Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Tianlei Zhai, Fei Qin, Shengxuan Huang, Shan Qin, Yu Gong. Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions. Journal of Earth Science, 2024, 35(2): 504-513. doi: 10.1007/s12583-022-1685-2
Citation: Tianlei Zhai, Fei Qin, Shengxuan Huang, Shan Qin, Yu Gong. Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions. Journal of Earth Science, 2024, 35(2): 504-513. doi: 10.1007/s12583-022-1685-2

Effect of Iron on the Stability of Rhodochrosite at the Topmost Lower Mantle Conditions

doi: 10.1007/s12583-022-1685-2
More Information
  • Corresponding author: Shan Qin, sqin@pku.edu.cn
  • Received Date: 18 Feb 2022
  • Accepted Date: 11 May 2022
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 30 Apr 2024
  • Carbonates are viewed as the principal oxidized carbon carriers during subduction, and thus the stability of subducted carbonates has significant implications for the deep carbon cycle. Here we investigate the high pressure-temperature behaviors of rhodochrosite in the presence of iron up to ~34 GPa by in-situ X-ray diffraction and ex-situ Raman spectroscopy. At relatively low temperature below ~1 500 K, MnCO3 breaks down into MnO and CO2. Upon heating to ~1 800 K, however, the MnCO3-Fe0 reactions occur with the formation of Mn3O4, FeO and reduced carbon. A 'three-stage' reaction mechanism is proposed to understand the kinetics of the carbon-iron-manganese redox coupling. The results suggest that Fe0 can serve as a reductant to greatly affect the stability of rhodochrosite, which implies that the effect of Fe-metal should be seriously considered for the high pressure-temperature behaviors of other predominant carbonates at Earth's mantle conditions, particularly at depths greater than ~250 km.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bayarjargal, L., Fruhner, C. J., Schrodt, N., et al., 2018. CaCO3 Phase Diagram Studied with Raman Spectroscopy at Pressures up to 50 GPa and High Temperatures and DFT Modeling. Physics of the Earth and Planetary Interiors, 281: 31–45. https://doi.org/10.1016/j.pepi.2018.05.002
    Binck, J., Bayarjargal, L., Lobanov, S. S., et al., 2020a. Phase Stabilities of MgCO3 and MgCO3-Ⅱ Studied by Raman Spectroscopy, X-Ray Diffraction, and Density Functional Theory Calculations. Physical Review Materials, 4(5): 055001. https://doi.org/10.1103/physrevmaterials.4.055001
    Binck, J., Chariton, S., Stekiel, M., et al., 2020b. High-Pressure, High-Temperature Phase Stability of Iron-Poor Dolomite and the Structures of Dolomite-IIIc and Dolomite-V. Physics of the Earth and Planetary Interiors, 299: 106403. https://doi.org/10.1016/j.pepi.2019.106403
    Boulard, E., Goncharov, A. F., Blanchard, M., et al., 2015. Pressure-Induced Phase Transition in MnCO3 and Its Implications on the Deep Carbon Cycle. Journal of Geophysical Research: Solid Earth, 120(6): 4069–4079. https://doi.org/10.1002/2015jb011901
    Boulard, E., Liu, Y. J., Koh, A. L., et al., 2016. Transformations and Decomposition of MnCO3 at Earth's Lower Mantle Conditions. Frontiers in Earth Science, 4: 107. https://doi.org/10.3389/feart.2016.00107
    Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208. https://doi.org/10.1029/2011jb008733
    Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or Even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1–9. https://doi.org/10.1016/j.epsl.2007.02.038
    Bureau, H., Frost, D. J., Bolfan-Casanova, N., et al., 2016. Diamond Growth in Mantle Fluids. Lithos, 265: 4–15. https://doi.org/10.1016/j.lithos.2016.10.004
