China. Earth Science, 31: 71–80 (in Chinese with English Abstract) |
| Zhai, M. G., 2014. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 5(4): 457–469. https://doi.org/10.1016/j.gsf.2014.01.003 |
| Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24: 275–297. https://doi.org/10.1016/j.gr.2013.02.007 |
| Zhang, Q. Q., Zhang, S. H., Zhao, Y., et al., 2018. Devonian Alkaline Magmatic Belt along the Northern Margin of the North China Block: Petrogenesis and Tectonic Implications. Lithos, 302/303: 496–518. https://doi.org/10.1016/j.lithos.2018.01.019 |
| Zhang, S. H., Zhao, Y., Davis, G. A., et al., 2014a. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131: 49–87. https://doi.org/10.1016/j.earscirev.2013.12.004 |
| Zhang, S. H., Zhao, Y., Ye, H., et al., 2014b. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9/10): 1275–1300. https://doi.org/10.1130/b31042.1 |
| Zhang, S. H., Zhao, Y., Kröner, A., et al., 2009a. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441–1467. https://doi.org/10.1007/s00531-008-0368-2 |
| Zhang, S. H., Zhao, Y., Liu, X. C., et al., 2009b. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1/2/3/4): 229–246. https://doi.org/10.1016/j.lithos.2009.01.008 |
| Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton: Implications for Cratonic Lithospheric Destruction. Lithos, 155: 1–18. https://doi.org/10.1016/j.lithos.2012.08.009 |
| Zhang, X. H., Zhang, H. F., Jiang, N., et al., 2010. Early Devonian Alkaline Intrusive Complex from the Northern North China Craton: A Petrological Monitor of Post-Collisional Tectonics. Journal of the Geological Society, 167(4): 717–730. https://doi.org/10.1144/0016-76492009-110 |
| Zhang, Y. Y., Chen, Y. L., Li, D. P., et al., 2024. Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: The Daguanchang Deposit, Northern Hebei Province, North China Craton. Journal of Earth Science, 35(4): 1186–1195. https://doi.org/10.1007/s12583-021-1597-6 |
| Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016 |
| Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937–952. https://doi.org/10.1017/s0016756807003834 |
| Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47. https://doi.org/10.1016/j.precamres.2006.09.002 |
| Zhen, S. M., Wang, D. Z., Bai, H. J., et al., 2021. The Paleozoic–Mesozoic Magmatic-Tectonic Activities and Their Geological Implications in the Zhangjiakou-Xuanhua District, Northern Margin of the North China Craton. Acta Petrologica Sinica, 37: 1619–1652 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2021.06.01 |
| Zheng, Y. F., Wu, F. Y., 2009. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bulletin, 54(19): 3347–3353. https://doi.org/10.1007/s11434-009-0458-y |
| Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353–385. https://doi.org/10.1007/s11430-017-9160-3 |
| Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32–48. https://doi.org/10.1016/j.precamres.2016.12.010 |
| Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47. https://doi.org/10.1016/s0009-2541(00)00243-6 |