Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Tianlei Zhai, Fei Qin, Shengxuan Huang, Shan Qin, Yu Gong. Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions. Journal of Earth Science, 2024, 35(2): 504-513. doi: 10.1007/s12583-022-1685-2
Citation: Tianlei Zhai, Fei Qin, Shengxuan Huang, Shan Qin, Yu Gong. Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions. Journal of Earth Science, 2024, 35(2): 504-513. doi: 10.1007/s12583-022-1685-2

Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions

doi: 10.1007/s12583-022-1685-2
More Information
  • Corresponding author: Shan Qin,
  • Received Date: 18 Feb 2022
  • Accepted Date: 11 May 2022
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 30 Apr 2024
  • Carbonates are viewed as the principal oxidized carbon carriers during subduction, and thus the stability of subducted carbonates has significant implications for the deep carbon cycle. Here we investigate the high pressure-temperature behaviors of rhodochrosite in the presence of iron up to ~34 GPa by in-situ X-ray diffraction and ex-situ Raman spectroscopy. At relatively low temperature below ~1 500 K, MnCO3 breaks down into MnO and CO2. Upon heating to ~1 800 K, however, the MnCO3-Fe0 reactions occur with the formation of Mn3O4, FeO and reduced carbon. A 'three-stage' reaction mechanism is proposed to understand the kinetics of the carbon-iron-manganese redox coupling. The results suggest that Fe0 can serve as a reductant to greatly affect the stability of rhodochrosite, which implies that the effect of Fe-metal should be seriously considered for the high pressure-temperature behaviors of other predominant carbonates at Earth's mantle conditions, particularly at depths greater than ~250 km.


  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bayarjargal, L., Fruhner, C. J., Schrodt, N., et al., 2018. CaCO3 Phase Diagram Studied with Raman Spectroscopy at Pressures up to 50 GPa and High Temperatures and DFT Modeling. Physics of the Earth and Planetary Interiors, 281: 31–45.
    Binck, J., Bayarjargal, L., Lobanov, S. S., et al., 2020a. Phase Stabilities of MgCO3 and MgCO3-Ⅱ Studied by Raman Spectroscopy, X-Ray Diffraction, and Density Functional Theory Calculations. Physical Review Materials, 4(5): 055001.
    Binck, J., Chariton, S., Stekiel, M., et al., 2020b. High-Pressure, High-Temperature Phase Stability of Iron-Poor Dolomite and the Structures of Dolomite-IIIc and Dolomite-V. Physics of the Earth and Planetary Interiors, 299: 106403.
    Boulard, E., Goncharov, A. F., Blanchard, M., et al., 2015. Pressure-Induced Phase Transition in MnCO3 and Its Implications on the Deep Carbon Cycle. Journal of Geophysical Research: Solid Earth, 120(6): 4069–4079.
    Boulard, E., Liu, Y. J., Koh, A. L., et al., 2016. Transformations and Decomposition of MnCO3 at Earth's Lower Mantle Conditions. Frontiers in Earth Science, 4: 107.
    Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208.
    Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or Even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1–9.
    Bureau, H., Frost, D. J., Bolfan-Casanova, N., et al., 2016. Diamond Growth in Mantle Fluids. Lithos, 265: 4–15.
    Cerantola, V., Bykova, E., Kupenko, I., et al., 2017. Stability of Iron-Bearing Carbonates in the Deep Earth's Interior. Nature Communications, 8: 15960.
    Chariton, S., 2019. The Elastic Properties and the Crystal Chemistry of Carbonates in the Deep Earth: [Dissertation]. University of Bayreuth, Bayreuth
    Chen, M., Shu, J. F., Xie, X. D., et al., 2018. Natural Diamond Formation by Self-Redox of Ferromagnesian Carbonate. Proc. Natl. Acad. Sci. U. S. A., 115(11): 2676–2680.
    Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84–91.
    Dubrovinsky, L., Glazyrin, K., McCammon, C., et al., 2009. Portable Laser-heating System for Diamond Anvil Cells. Journal of Synchrotron Radiation, 16(6): 737–741.
    Fang, Z., Solovyev, I. V., Sawada, H., 1999. First-Principles Study on Electronic Structures and Phase Stability of MnO and FeO under High Pressure. Physical Review B, 59(2): 762–774.
    Farfan, G. A., Boulard, E., Wang, S. B., et al., 2013. Bonding and Electronic Changes in Rhodochrosite at High Pressure. American Mineralogist, 98(10): 1817–1823.
    Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. American Mineralogist, 103(12): 1988–1998.
    Hammersley, A. P., Svensson, S. O., Hanfland, M., et al., 1996. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Research, 14(4/6): 235–248.
    Hazen, R. M., Schiffries, C. M., 2013. Why Deep Carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1–6.
    Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60–63.
    Ito, E., Yamazaki, D., Yoshino, T., et al., 2014. High Pressure Study of Transition Metal Monoxides MnO and CoO: Structure and Electrical Resistance. Physics of the Earth and Planetary Interiors, 228: 170–175.
    Jeanloz, R., Rudy, A., 1987. Static Compression of MnO Manganosite to 60 GPa. Journal of Geophysical Research: Solid Earth, 92(B11): 11433-11436.
    Jephcoat, A. P., Finger, L. W., Cox, D. E., 1992. High Pressure, High Resolution Synchrotron X-Ray Powder Diffraction with A Position-Sensitive Detector. High Pressure Research, 8(5/6): 667–676.
    Jephcoat, A. P., Mao, H. K., Bell, P. M., 1986. Static Compression of Iron to 78 GPa with Rare Gas Solids as Pressure-Transmitting Media. Journal of Geophysical Research: Solid Earth, 91(B5): 4677–4684.
    Kaminsky, F. V., Ryabchikov, I. D., Wirth, R., 2016. A Primary Natrocarbonatitic Association in the Deep Earth. Mineralogy and Petrology, 110(2/3): 387–398.
    Kaminsky, F., 2012. Mineralogy of the Lower Mantle: A Review of 'Super-Deep' Mineral Inclusions in Diamond. Earth-Science Reviews, 110(1/4): 127–147.
    Komabayashi, T., Fei, Y. W., Meng, Y., et al., 2009. In-situ X-Ray Diffraction Measurements of the γ-ε Transition Boundary of Iron in An Internally-Heated Diamond Anvil Cell. Earth and Planetary Science Letters, 282(1/4): 252–257.
    Kondo, T., Yagi, T., Syono, Y., et al., 2000. Phase Transitions of MnO to 137 GPa. Journal of Applied Physics, 87(9): 4153–4159.
    Kubo, A., Ito, E., Katsura T., et al., 2003. In situ X-Ray Observation of Iron Using Kawai-Type Apparatus Equipped with Sintered Diamond: Absence of β Phase up to 44 GPa and 2 100 K. Geophysical Research Letters, 30(3): 1126.
    Li, J., Redfern, S. A. T., Giovannelli, D., 2019. Deep Carbon Cycle through Five Reactions. American Mineralogist, 104(4): 465–467.
    Liu, J., Dubrovinsky, L., Ballaran, T. B., et al., 2007. Equation of State and Thermal Expansivity of LiF and NaF. High Pressure Research, 27(4): 483–489.
    Liu, J., Lin, J. F., Prakapenka, V. B., 2015. High-Pressure Orthorhombic Ferromagnesite as a Potential Deep-Mantle Carbon Carrier. Scientific Reports, 5: 7640.
    Liu, L. G., Lin, C. C., Yang, Y. J., 2001. Formation of Diamond by Decarbonation of MnCO3. Solid State Communications, 118(4): 195–198.
    Lü, H., Yao, M. G., Li, Q. J., et al., 2012. Effect of Grain Size on Pressure-Induced Structural Transition in Mn3O4. J. Phys. Chem. C, 116(3): 2165–2171.
    Mao, W., Shu, J. F., Hu, J. Z., et al., 2002. Displacive Transition in Magnesiowüstite. Journal of Physics: Condensed Matter, 14(44): 11349.
    Martinez, I., Zhang, J., Reeder, R. J., 1996. In situ X-Ray Diffraction of Aragonite and Dolomite at High Pressure and High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite. American Mineralogist, 81(5/6): 611–624.
    Martirosyan, N. S., Litasov, K. D., Lobanov, S. S., et al., 2019. The Mg-Carbonate-Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. Geoscience Frontiers, 10(4): 1449–1458.
    Martirosyan, N. S., Litasov, K. D., Shatskiy, A., et al., 2015. The Reactions between Iron and Magnesite at 6 GPa and 1273–1873 K: Implications to Reduction of Subducted Carbonate in the Deep Mantle. Journal of Mineralogical and Petrological Sciences, 110(2): 49–59.
