Citation: | Jiayi Ma, Anjiang Shen, Shuyun Xie, Min She, Huayun Tang, Emmanuel John M. Carranza, Tianfu Zhang. Geochemical Modelling of Fluid-Rock Interactions in Shallow Buried Carbonate Reservoirs Based on the Water Bath Instrument. Journal of Earth Science, 2025, 36(2): 460-473. doi: 10.1007/s12583-022-1690-5 |
Fluid-rock interaction plays a critical function in physical and chemical processes associated with the formation and evolution of oil and gas reservoir space. In the diagenetic stage of shallow burial, the dissolution of carbonate rocks by acidic fluids is conducive to the development of secondary pore space in reservoirs. In contrast, the free drift experiment based on water bath instrument can simulate the dissolution process of carbonate rocks in shallow burial environment effectively. In order to study the shallow burial dissolution mechanism of carbonate rocks in different acid solutions, 14 samples of typical carbonate rocks of Sinian, Cambrian, Ordovician, Permian and Triassic ages in the Tarim and Sichuan basins, China were used. The dissolution experiments on carbonate rocks in sulfuric acid, acetic acid, hydrochloric acid, silicic acid and carbonic acid at shallow burial temperature (30 ℃ ≤
Abbaszadeh, M., Nasiri, M., Riazi, M., 2016. Experimental Investigation of the Impact of Rock Dissolution on Carbonate Rock Properties in the Presence of Carbonated Water. Environmental Earth Sciences, 75(9): 791. https://doi.org/10.1007/s12665-016-5624-3 |
Al-Khulaifi, Y., Lin, Q. Y., Blunt, M. J., et al., 2018. Reservoir-Condition Pore-Scale Imaging of Dolomite Reaction with Supercritical CO2 Acidified Brine: Effect of Pore-Structure on Reaction Rate Using Velocity Distribution Analysis. International Journal of Greenhouse Gas Control, 68: 99–111. https://doi.org/10.1016/j.ijggc.2017.11.011 |
Anabaraonye, B. U., Crawshaw, J. P., Martin Trusler, J. P., 2019. Brine Chemistry Effects in Calcite Dissolution Kinetics at Reservoir Conditions. Chemical Geology, 509: 92–102. https://doi.org/10.1016/j.chemgeo.2019.01.014 |
Bethke, G. M., 1996. Geochemical Reaction Modeling: Concepts and Applications. Oxford University Press, New York |
Busenberg, E., Plummer, L. N., 1982. The Kinetics of Dissolution of Dolomite in CO2-H2O Systems at 1.5 to 65 Degrees C and O to 1 Atm PCO2. American Journal of Science, 282(1): 45–78. https://doi.org/10.2475/ajs.282.1.45 |
Chai, Z., Chen, Z. H., Liu, H., et al., 2020. Light Hydrocarbons and Diamondoids of Light Oils in Deep Reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the Evaluation on Thermal Maturity, Secondary Alteration and Source Characteristics. Marine and Petroleum Geology, 117: 104388. https://doi.org/10.1016/j.marpetgeo.2020.104388 |
Chen, L., Kang, Q. J., Viswanathan, H. S., et al., 2014. Pore-Scale Study of Dissolution-Induced Changes in Hydrologic Properties of Rocks with Binary Minerals. Water Resources Research, 50(12): 9343–9365. https://doi.org/10.1002/2014wr015646 |
Chen, M. T., Yang, N., Yang, S. M., 2011. Reservoirs Distribution and Hydrocarbon Accumulation of Ordovician Carbonate in Tazhong Uplift, Tarim Basin. Applied Mechanics and Materials, 130/131/132/133/134: 3195–3199. https://doi.org/10.4028/www.scientific.net/amm.130-134.3195 |
Chen, Q. L., Zhao, Y. Q., Li, G. R., et al., 2012. Features and Controlling Factors of Epigenic Karstification of the Ordovician Carbonates in Akekule Arch, Tarim Basin. Journal of Earth Science, 23(4): 506–515. https://doi.org/10.1007/s12583-012-0271-4 |
Davis, K. J., Dove, P. M., de Yoreo, J. J., 2000. The Role of Mg2+ as an Impurity in Calcite Growth. Science, 290(5494): 1134–1137. https://doi.org/10.1126/science.290.5494.1134 |
