Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 5
Oct 2024
Turn off MathJax
Article Contents
Adiaratou Traore, Xumei Mao, Alhousseyni Traore, Yahaya Yakubu, Aboubacar Modibo Sidibe. Multivariate Statistical Analysis of Dominating Groundwater Mineralization and Hydrochemical Evolution in Gao, Northern Mali. Journal of Earth Science, 2024, 35(5): 1692-1703. doi: 10.1007/s12583-022-1689-y
Citation: Adiaratou Traore, Xumei Mao, Alhousseyni Traore, Yahaya Yakubu, Aboubacar Modibo Sidibe. Multivariate Statistical Analysis of Dominating Groundwater Mineralization and Hydrochemical Evolution in Gao, Northern Mali. Journal of Earth Science, 2024, 35(5): 1692-1703. doi: 10.1007/s12583-022-1689-y

Multivariate Statistical Analysis of Dominating Groundwater Mineralization and Hydrochemical Evolution in Gao, Northern Mali

doi: 10.1007/s12583-022-1689-y
More Information
  • Corresponding author: Xumei Mao, maoxumei@cug.edu.cn
  • Received Date: 05 Dec 2021
  • Accepted Date: 27 May 2022
  • Issue Publish Date: 30 Oct 2024
  • Population growth and expanding urbanization have caused persistent shortages and contamination of groundwater resources in Mali, Africa. The increase in groundwater salinity makes it more difficult for residents to obtain drinking water, it is necessary to clarify the causes and control factors of groundwater mineralization in Gao region, northern Mali. Based on the analysis of the hydrochemical composition of groundwater in 24 boreholes, Piper and Schöeller diagrams, principal component analysis (PCA) and hierarchical cluster analysis (HCA) are used to carry out multivariate statistical analysis on the main ions. The results show that the groundwater samples are weakly alkaline, with pH values ranging from 5.83 to 8.40, and the average values of boreholes are 7.50, respectively. The average electrical conductivity (EC) value is 354.4 (µS/cm), and the extreme value is between 124.0 and 1 247 (µS/cm). Water is usually mineralized and presents nine types of water phase. The three principal components explain 84.42% of the total variance for 13 parameters. The factor F1 (58.85%), the factor F2 (16.88%) and the factor F3 (8.69%) present for the majority of the total data set. In addition, multivariate statistical analysis confirmed the genetic relationship among aquifers and identified three main clusters. Clustering related to groundwater mineralization (F1), clustering related to oxide reduction and iron enrichment (F2), and clustering of groundwater pollution caused by nitrate and magnesium (F3). We found that agriculture, weathering activities and dissolution of geological materials promote the mineralization of groundwater. Groundwater quality in the Gao region is becoming less and less potable because of increasing salinity.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ahoussi, K. E., Youan, T. M., Loko, S., et al., 2012. Étude Hydrogéochimique des Eaux des Aquifères de Fractures du Socle Paléoprotérozoïque du Nord-Est de la Côte d'Ivoire : Cas de la Région de Bondoukou. Afrique Sci. Rev. Int. des Sci. Technol., 8: 51–68
    Andrieu, N., Sogoba, B., Zougmore, R., et al., 2017. Prioritizing Investments for Climate-Smart Agriculture: Lessons Learned from Mali. Agricultural Systems, 154: 13–24. https://doi.org/10.1016/j.agsy.2017.02.008
    Annor, A. A., Acquah, J., Ansah, E., 2018. Hydrogeological and Hydrochemical Assessment of Basin Granitoids in Assin and Breman Districts of Ghana. Journal of Geoscience and Environment Protection, 6(9): 31–57. https://doi.org/10.4236/gep.2018.69004
    Bayer, K., Moitinho-Silva, L., Brümmer, F., et al., 2014. GeoChip-Based Insights into the Microbial Functional Gene Repertoire of Marine Sponges (High Microbial Abundance, Low Microbial Abundance) and Seawater. FEMS Microbiology Ecology, 90(3): 832–843. https://doi.org/10.1111/1574-6941.12441
    Ben Alaya, M., Zemni, T., Mamou, A., et al., 2014. Acquisition de Salinité et Qualité des Eaux d'une Nappe Profonde en Tunisie: Approche Statistique et Géochimique. Hydrological Sciences Journal, 59(2): 395–419. https://doi.org/10.1080/02626667.2013.870663
    Brindha, K., Kavitha, R., 2015. Hydrochemical Assessment of Surface Water and Groundwater Quality along Uyyakondan Channel, South India. Environmental Earth Sciences, 73(9): 5383–5393. https://doi.org/10.1007/s12665-014-3793-5
    Fajardo, S., García-Galvan, R. F., Barranco, V., et al., 2016. We are IntechOpen, the World's Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%. Intech I, 13
    Fournier, R., Weltman, U., Counce, D., et al., 2002. Results of Weekly Chemical and Isotopic Monitoring of Selected Springs in Norris Geyser Basin, Yellowstone National Park during June–September, 1995. U. S. Geol. Surv. Open File Rep., 02–344: 50. https://pubs.usgs.gov/of/2002/0344/
    Gannouni, S., Gabtni, H., 2015. Structural Interpretation of Lineaments by Satellite Image Processing (Landsat TM) in the Region of Zahret Medien (Northern Tunisia). Journal of Geographic Information System, 7(2): 119–127. https://doi.org/10.4236/jgis.2015.72011
    Gbolo, P., López, D. L., 2013. Chemical and Geological Control on Surface Water within the Shade River Watershed in Southeastern Ohio. Journal of Environmental Protection, 4(1): 1–11. https://doi.org/10.4236/jep.2013.41001
    Gbombele, S., Adama, C., Abou, T., et al., 2020. Hydrogeochemical and Statistical Characterization of Groundwater in the Lakes Region (Central Côte d'Ivoire). J. Environ. Pollut. Hum. Heal., 8: 69–78. https://doi.org/10.12691/jephh-8-2-4
    Gnanaprakasam, E. T., Lloyd, J. R., Boothman, C., et al., 2017. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio, 8(6): e01326–e01317. https://doi.org/10.1128/mBio.01326-17
    Gorchev, H. G., Ozolins, G., 1984. WHO Guidelines for Drinking-Water Quality. WHO Chron. , 38(3): 104–108
    Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887–1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
    Hassen, I., Hamzaoui-Azaza, F., Bouhlila, R., 2016. Application of Multivariate Statistical Analysis and Hydrochemical and Isotopic Investigations for Evaluation of Groundwater Quality and Its Suitability for Drinking and Agriculture Purposes: Case of Oum Ali-Thelepte Aquifer, Central Tunisia. Environmental Monitoring and Assessment, 188(3): 135. https://doi.org/10.1007/s10661-016-5124-7
    Hedin, L. O., Jack Brookshire, E. N., Menge, D. N. L., et al., 2009. The Nitrogen Paradox in Tropical Forest Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40: 613–635. https://doi.org/10.1146/annurev.ecolsys.37.091305.110246
    Hedin, L. O., von Fischer, J. C., Ostrom, N. E., et al., 1998. Thermodynamic Constraints on Nitrogen Transformations and other Biogeochemical Processes at Soil-Stream Interfaces. Ecology, 79(2): 684. https://doi.org/10.2307/176963
    Hug, L. A., Thomas, B. C., Brown, C. T., et al., 2015. Aquifer Environment Selects for Microbial Species Cohorts in Sediment and Groundwater. The ISME Journal, 9(8): 1846–1856. https://doi.org/10.1038/ismej.2015.2
    Jorgensen, S. L., Hannisdal, B., Lanzén, A., et al., 2012. Correlating Microbial Community Profiles with Geochemical Data in Highly Stratified Sediments from the Arctic Mid-Ocean Ridge. Proceedings of the National Academy of Sciences of the United States of America, 109(42): E2846–E2855. https://doi.org/10.1073/pnas.1207574109
    Kallmeyer, J., Pockalny, R., Adhikari, R. R., et al., 2012. Global Distribution of Microbial Abundance and Biomass in Subseafloor Sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16213–16216. https://doi.org/10.1073/pnas.1203849109