    Martirosyan, N. S., Yoshino, T., Shatskiy, A., et al., 2016. The CaCO3-Fe Interaction: Kinetic Approach for Carbonate Subduction to the Deep Earth's Mantle. Physics of the Earth and Planetary Interiors, 259: 1–9.
    McCammon, C., Bureau, H., Cleaves Ⅱ, H. J., et al., 2020. Deep Earth Carbon Reactions through Time and Space. American Mineralogist, 105(1): 22–27.
    Merlini, M., Crichton, W. A., Hanfland, M., et al., 2012. Structures of Dolomite at Ultrahigh Pressure and Their Influence on the Deep Carbon Cycle. Proc. Natl. Acad. Sci. U. S. A., 109(34): 13509–13514.
    Merlini, M., Hanfland, M., Gemmi, M., 2015. The MnCO3-Ⅱ High-Pressure Polymorph of Rhodochrosite. American Mineralogist, 100(11/12): 2625–2629.
    Nestola, F., Korolev, N., Kopylova, M., et al., 2018. CaSiO3 Perovskite in Diamond Indicates the Recycling of Oceanic Crust into the Lower Mantle. Nature, 555(7695): 237–241.
    Ono, S., 2007. High-Pressure Phase Transformation in MnCO3: A Synchrotron XRD Study. Mineralogical Magazine, 71(1): 105–111.
    Ovsyannikov, S. V., Aslandukova, A. A., Aslandukov, A., et al., 2021a. Structural Stability and Properties of Marokite-Type γ-Mn3O4. Inorga-nic Chemistry, 60(17): 13440–13452.
    Ovsyannikov, S. V., Tsirlin, A. A., Korobeynikov, I. V., et al., 2021b. Synthesis of Ilmenite-Type ε-Mn2O3 and Its Properties. Inorganic Chemistry, 60(17): 13348–13358.
    Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proc. Natl. Acad. Sci. U. S. A., 110(51): 20408–20413.
    Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343–352.
    Reich, S., Thomsen, C., 2004. Raman Spectroscopy of Graphite. Philos. Trans. R. Soc., A, 362(1824): 2271–2288.
    Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209–212.
    Santillán, J., Williams, Q., 2004. A High-Pressure Infrared and X-Ray Study of FeCO3 and MnCO3: Comparison with CaMg(CO3)2-Dolomite. Physics of the Earth and Planetary Interiors, 143–144: 291–304.
    Srikanth, V., Akaishi, M., Yamaoka, S., et al., 1997. Diamond Synthesis from Graphite in the Presence of MnCO3. Journal of the American Ceramic Society, 80(3): 786–790.
    Tao, R. B., Fei, Y. W., 2021. Recycled Calcium Carbonate is an Efficient Oxidation Agent under Deep Upper Mantle Conditions. Communications Earth & Environment, 2: 45.
    Tao, R. B., Fei, Y. W., Zhang, L. F., 2013. Experimental Determination of Siderite Stability at High Pressure. American Mineralogist, 98(8/9): 1565–1572.
    Thomson, A. R., Kohn, S. C., Bulanova, G. P., et al., 2014. Origin of Sub-Lithospheric Diamonds from the Juina-5 Kimberlite (Brazil): Constraints from Carbon Isotopes and Inclusion Compositions. Contributions to Mineralogy and Petrology, 168(6): 1081.
    Toby, B. H., 2001. EXPGUI, A Graphical User Interface for GSAS. Journal of Applied Crystallography, 34(2): 210–213.
    Tschauner, O., Huang, S. C., Yang S. Y., et al., 2021. Discovery of Davemaoite, CaSiO3-Perovskite, as a Mineral from the Lower Mantle. Science, 374(6569): 891–894.
    Wang, A., Pasteris, J. D., Meyer, H. O. A., 1996. Magnesite-Bearing Inclusion Assemblage in Natural Diamond. Earth and Planetary Science Letters, 141(1/4): 293–306.
    Zhai, T. L., Huang, S. X., Qin, S., et al., 2021. Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science, 32(4): 880–886.
    Zhang, W. B., Deng, Y. H., Hu, Y. L., et al., 2007. Structural Distortion of B1-Structured MnO and FeO. Solid State Communications, 142(1/2): 6–9.
    Zhu, F., Li, J., Liu, J. C., et al., 2019. Kinetic Control on the Depth Distribution of Superdeep Diamonds. Geophysical Research Letters, 46(4): 1984–1992.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(37) PDF downloads(45) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint