Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Chun-Long Wang, Yi-Tian Wang. Ore Geology, H-O-C Isotopes and 40Ar-39Ar Dating of the Wutonggou Iron Deposit, Eastern Tianshan, NW China: Implications for the Source, Timing, and Genesis of Hydrothermal Mineralization in a Sedimentary Iron Deposit. Journal of Earth Science, 2024, 35(4): 1170-1185. doi: 10.1007/s12583-022-1686-1
Citation: Chun-Long Wang, Yi-Tian Wang. Ore Geology, H-O-C Isotopes and 40Ar-39Ar Dating of the Wutonggou Iron Deposit, Eastern Tianshan, NW China: Implications for the Source, Timing, and Genesis of Hydrothermal Mineralization in a Sedimentary Iron Deposit. Journal of Earth Science, 2024, 35(4): 1170-1185. doi: 10.1007/s12583-022-1686-1

Ore Geology, H-O-C Isotopes and 40Ar-39Ar Dating of the Wutonggou Iron Deposit, Eastern Tianshan, NW China: Implications for the Source, Timing, and Genesis of Hydrothermal Mineralization in a Sedimentary Iron Deposit

doi: 10.1007/s12583-022-1686-1
More Information
  • Corresponding author: Yi-Tian Wang, wyt69@263.net
  • Received Date: 12 Dec 2021
  • Accepted Date: 14 May 2022
  • Issue Publish Date: 30 Aug 2024
  • The Wutonggou iron deposit is located in the well-known iron metallogenic belt in the eastern Tianshan, NW China, and has been regarded as a sedimentary iron deposit. Although hydrothermal overprinting could play indispensable roles in the formation of high-grade iron ores in sedimentary iron deposits, previous studies mainly focused on sedimentary-related iron mineralization, while the nature and contribution of hydrothermal fluids are poorly constrained. Accordingly, an integrated study of ore geology, H-O-C isotopes and 40Ar-39Ar dating, is conducted on the Wutonggou deposit, in order to reveal the features, source, and timing of hydrothermal mineralization. The studied deposit includes two mining sections namely the Jianshan and Wutonggou. The δ18O values of early magnetite from the Jianshan section range from +3.0‰ to +5.8‰ that nearly consistent with classic magmatic magnetite, while increase to 6.3‰–8.0‰ in the late stage. Quartz from the two sections shows comparable H-O isotopic compositions and identical fractionation trends, and is plotted in or periphery to the primary magmatic water area. Calcites from the two sections are broadly similar in carbon and oxygen isotopic compositions, and siderite from the Wutonggou section is plotted in the same region. Thus, comparable stable isotopic compositions and evolution trends indicate similar magmatic fluids contributed hydrothermal iron mineralization in the two mining sections. Moreover, water-rock interactions of varying degrees generated distinct mineralization styles in the Jianshan and Wutonggou sections, and caused the isotopic fractionation in late stages. Biotite extracted from a hydrothermal siderite ore yielded a 40Ar-39Ar plateau age of 299.5 ± 2.0 Ma, indicates the timing of hydrothermal iron mineralization is corresponding to the emplacement of vicinity granitoids. Taken together, the hydrothermal mineralization in the Wutonggou iron deposit was the product of remobilization and upgrading of early sedimentary iron ores, and ore-forming fluids were most probably originated from regional granitic magmatism.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1/2/3/4): 89–115. https://doi.org/10.1016/0040-1951(93)90225-9