    Cerantola, V., Bykova, E., Kupenko, I., et al., 2017. Stability of Iron-Bearing Carbonates in the Deep Earth's Interior. Nature Communications, 8: 15960. https://doi.org/10.1038/ncomms15960
    Chariton, S., 2019. The Elastic Properties and the Crystal Chemistry of Carbonates in the Deep Earth: [Dissertation]. University of Bayreuth, Bayreuth
    Chen, M., Shu, J. F., Xie, X. D., et al., 2018. Natural Diamond Formation by Self-Redox of Ferromagnesian Carbonate. Proc. Natl. Acad. Sci. U. S. A., 115(11): 2676–2680. https://doi.org/10.1073/pnas.1720619115
    Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84–91. https://doi.org/10.1016/j.epsl.2018.02.035
    Dubrovinsky, L., Glazyrin, K., McCammon, C., et al., 2009. Portable Laser-heating System for Diamond Anvil Cells. Journal of Synchrotron Radiation, 16(6): 737–741. https://doi.org/10.1107/s0909049509039065
    Fang, Z., Solovyev, I. V., Sawada, H., 1999. First-Principles Study on Electronic Structures and Phase Stability of MnO and FeO under High Pressure. Physical Review B, 59(2): 762–774. https://doi.org/10.1103/PhysRevB.59.762
    Farfan, G. A., Boulard, E., Wang, S. B., et al., 2013. Bonding and Electronic Changes in Rhodochrosite at High Pressure. American Mineralogist, 98(10): 1817–1823. https://doi.org/10.2138/am.2013.4497
    Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. American Mineralogist, 103(12): 1988–1998. https://doi.org/10.2138/am-2018-6442
    Hammersley, A. P., Svensson, S. O., Hanfland, M., et al., 1996. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Research, 14(4/6): 235–248. https://doi.org/10.1080/08957959608201408
    Hazen, R. M., Schiffries, C. M., 2013. Why Deep Carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1–6. https://doi.org/10.2138/rmg.2013.75.1
    Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60–63. https://doi.org/10.1038/nature02181
    Ito, E., Yamazaki, D., Yoshino, T., et al., 2014. High Pressure Study of Transition Metal Monoxides MnO and CoO: Structure and Electrical Resistance. Physics of the Earth and Planetary Interiors, 228: 170–175. https://doi.org/10.1016/j.pepi.2013.12.009
    Jeanloz, R., Rudy, A., 1987. Static Compression of MnO Manganosite to 60 GPa. Journal of Geophysical Research: Solid Earth, 92(B11): 11433-11436. https://doi.org/10.1029/JB092iB11p11433
    Jephcoat, A. P., Finger, L. W., Cox, D. E., 1992. High Pressure, High Resolution Synchrotron X-Ray Powder Diffraction with A Position-Sensitive Detector. High Pressure Research, 8(5/6): 667–676. https://doi.org/10.1080/08957959208206318
    Jephcoat, A. P., Mao, H. K., Bell, P. M., 1986. Static Compression of Iron to 78 GPa with Rare Gas Solids as Pressure-Transmitting Media. Journal of Geophysical Research: Solid Earth, 91(B5): 4677–4684. https://doi.org/10.1029/jb091ib05p04677
    Kaminsky, F. V., Ryabchikov, I. D., Wirth, R., 2016. A Primary Natrocarbonatitic Association in the Deep Earth. Mineralogy and Petrology, 110(2/3): 387–398. https://doi.org/10.1007/s00710-015-0368-4
    Kaminsky, F., 2012. Mineralogy of the Lower Mantle: A Review of 'Super-Deep' Mineral Inclusions in Diamond. Earth-Science Reviews, 110(1/4): 127–147. https://doi.org/10.1016/j.earscirev.2011.10.005
    Komabayashi, T., Fei, Y. W., Meng, Y., et al., 2009. In-situ X-Ray Diffraction Measurements of the γ-ε Transition Boundary of Iron in An Internally-Heated Diamond Anvil Cell. Earth and Planetary Science Letters, 282(1/4): 252–257. https://doi.org/10.1016/j.epsl.2009.03.025