Debure, M., Lerouge, C., Warmont, F., et al., 2021. On the Interaction between Calcite and Dolomite: Insights from Gas and Aqueous Geochemistry and Mineralogical Characterization. Chemical Geology, 559: 119921. https://doi.org/10.1016/j.chemg eo.2020.119921 doi: 10.1016/j.chemgeo.2020.119921 |
Ding, X., Wu, H., Sun, Y. F., et al., 2019. Genetic Types of Carbonate Shoal Reservoirs in the Middle Triassic of the Sichuan Basin (SW China). Marine and Petroleum Geology, 99: 61–74. https://doi.org/10.1016/j.marpetgeo.2018.10.003 |
Drexler, S., Hoerlle, F., Godoy, W., et al., 2020. Wettability Alteration by Carbonated Brine Injection and Its Impact on Pore-Scale Multiphase Flow for Carbon Capture and Storage and Enhanced Oil Recovery in a Carbonate Reservoir. Applied Sciences, 10(18): 6496. https://doi.org/10.3390/app10186496 |
Fang, Y., Xie, S. Y., He, Z. L., et al., 2016. Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonate. Journal of Earth Science. 41(5): 779–791 (in Chinese with English Abstract) doi: 10.3799/dqkx.2016.066 |
Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present-Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752–2762 (in Chinese with English Abstract) |
Fischer, C., Arvidson, R. S., Lüttge, A., 2012. How Predictable Are Dissolution Rates of Crystalline Material? Geochimica et Cosmochimica Acta, 98: 177–185. https://doi.org/10.1016/j.gca.2012.09.011 |
Fu, S. Y., Zhang, C. G., Chen, H. D., et al., 2020. Geochemistry Characteristics and Dolomitization Mechanism of the Upper Cambrian Dolomite, Eastern Ordos Basin, China. Geological Journal, 55(4): 3070–3082. https://doi.org/10.1002/gj.3580 |
Gautelier, M., Oelkers, E. H., Schott, J., 1999. An Experimental Study of Dolomite Dissolution Rates as a Function of pH from -0.5 to 5 and Temperature from 25 to 80 ℃. Chemical Geology, 157(1/2): 13–26. https://doi.org/10.1016/S0009-2541(98)00193-4 |
Gong, Q. J., Deng, J., Wang, Q. F., et al., 2007. Limestone Dissolution Rates in 0.6M NaCl Solution at 50 to 300 ℃ and 25 MPa. In: Bullen, T. D., Wang, Y., eds., Water-Rock Interaction. Taylor & Francis Group, London |
Gong, Q. J., Deng, J., Wang, Q. F., et al., 2008. Calcite Dissolution in Deionized Water from 50 ℃ to 250 ℃ at 10 MPa: Rate Equation and Reaction Order. Acta Geologica Sinica-English Edition, 82(5): 994–1001. https://doi.org/10.1111/j.1755-6724.2008.tb00655.x |
Gray, F., Anabaraonye, B., Shah, S., et al., 2018. Chemical Mechanisms of Dissolution of Calcite by HCl in Porous Media: Simulations and Experiment. Advances in Water Resources, 121: 369–387. https://doi.org/10.1016/j.advwatres.2018.09.007 |
Gu, S. W., Yang, Z. Z., Chen, Z., et al., 2020. Dissolution Reactivity and Kinetics of Low-Grade Limestone for Wet Flue Gas Desulfurization. Industrial & Engineering Chemistry Research, 59(32): 14242–14251. https://doi.org/10.1021/acs.iecr.0c01896 |
He, Z. L., Ding, Q., Wo, Y. J., et al., 2017. Experiment of Carbonate Dissolution: Implication for High Quality Carbonate Reservoir Formation in Deep and Ultradeep Basins. Geofluids, 2017: 8439259. https://doi.org/10.1155/2017/8439259 |
Herman, J. S., White, W. B., 1985. Dissolution Kinetics of Dolomite: Effects of Lithology and Fluid Flow Velocity. Geochimica et Cosmochimica Acta, 49(10): 2017–2026. https://doi.org/10.1016/0016-7037(85)90060-2 |
Hong, H. T., Yang, Y., Liu, X., et al., 2012. Characteristics and Controlling Factors of Marine Carbonate Reservoirs in Sichuan Basin. Acta Petrolei Sinica, 33(S2): 64–73 (in Chinese with English Abstract) |