    Becker, R. H., Clayton, R. N., 1976. Oxygen Isotope Study of a Precambrian Banded Iron-Formation, Hamersley Range, Western Australia. Geochimica et Cosmochimica Acta, 40(10): 1153–1165. https://doi.org/10.1016/0016-7037(76)90151-4
    Cai, H. M., Yang, H., Gong, X. K., 2019. Geochronology and Petrogenesis of Mafic-Intermediate Intrusions on the Northern Margin of the Central Tianshan (NW China): Implications for Tectonic Evolution. Journal of Earth Science, 30(2): 323–334. https://doi.org/10.1007/s12583-018-1205-6
    Chen, W., Zhang, Y., Zhang, Y. Q., et al., 2006. Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau-Evidence from Ar-Ar Thermochronology. Acta Petrologica Sinica, 22(4): 867–872 (in Chinese with English Abstract)
    Clayton, R. N., Mayeda, T. K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1): 43–52. https://doi.org/10.1016/0016-7037(63)90071-1
    Clayton, R. N., O'Neil, J. R., Mayeda, T. K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057–3067. https://doi.org/10.1029/jb077i017p03057
    Coleman, M. L., Shepherd, T. J., Durham, J. J., et al., 1982. Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 54(6): 993–995. https://doi.org/10.1021/ac00243a035
    Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702–1703. https://doi.org/10.1126/science.133.3465.1702
    Deines, P., 1989. Stable Isotope Variations in Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 301–359
    Di Bella, M., Sabatino, G., Quartieri, S., et al., 2019. Modern Iron Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits. Scientific Reports, 9: 7107. https://doi.org/10.1038/s41598-019-43181-y
    Ding, Y., Shen, T. Y., Wang, G. C., et al., 2024. Sedimentary and Heavy Mineral Records for the Oligocene–Miocene Exhumation of the Easternmost Tianshan. Journal of Earth Science, 35(2): 449–461. https://doi.org/10.1007/s12583-022-1757-3
    Dong, L. H., Feng, J., Zhuang, D. Z., et al., 2011. Discussion of Metallogenic Models, Mineralization Characteristic and Main Type of Rich Iron Ore of Xinjiang. Xinjiang Geology, 29 (4): 416–422 (in Chinese with English Abstract)
    Du, L., Yuan, C., Li, X. P., et al., 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6): 1243–1252. https://doi.org/10.1007/s12583-019-1256-3
    Fan, S. H., Chen, S. E., Liu, L., et al., 2018a. Chronology, Petrology, Geochemistry and Tectonic Environment of the Bailingshan Complex in Eastern Tianshan, Xinjiang, NW China. Geological Journal, 53(S2): 76–86. https://doi.org/10.1002/gj.3234
    Fan, S. H., Chen, S. E., Zhang, Y. B., et al., 2018b. The Characteristics and Geneses of Iron Deposits in the Bailingshan Area, Eastern Tianshan, Xinjiang, NW China. Geological Journal, 53(S2): 319–328. https://doi.org/10.1002/gj.3229
    Friedman, I., O'Neil, J. R., 1977. Complication of Scale Isotope Fractionation Factors of Geochemical Interest in Data of Geochemistry. In: Fleischer, M., ed., Geological professional paper. U. S. Geological Survey, Washington D. C. 1–440
    Frost, B. R., 1979. Metamorphism of Iron-Formation: Parageneses in the System Fe-Si-C-O-H. Economic Geology, 74(4): 775–785. https://doi.org/10.2113/gsecongeo.74.4.775
    Gao, J., Li, M. S., Xiao, X. C., et al., 1998. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China. Tectonophysics, 287(1/2/3/4): 213–231. https://doi.org/10.1016/s0040-1951(98)80070-x
    Golden, D. C., Ming, D. W., Morris, R. V., et al., 2004. Evidence for Exclusively Inorganic Formation of Magnetite in Martian Meteorite ALH84001. American Mineralogist, 89(5/6): 681–695. https://doi.org/10.2138/am-2004-5-602
    Hensler, A. S., Rosière, C. A., Hagemann, S. G., 2017. Iron Oxide Mineralization at the Contact Zone between Phyllite and Itabirite of the Pau Branco Deposit, Quadrilátero Ferrífero, Brazil—Implications for Fluid-Rock Interaction during Iron Ore Formation. Economic Geology, 112(4): 941–982. https://doi.org/10.2113/econgeo.112.4.941
    Hoefs. J., 2009. Stable Isotope Geochemistry: 6th Ed. Springer-Verlag, Berlin. 1–259
    Hou, T., Zhang, Z. C., Santosh, M., et al., 2014. Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China: Constraints on the Metallogenesis. Ore Geology Reviews, 56: 487–502. https://doi.org/10.1016/j.oregeorev.2013.03.008
    Huang, X. W., Gao, J. F., Qi, L., et al., 2015. In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite: The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit, NW China. Ore Geology Reviews, 65: 900–916. https://doi.org/10.1016/j.oregeorev.2014.07.020
    Huang, X. W., Qi, L., Gao, J. F., et al., 2013. First Reliable Re-Os Ages of Pyrite and Stable Isotope Compositions of Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Resource Geology, 63: 166–187. https://doi.org/10.1111/rge.12003
    Huang, X. W., Qi, L., Wang, Y. C., et al., 2014. Re-Os Dating of Magnetite from the Shaquanzi Fe-Cu Deposit, Eastern Tianshan, NW China. Science China Earth Sciences, 57(2): 267–277. https://doi.org/10.1007/s11430-013-4660-z
    Huang, X. W., Zhou, M. F., Beaudoin, G., et al., 2018. Origin of the Volcanic-Hosted Yamansu Fe Deposit, Eastern Tianshan, NW China: Constraints from Pyrite re-Os Isotopes, Stable Isotopes, and in Situ Magnetite Trace Elements. Mineralium Deposita, 53(7): 1039–1060. https://doi.org/10.1007/s00126-018-0794-4
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society of London Special Publications, 226(1): 73–100. https://doi.org/10.1144/GSL.SP.2004.226.01.05
    Jiang, F. Z., Qin, K. Z., Fang, T. H., et al., 2002. Types, Geological Characteristics, Metallogenic Regularity and Exploration Target of Iron Deposits in Eastern Tianshan Mountains. Xinjiang Geology, 20(4): 379–383 (in Chinese with English Abstract)
    Jiang, H. J., Han, J. S., Chen, H. Y., et al., 2017. Intra-Continental Back-Arc Basin Inversion and Late Carboniferous Magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi Magmatic Suite. Geoscience Frontiers, 8(6): 1447–1467. https://doi.org/10.1016/j.gsf.2017.01.008
    Kräutner, H. G., 1977. Hydrothermal-Sedimentary Iron Ores Related to Submarine Volcanic Rises: The Teliuc-Ghelar Type as a Carbonatic Equivalent of the Lahn-Dill Type. In: Klemm, D. D., Schneider, H. J. eds., Time- and Strata-Bound Ore Deposits. Springer Verlag, Berlin. 232–253. https://doi.org/10.1007/978-3-642-66806-7_15
    LaBerge, G. L., 1964. Development of Magnetite in Iron Formations of the Lake Superior Region. Economic Geology, 59(7): 1313–1342. https://doi.org/10.2113/gsecongeo.59.7.1313
    Lascelles, D. F., 2007. Black Smokers and Density Currents: A Uniformitarian Model for the Genesis of Banded Iron-Formations. Ore Geology Reviews, 32(1/2): 381–411. https://doi.org/10.1016/j.oregeorev.2006.11.005
    Laurent-Charvet, S., Charvet, J., Monié, P., et al., 2003. Late Paleozoic Strike-Slip Shear Zones in Eastern Central Asia (NW China): New Structural and Geochronological Data. Tectonics, 22(2): 1–24. https://doi.org/10.1029/2001tc901047