    Kondo, T., Yagi, T., Syono, Y., et al., 2000. Phase Transitions of MnO to 137 GPa. Journal of Applied Physics, 87(9): 4153–4159. https://doi.org/10.1063/1.373045
    Kubo, A., Ito, E., Katsura T., et al., 2003. In situ X-Ray Observation of Iron Using Kawai-Type Apparatus Equipped with Sintered Diamond: Absence of β Phase up to 44 GPa and 2 100 K. Geophysical Research Letters, 30(3): 1126. https://doi.org/10.1029/2002gl016394
    Li, J., Redfern, S. A. T., Giovannelli, D., 2019. Deep Carbon Cycle through Five Reactions. American Mineralogist, 104(4): 465–467. https://doi.org/10.2138/am-2019-6833
    Liu, J., Dubrovinsky, L., Ballaran, T. B., et al., 2007. Equation of State and Thermal Expansivity of LiF and NaF. High Pressure Research, 27(4): 483–489. https://doi.org/10.1080/08957950701684690
    Liu, J., Lin, J. F., Prakapenka, V. B., 2015. High-Pressure Orthorhombic Ferromagnesite as a Potential Deep-Mantle Carbon Carrier. Scientific Reports, 5: 7640. https://doi.org/10.1038/srep07640
    Liu, L. G., Lin, C. C., Yang, Y. J., 2001. Formation of Diamond by Decarbonation of MnCO3. Solid State Communications, 118(4): 195–198. https://doi.org/10.1016/S0038-1098(01)00068-0
    Lü, H., Yao, M. G., Li, Q. J., et al., 2012. Effect of Grain Size on Pressure-Induced Structural Transition in Mn3O4. J. Phys. Chem. C, 116(3): 2165–2171. https://doi.org/10.1021/jp2067028
    Mao, W., Shu, J. F., Hu, J. Z., et al., 2002. Displacive Transition in Magnesiowüstite. Journal of Physics: Condensed Matter, 14(44): 11349. https://doi.org/10.1088/0953-8984/14/44/480
    Martinez, I., Zhang, J., Reeder, R. J., 1996. In situ X-Ray Diffraction of Aragonite and Dolomite at High Pressure and High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite. American Mineralogist, 81(5/6): 611–624. https://doi.org/10.2138/am-1996-5-608
    Martirosyan, N. S., Litasov, K. D., Lobanov, S. S., et al., 2019. The Mg-Carbonate-Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. Geoscience Frontiers, 10(4): 1449–1458. https://doi.org/10.1016/j.gsf.2018.10.003
    Martirosyan, N. S., Litasov, K. D., Shatskiy, A., et al., 2015. The Reactions between Iron and Magnesite at 6 GPa and 1273–1873 K: Implications to Reduction of Subducted Carbonate in the Deep Mantle. Journal of Mineralogical and Petrological Sciences, 110(2): 49–59. https://doi.org/10.2465/jmps.141003a
    Martirosyan, N. S., Yoshino, T., Shatskiy, A., et al., 2016. The CaCO3-Fe Interaction: Kinetic Approach for Carbonate Subduction to the Deep Earth's Mantle. Physics of the Earth and Planetary Interiors, 259: 1–9. https://doi.org/10.1016/j.pepi.2016.08.008
    McCammon, C., Bureau, H., Cleaves Ⅱ, H. J., et al., 2020. Deep Earth Carbon Reactions through Time and Space. American Mineralogist, 105(1): 22–27. https://doi.org/10.2138/am-2020-6888ccby
    Merlini, M., Crichton, W. A., Hanfland, M., et al., 2012. Structures of Dolomite at Ultrahigh Pressure and Their Influence on the Deep Carbon Cycle. Proc. Natl. Acad. Sci. U. S. A., 109(34): 13509–13514. https://doi.org/10.1073/pnas.1201336109
    Merlini, M., Hanfland, M., Gemmi, M., 2015. The MnCO3-Ⅱ High-Pressure Polymorph of Rhodochrosite. American Mineralogist, 100(11/12): 2625–2629. https://doi.org/10.2138/am-2015-5320
    Nestola, F., Korolev, N., Kopylova, M., et al., 2018. CaSiO3 Perovskite in Diamond Indicates the Recycling of Oceanic Crust into the Lower Mantle. Nature, 555(7695): 237–241. https://doi.org/10.1038/nature25972