Huang, K. J., Wang, W., Bao, Z. Y., et al., 2011. Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition: Kinetic Dissolution Experiments. Geochimica, 40(3): 289–300 (in Chinese with English Abstract) |
Huang, S. J., Huang, K. K., Li, Z. M., et al., 2012. TSR-Derived Authigenic Calcites in Triassic Dolomite, NE Sichuan Basin, China—A Case Study of Well HB-1 and Well L-2. Journal of Earth Science, 23(1): 88–96. https://doi.org/10.1007/s12583-012-0235-8 |
Jia, L. Q., Cai, C. F., Zhang, J. G., et al., 2021. Effect of Thermochemical Sulfate Reduction on Carbonate Reservoir Quality: Cambrian and Ordovician Oilfield, Tazhong Area, Tarim Basin, China. Marine and Petroleum Geology, 123: 104745. https://doi.org/10.1016/j.marpetgeo.2020.104745 |
Jiang, L., Worden, R. H., Yang, C. B., 2018. Thermochemical Sulphate Reduction Can Improve Carbonate Petroleum Reservoir Quality. Geochimica et Cosmochimica Acta, 223: 127–140. https://doi.org/10.1016/j.gca.2017.11.032 |
Jiu, B., Huang, W. H., Mu, N. N., et al., 2020. Effect of Hydrothermal Fluids on the Ultra-Deep Ordovician Carbonate Rocks in Tarim Basin, China. Journal of Petroleum Science and Engineering, 194: 107445. https://doi.org/10.1016/j.petrol.2020.107445 |
Li, K. K., George, S. C., Cai, C. F., et al., 2019. Fluid Inclusion and Stable Isotopic Studies of Thermochemical Sulfate Reduction: Upper Permian and Lower Triassic Gasfields, Northeast Sichuan Basin, China. Geochimica et Cosmochimica Acta, 246: 86–108. https://doi.org/10.1016/j.gca.2018.11.032 |
Li, Y. Q., He, D. F., Chen, L. B., et al., 2016. Cretaceous Sedimentary Basins in Sichuan, SW China: Restoration of Tectonic and Depositional Environments. Cretaceous Research, 57: 50–65. https://doi.org/10.1016/j.cretres.2015.07.013 |
Liu, Z. H., Yuan, D. X., Dreybrodt, W., 2005. Comparative Study of Dissolution Rate-Determining Mechanisms of Limestone and Dolomite. Environmental Geology, 49(2): 274–279. https://doi.org/10.1007/s00254-005-0086-z |
Ma, J. Y., Xie, S. Y., Liu, D., et al., 2021. Effects of Fe3+ on Dissolution Dynamics of Carbonate Rocks in a Shallow Burial Reservoir. Natural Resources Research, 30(2): 1291–1303. https://doi.org/10.1007/s11053-020-09765-6 |
Ma, J. Y., Xie, S. Y., Tang, H. Y., et al., 2020. Evolution Mechanisms of Carbonate Reservoirs Based on Dissolution Rates and Multifractal Analysis of Microscopic Morphology. Natural Resources Research, 29(5): 2843–2865. https://doi.org/10.1007/s11053-020-09645-z |
Ma, X. H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium-and Large-Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 1–13 (in Chinese with English Abstract) |
Ma, Y. S., Zhang, S. C., Guo, T. L., et al., 2008. Petroleum Geology of the Puguang Sour Gas Field in the Sichuan Basin, SW China. Marine and Petroleum Geology, 25(4/5): 357–370. https://doi.org/10.1016/j.marpetgeo.2008.01.010 |
Maddah, S. M. M., Moghaddas, N. H., Ghafoori, M., 2020. Solubility Variations of Tirgan Limestone in Northeast of Iran with Change of pH and Temperature. Carbonates and Evaporites, 35(1): 9. https://doi.org/10.1007/s13146-019-00539-7 |
Mazzullo, S. J., Harris, P. M., 1992. Mesogenetic Dissolution: Its Role in Porosity Development in Carbonate Reservoirs (1). AAPG Bulletin, 76(5): 607–620. https://doi.org/10.1306/bdff8880-1718-11d7-8645000102c1865d |
Möller, P., de Lucia, M., 2020. The Impact of Mg2+ Ions on Equilibration of Mg-Ca Carbonates in Groundwater and Brines. Geochemistry, 80(2): 125611. https://doi.org/10.1016/j.chemer.2 020.125611 doi: 10.1016/j.chemer.2020.125611 |
Moore, C. H., Wade, W. J., 2013. Summary of Early Diagenesis and Porosity Modification of Carbonate Reservoirs in a Sequence Stratigraphic and Climatic Framework. Developments in Sedimentology, 67: 207–238. https://doi.org/10.1016/b978-0-444-53831-4.00009-4 |