    Laurent-Charvet, S., Charvet, J., Shu, L. S., et al., 2002. Palaeozoic Late Collisional Strike-Slip Deformations in Tianshan and Altay, Eastern Xinjiang, NW China. Terra Nova, 14(4): 249–256. https://doi.org/10.1046/j.1365-3121.2002.00417.x
    Lee, J. Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563
    Li, H. M., Yang, X. Q., Li, L. X., et al., 2015a. Desilicification and Iron Activation-Reprecipitation in the High-Grade Magnetite Ores in BIFs of the Anshan-Benxi Area, China: Evidence from Geology, Geochemistry and Stable Isotopic Characteristics. Journal of Asian Earth Sciences, 113: 998–1016. https://doi.org/10.1016/j.jseaes.2015.02.011
    Li, H. M., Ding, J. H., Zhang, Z. C., et al., 2015b. Iron-Rich Fragments in the Yamansu Iron Deposit, Xinjiang, NW China: Constraints on Metallogenesis. Journal of Asian Earth Sciences, 113: 1068–1081. https://doi.org/10.1016/j.jseaes.2015.06.026
    Li, H. M., Zhang, Z. J., Li, L. X., et al., 2014. Types and General Characteristics of the BIF-Related Iron Deposits in China. Ore Geology Reviews, 57: 264–287. https://doi.org/10.1016/j.oregeorev.2013.09.014
    Li, J., Hu, T., Liu, L., 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404–4426 (in Chinese with English Abstract)
    Li, L. X., Zi, J. W., Meng, J., et al., 2020. Using in situ Monazite and Xenotime U-Pb Geochronology to Resolve the Fate of the "Missing" Banded Iron Formation-Hosted High-Grade Hematite Ores of the North China Craton. Economic Geology, 115(1): 189–204. https://doi.org/10.5382/econgeo.4699
    Li, X. J., Li, X. H., 1999. Geology and Metallogenesis of the Bailingshan Iron Deposit in Shanshan, Xinjiang. Geology and Prospecting, 35(3): 9–13 (in Chinese with English Abstract)
    Ludwig, K. L., 2001. Using Isoplot/EX, v2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. 1–47
    Mao, J. W., Goldfarb, R. J., Wang, Y. T., et al., 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23–36. https://doi.org/10.18814/epiiugs/2005/v28i1/003
    McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18(6): 849–857. https://doi.org/10.1063/1.1747785
    Milesi, V., Guyot, F., Brunet, F., et al., 2015. Formation of CO2, H2 and Condensed Carbon from Siderite Dissolution in the 200–300 ℃ Range and at 50 MPa. Geochimica et Cosmochimica Acta, 154: 201–211. https://doi.org/10.1016/j.gca.2015.01.015
    Mumin, A. H., Fleet, M. E., Longstaffe, F. J., 1996. Evolution of Hydrothermal Fluids in the Ashanti Gold Belt, Ghana; Stable Isotope Geochemistry of Carbonates, Graphite, and Quartz. Economic Geology, 91(1): 135–148. https://doi.org/10.2113/gsecongeo.91.1.135
    Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. Geochemistry of Hydrothermal Ore Deposits: 2nd Ed. Holt Rinehart and Winston, New York. 509–612
    Perring, C., Crowe, M., Hronsky, J., 2020. A New Fluid-Flow Model for the Genesis of Banded Iron Formation-Hosted Martite-Goethite Mineralization, with Special Reference to the North and South Flank Deposits of the Hamersley Province, Western Australia. Economic Geology, 115(3): 627–659. https://doi.org/10.5382/econgeo.4734
    Perry, E. C. Jr, Bonnichsen, B., 1966. Quartz and Magnetite: Oxygen-18-Oxygen-16 Fractionation in Metamorphosed Biwabik Iron Formation. Science, 153(3735): 528–529. https://doi.org/10.1126/science.153.3735.528
    Perry, E. C. Jr, Tan, F. C., Morey, G. B., 1973. Geology and Stable Isotope Geochemistry of the Biwabik Iron Formation, Northern Minnesota. Economic Geology, 68(7): 1110–1125. https://doi.org/10.2113/gsecongeo.68.7.1110