    Ono, S., 2007. High-Pressure Phase Transformation in MnCO3: A Synchrotron XRD Study. Mineralogical Magazine, 71(1): 105–111. https://doi.org/10.1180/minmag.2007.071.1.105
    Ovsyannikov, S. V., Aslandukova, A. A., Aslandukov, A., et al., 2021a. Structural Stability and Properties of Marokite-Type γ-Mn3O4. Inorga-nic Chemistry, 60(17): 13440–13452. https://doi.org/10.1021/acs.inorgchem.1c01782
    Ovsyannikov, S. V., Tsirlin, A. A., Korobeynikov, I. V., et al., 2021b. Synthesis of Ilmenite-Type ε-Mn2O3 and Its Properties. Inorganic Chemistry, 60(17): 13348–13358. https://doi.org/10.1021/acs.inorgchem.1c01666
    Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proc. Natl. Acad. Sci. U. S. A., 110(51): 20408–20413. https://doi.org/10.1073/pnas.1313340110
    Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343–352. https://doi.org/10.1038/s41586-019-1643-z
    Reich, S., Thomsen, C., 2004. Raman Spectroscopy of Graphite. Philos. Trans. R. Soc., A, 362(1824): 2271–2288. https://doi.org/10.1098/rsta.2004.1454
    Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209–212. https://doi.org/10.1038/nature09899
    Santillán, J., Williams, Q., 2004. A High-Pressure Infrared and X-Ray Study of FeCO3 and MnCO3: Comparison with CaMg(CO3)2-Dolomite. Physics of the Earth and Planetary Interiors, 143–144: 291–304. https://doi.org/10.1016/j.pepi.2003.06.007
    Srikanth, V., Akaishi, M., Yamaoka, S., et al., 1997. Diamond Synthesis from Graphite in the Presence of MnCO3. Journal of the American Ceramic Society, 80(3): 786–790. https://doi.org/10.1111/j.1151-2916.1997.tb02900.x
    Tao, R. B., Fei, Y. W., 2021. Recycled Calcium Carbonate is an Efficient Oxidation Agent under Deep Upper Mantle Conditions. Communications Earth & Environment, 2: 45. https://doi.org/10.1038/s43247-021-00116-8
    Tao, R. B., Fei, Y. W., Zhang, L. F., 2013. Experimental Determination of Siderite Stability at High Pressure. American Mineralogist, 98(8/9): 1565–1572. http://doi.org/10.2138/am.2013.4351
    Thomson, A. R., Kohn, S. C., Bulanova, G. P., et al., 2014. Origin of Sub-Lithospheric Diamonds from the Juina-5 Kimberlite (Brazil): Constraints from Carbon Isotopes and Inclusion Compositions. Contributions to Mineralogy and Petrology, 168(6): 1081. https://doi.org/10.1007/s00410-014-1081-8
    Toby, B. H., 2001. EXPGUI, A Graphical User Interface for GSAS. Journal of Applied Crystallography, 34(2): 210–213. https://doi.org/10.1107/s0021889801002242
    Tschauner, O., Huang, S. C., Yang S. Y., et al., 2021. Discovery of Davemaoite, CaSiO3-Perovskite, as a Mineral from the Lower Mantle. Science, 374(6569): 891–894. https://doi.org/10.1126/science.abl8568
    Wang, A., Pasteris, J. D., Meyer, H. O. A., 1996. Magnesite-Bearing Inclusion Assemblage in Natural Diamond. Earth and Planetary Science Letters, 141(1/4): 293–306. https://doi.org/10.1016/0012-821x(96)00053-2
    Zhai, T. L., Huang, S. X., Qin, S., et al., 2021. Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science, 32(4): 880–886. https://doi.org/10.1007/s12583-021-1410-6
    Zhang, W. B., Deng, Y. H., Hu, Y. L., et al., 2007. Structural Distortion of B1-Structured MnO and FeO. Solid State Communications, 142(1/2): 6–9. https://doi.org/10.1016/j.ssc.2007.01.045
    Zhu, F., Li, J., Liu, J. C., et al., 2019. Kinetic Control on the Depth Distribution of Superdeep Diamonds. Geophysical Research Letters, 46(4): 1984–1992. https://doi.org/10.1029/2018gl080740
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(93) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return