    Kuang, S. P., Su, Y. Q., Wang, H. H., et al., 2018. Soil Microbial Community Structure and Diversity around the Aging Oil Sludge in Yellow River Delta as Determined by High-Throughput Sequencing. Archaea, 2018: 7861805. https://doi.org/10.1155/2018/7861805
    Leitchenkov, G. L., Antonov, A. V., Luneov, P. I., et al., 2016. Geology and Environments of Subglacial Lake Vostok. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 374(2059): 20140302. https://doi.org/10.1098/rsta.2014.0302
    Luse, B. B., Makonga, A. M., 2019. Geochemical Analysis of Lilida Geothermal Spring. Bulletin de la Société Royale des Sciences de Liège, 88: 44–55. https://doi.org/10.25518/0037-9565.8477
    Nagaraju, A., Sunil Kumar, K., Thejaswi, A., et al., 2014. Statistical Analysis of the Hydrogeochemical Evolution of Groundwater in the Rangampeta Area, Chittoor District, Andhra Pradesh, South India. American Journal of Water Resources, 2(3): 63–70. https://doi.org/10.12691/ajwr-2-3-2
    Nieva, D., Pal Verma, M., Santoyo, E., et al., 1997. Geochemical Exploration of the Chipilapa Geothermal Field, El Salvador. Geothermics, 26(5/6): 589–612. https://doi.org/10.1016/s0375-6505(97)00012-6
    Nyyssönen, M., Hultman, J., Ahonen, L., et al., 2014. Taxonomically and Functionally Diverse Microbial Communities in Deep Crystalline Rocks of the Fennoscandian Shield. The ISME Journal, 8(1): 126–138. https://doi.org/10.1038/ismej.2013.125
    Omotesho, O. A., Falola, A., Oshe, A. T., 2015. Effect of Social Capital on Productivity of Rice Farms in Kwara State, Nigeria. Science, Technology and Arts Research Journal, 4(1): 215. https://doi.org/10.4314/star.v4i1.34
    Picouet, C., Dupré, B., Orange, D., et al., 2002. Major and Trace Element Geochemistry in the Upper Niger River (Mali): Physical and Chemical Weathering Rates and CO2 Consumption. Chemical Geology, 185(1/2): 93–124. https://doi.org/10.1016/s0009-2541(01)00398-9
    Prabhakaran, D., Jeemon, P., Sharma, M., et al., 2018. The Changing Patterns of Cardiovascular Diseases and Their Risk Factors in the States of India: The Global Burden of Disease Study 1990–2016. The Lancet Global Health, 6(12): e1339–e1351. https://doi.org/10.1016/s2214-109x(18)30407-8
    Qian, Y., Migliaccio, K. W., Wan, Y. S., et al., 2007. Surface Water Quality Evaluation Using Multivariate Methods and a New Water Quality Index in the Indian River Lagoon, Florida. Water Resources Research, 43(8): W08405. https://doi.org/10.1029/2006wr005716
    Saffran, J. R., 2001. Words in a Sea of Sounds: The Output of Infant Statistical Learning. Cognition, 81(2): 149–169. https://doi.org/10.1016/s0010-0277(01)00132-9
    Sidibé, A. M., Lin, X., Koné, S., 2019. Assessing Groundwater Mineralization Process, Quality, and Isotopic Recharge Origin in the Sahel Region in Africa. Water, 11(4): 789. https://doi.org/10.3390/w11040789
    Stoch, F., Fiasca, B., Di Lorenzo, T., et al., 2015. Exploring Copepod Distribution Patterns at Three Nested Spatial Scales in a Spring System: Habitat Partitioning and Potential for Hydrological Bioindication. Journal of Limnology, 75: 1–13. https://doi.org/10.4081/jlimnol.2015.1209
    Stoch, F., Fiasca, B., Di Lorenzo, T., et al., 2016. Exploring Copepod Distribution Patterns at Three Nested Spatial Scales in a Spring System: Habitat Partitioning and Potential for Hydrological Bioindication. J. Limnol, 75: 1–13. https://doi.org/10.4081/jlimnol.2015.1209
    Toure, A., Diekkrüger, B., Mariko, A., 2016. Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali. Hydrology, 3(2): 17. https://doi.org/10.3390/hydrology3020017
    Tytgat, B., Verleyen, E., Sweetlove, M., et al., 2016. Bacterial Community Composition in Relation to Bedrock Type and Macrobiota in Soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiology Ecology, 92(9): fiw126. https://doi.org/10.1093/femsec/fiw126
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views(324) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return