    Puteanus, D., Glasby, G. P., Stoffers, P., et al., 1991. Hydrothermal Iron-Rich Deposits from the Teahitia-Mehitia and Macdonald Hot Spot Areas, Southwest Pacific. Marine Geology, 98(2/3/4): 389–409. https://doi.org/10.1016/0025-3227(91)90112-h
    Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2002. Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountain, NW-China. Xinjiang Geology, 20(4): 302–308 (in Chinese with English Abstract)
    Rasmussen, B., Muhling, J. R., 2018. Making Magnetite Late Again: Evidence for Widespread Magnetite Growth by Thermal Decomposition of Siderite in Hamersley Banded Iron Formations. Precambrian Research, 306: 64–93. https://doi.org/10.1016/j.precamres.2017.12.017
    Ren, B. S., 1983. A Discussion on Enriched Condition and Origin of Kumtag Siderite Beds in the North Tianshan Mountain of Xinjiang. Bulletin of Xi'an Institute of Geological Mineral Resources, Chinese Academy of Geological Sciences, 6: 59–69 (in Chinese with English Abstract)
    Rosenbaum, J., Sheppard, S. M. F., 1986. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochimica et Cosmochimica Acta, 50(6): 1147–1150. https://doi.org/10.1016/0016-7037(86)90396-0
    Şengör, A. M. C., Natal'In, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299–307. https://doi.org/10.1038/364299a0
    Shi, Y., Wang, Y. W., Wang, J. B., et al., 2021. Formation of the Weiya Magmatic Fe-Ti Oxide Deposit and Its Ore-Hosting Layered Gabbro Intrusion, Eastern Tianshan (Xinjiang, NW China). Ore Geology Reviews, 132: 104003. https://doi.org/10.1016/j.oregeorev.2021.104003
    Shu, L. S., Jacques, C., Guo, L. Z., et al., 1999. A Large-Scale Palaeozoic Dextral Ductile Strike-Slip Zone: The Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt, Xinjiang, NW China. Acta Geologica Sinica: English Edition, 73(2): 148–162. https://doi.org/10.1111/j.1755-6724.1999.tb00822.x
    Song, Z., Li, H. M., Li, L. X., et al., 2021. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 32(1): 219–234. https://doi.org/10.1007/s12583-020-1060-0
    Steiger, R. H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359–362. https://doi.org/10.1016/0012-821x(77)90060-7
    Sun, Z. Y., Wang, J. B., Wang, Y. W., et al., 2020. Zircon and Garnet U-Pb Dating and in Situ Trace Element of Magnetite from the Hongyuntan Fe Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 127: 103813. https://doi.org/10.1016/j.oregeorev.2020.103813
    Taylor, H. P., 1967. Oxygen Isotope Studies of Hydrothermal Mineral Deposits. In: Bames, H. L., ed., Geochemistry of Hydrothermal Ore Deposits: 1st Ed. Rinehart and Winston, Holt. 109–142
    Taylor, H. P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843–883. https://doi.org/10.2113/gsecongeo.69.6.843
    Taylor, H. P. Jr, Frechen, J., Degens, E. T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407–430. https://doi.org/10.1016/0016-7037(67)90051-8
    Wang, C. L., Wang, Y. T., Dong, L. H., et al., 2018. Iron Mineralization at the Songhu Deposit, Chinese Western Tianshan: A Type Locality with Regional Metallogenic Implications. International Journal of Earth Sciences, 107(1): 291–319. https://doi.org/10.1007/s00531-017-1490-9
    Wang, J., Wang, Y., Hu, Q., et al., 2022. Petrogenesis and Significance of the Xiaodongshan Volcanic Rocks in the Aqishan-Yamansu Belt, Eastern Tianshan, Xinjiang: Constraints from Geochronology, Element Geochemistry and Sr-Nd-Hf Isotopes. Earth Science, 47(9): 3229–3243 (in Chinese with English Abstract)
    Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461–469 (in Chinese with English Abstract)
    Wang, L. S., Li, H. Q., Chen, Y. C., et al., 2005b. Geological Feature and Mineralization Epoch of Bailingshan Iron Deposit, Hami, Xinjiang, China. Mineral Deposits, 24 (3): 264–269 (in Chinese with English Abstract)
    Wang, Y. T., Mao, J. W., Chen, W., et al., 2005a. Strike-Slip Fault Controls on Mineralization in the Kanggurtag Gold Belt in the Eastern Tianshan, Xinjiang, NW China. In: Mao, J. W. Bierlein, P. F., eds., Mineral Deposit Research: Meeting the Global Challenge. Springer-Verlag, Berlin. 1347–1349. https://doi.org/10.1007/3-540-27946-6_343
    Wang, Y. T., Wang, C. L., Zhang, L. C., et al., 2013. On the Paleozoic Tectono-Magmatic Metallogenic System and Exploration Model in the Tianshan, Xinjiang, NW China. The Research Report of China Geological Survey Project, Chinese Academy of Geological Sciences, Beijing. 1–271 (in Chinese)
    Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2008. Zircon U-Pb Age, Sr-Nd Isotope Geochemistry and Geological Significances of the Weiya Mafic-Ultramafic Complex, Xinjiang. Acta Petrologica Sinica, 24(4): 781–792 (in Chinese with English Abstract)
    Wu, C. D., Zhang, Z., Zaw, K., et al., 2006. Geochronology, Geochemistry and Tectonic Significances of the Hongyuntan Granitoids in the Qoltag Area, Eastern Tianshan. Acta Petrologica Sinica, 22(5): 1121–1134 (in Chinese with English Abstract)
    Wu, C. Z., Lei, R. X., Santosh, M., et al., 2016. Ordovician Volcano-Sedimentary Iron Deposits of the Eastern Tianshan Area, Northwest China: The Tianhu Example. International Geology Review, 58(11): 1398–1416. https://doi.org/10.1080/00206814.2016.1163516
    Xiao, W. J., Zhang, L. C, Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370–395. https://doi.org/10.2475/ajs.304.4.370
    Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012
    Xie, Q. H., Zhang, Z. C., Jin, Z. L., et al., 2021. The High-Grade Fe Skarn Deposit of Jinling, North China Craton: Insights into Hydrothermal Iron Mineralization. Ore Geology Reviews, 138: 104395. https://doi.org/10.1016/j.oregeorev.2021.104395
    Xu, L. L., Chai, F. M., Li Q., et al., 2014. Geochemistry and Zircon U-Pb Age of Volcanic Rocks from the Shaquanzi Fe-Cu Deposit in East Tianshan Mountains and Their Geological Significance. Geology in China, 41(6): 1771–1790 (in Chinese with English Abstract)
    Yang, F. Q., Mao, J. W., Liu, F., et al., 2013. A Review of the Geological Characteristics and Mineralization History of Iron Deposits in the Altay Orogenic Belt of the Xinjiang, Northwest China. Ore Geology Reviews, 54: 1–16. https://doi.org/10.1016/j.oregeorev.2013.04.002
    Yang, X. Q., Mao, J. W., Jiang, Z. S., et al., 2019. The Carboniferous Shikebutai Iron Deposit in Western Tianshan, Northwestern China: Petrology, Fe-O-C-Si Isotopes, and Implications for Iron Pathways. Economic Geology, 114(6): 1207–1222. https://doi.org/10.5382/econgeo.4681
    Zhang, L. C., Wang, Y. T., Chen, X. F., et al., 2013. Mineralogy, Mineral Chemistry and Genesis of the Hongyuntan Iron Deposit in East Tianshan Mountians, Xinjiang. Acta Petrologica et Mineralogica, 32(4): 431–449 (in Chinese with English Abstract)
    Zhang, W. F., Chen, H. Y., Han, J. S., et al., 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40–59. https://doi.org/10.1016/j.gr.2015.10.011
    Zhang, Y., Chen, W., Chen, K. L., et al., 2006. Study on the Ar-Ar Age Spectrum of Diagenetic I/S and the Mechanism of 39Ar Recoil Loss—Examples from the Clay Minerals of P-T Boundary in Changxing, Zhejiang Province. Geological Review, 52(4): 556–561 (in Chinese with English Abstract)
    Zhang, Z. C., Hou, T., Santosh, M., et al., 2014. Spatio-Temporal Distribution and Tectonic Settings of the Major Iron Deposits in China: An Overview. Ore Geology Reviews, 57: 247–263. https://doi.org/10.1016/j.oregeorev.2013.08.021
    Zhang, Z. C., Li, H. M., Li, J. W., et al., 2021. Geological Settings and Metallogenesis of High-Grade Iron Deposits in China. Science China Earth Sciences, 64(5): 691–715. https://doi.org/10.1007/s11430-020-9735-5
    Zhang, Z. T., 1985. Dynamic Effect of the Strata-Bound Iron Ore—Four Examples for Discussion. Bulletin of Xi'an Institute of Geological Mineral Resources, Chinese Academy of Geological Sciences, 11: 51–64 (in Chinese with English Abstract)
    Zhang, Z. Z., Gu, L. X., Wu, C. Z., et al., 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its Geological Implications. Acta Geologica Sinica, 79(4): 481–490 (in Chinese with English Abstract)
    Zhao, L. D., Chen, H. Y., Zhang, L., et al., 2018. The Late Paleozoic Magmatic Evolution of the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of Igneous Rocks. Journal of Asian Earth Sciences, 153: 170–192. https://doi.org/10.1016/j.jseaes.2017.07.038
    Zheng, J. H., 2020. A Synthesis of Iron Deposits in the Eastern Tianshan, NW China. Geoscience Frontiers, 11(4): 1271–1287. https://doi.org/10.1016/j.gsf.2019.11.014
    Zheng, J. H., Mao, J. W., Yang, F. Q., et al., 2017a. Petrological and Geochemical Features of the Early Paleozoic Granitic Gneisses and Iron Ores in the Tianhu Iron Deposit, Eastern Tianshan, NW China: Implications for Ore Genesis. Lithos, 286/287: 426–439. https://doi.org/10.1016/j.lithos.2017.06.021
    Zheng, J. H., Mao, J. W., Yang, F. Q., et al., 2017b. Mineralogy, Fluid Inclusions, and Isotopes of the Cihai Iron Deposit, Eastern Tianshan, NW China: Implication for Hydrothermal Evolution and Genesis of Subvolcanic Rocks-Hosted Skarn-Type Deposits. Ore Geology Reviews, 86: 404–425. https://doi.org/10.1016/j.oregeorev.2017.01.032
    Zheng, R. Q., 2015. Geological Characteristics and Genesis of Hongyuntan Iron Deposits in the Estern Tianshan, Xinjiang: [Dissertation]. China University of Geosciences, Beijing
    Zheng, Y. F., 1999. On Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals. Geochemical Journal, 33: 109–126. https://doi.org/10.2343/geochemj.33.109
    Zheng, Y. F., Hoefs, J., 1993. Carbon and Oxygen Isotopic Covariations in Hydrothermal Calcites—Theoretical Modeling on Mixing Processes and Application to Pb-Zn Deposits in the Harz Mountains, Germany. Mineralium Deposita, 28(2): 79–89. https://doi.org/10.1007/BF00196332
    Zhou, T. F., Yuan, F., Zhang, D. Y., et al., 2010. Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478–502 (in Chinese with English Abstract)
    Zürcher, L., Ruiz, J., Barton, M. D., 2001. Paragenesis, Elemental Distribution, and Stable Isotopes at the Peña Colorada Iron Skarn, Colima, Mexico. Economic Geology, 96: 535–557. https://doi.org/10.2113/gsecongeo.96.3.535
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views(415) PDF downloads(171) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return