Morse, J. W., Arvidson, R. S., 2002. The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. Earth-Science Reviews, 58(1/2): 51–84. https://doi.org/10.1016/s0012-8252(01)00083-6 |
Mousavi Maddah, S. M., Hafezi Moghaddas, N., Ghafoori, M., 2020. Solubility Variations of Tirgan Limestone in Northeast of Iran with Change of PH and Temperature. Carbonates and Evaporites, 35(1): 9. https://doi.org/10.1007/s13146-019-00539-7 |
Naviaux, J. D., Subhas, A. V., Rollins, N. E., et al., 2019. Temperature Dependence of Calcite Dissolution Kinetics in Seawater. Geochimica et Cosmochimica Acta, 246: 363–384. https://doi.org/10.1016/j.gca.2018.11.037 |
Neveux, L., Grgic, D., Carpentier, C., et al., 2014. Experimental Simulation of Chemomechanical Processes during Deep Burial Diagenesis of Carbonate Rocks. Journal of Geophysical Research: Solid Earth, 119(2): 984–1007. https://doi.org/10.1002/2013jb010516 |
Ni, Z. Y., Wang, T. G., Li, M. J., et al., 2018. Natural Gas Characteristics, Fluid Evolution, and Gas Charging Time of the Ordovician Reservoirs in the Shuntuoguole Region, Tarim Basin, NW China. Geological Journal, 53(3): 947–959. https://doi.org/10.1002/gj.2936 |
Parkhurst, D. L., Appelo, C. A. J., 1999. User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99-4259, Denver |
Peng, J., Wang, X. L., Han, H. D., et al., 2018. Simulation for the Dissolution Mechanism of Cambrian Carbonate Rocks in Tarim Basin, NW China. Petroleum Exploration and Development, 45(3): 431–441. https://doi.org/10.1016/s1876-3804(18)30048-x |
Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The Kinetics of Calcite Dissolution in CO2 -Water Systems at 5 Degrees to 60 Degrees C and 0.0 to 1.0 Atm CO2. American Journal of Science, 278(2): 179–216. https://doi.org/10.2475/ajs.278.2.179 |
Pokrovsky, O. S., Golubev, S. V., Schott, J., 2005. Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 Atm pCO2. Chemical Geology, 217(3/4): 239–255. https://doi.org/10.1016/j.chemgeo.2004.12.012 |
Pokrovsky, O. S., Golubev, S. V., Schott, J., et al., 2009. Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 ℃ and 1 to 55 Atm pCO2: New Constraints on CO2 Sequestration in Sedimentary Basins. Chemical Geology, 265(1/2): 20–32. https://doi.org/10.1016/j.chemgeo.2009.01.013 |
Pruess, K., 2004. The TOUGH Codes: A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media. Vadose Zone Journal, 3(3): 738–746. https://doi.org/10.2113/3.3.738 |
Qin, F. Q., Beckingham, L. E., 2021. The Impact of Mineral Reactive Surface Area Variation on Simulated Mineral Reactions and Reaction Rates. Applied Geochemistry, 124: 104852. https://doi.org/10.1016/j.apgeochem.2020.104852 |
Sadeghnejad, S., Enzmann, F., Kersten, M., 2021. Digital Rock Physics, Chemistry, and Biology: Challenges and Prospects of Pore-Scale Modelling Approach. Applied Geochemistry, 131: 105028. https://doi.org/10.1016/j.apgeochem.2021.105028 |
Shabani, A., Kalantariasl, A., Abbasi, S., et al., 2019. A Coupled Geochemical and Fluid Flow Model to Simulate Permeability Decline Resulting from Scale Formation in Porous Media. Applied Geochemistry, 107: 131–141. https://doi.org/10.1016/j.apgeochem.2019.06.003 |
Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2015. Major Factors Controlling the Development of Marine Carbonate Reservoirs. Petroleum Exploration and Development, 42(5): 597–608. https://doi.org/10.1016/S1876-3804(15)30055-0 |
Souza, V. H. P., Bezerra, F. H. R., Vieira, L. C., et al., 2021. Hydrothermal Silicification Confined to Stratigraphic Layers: Implications for Carbonate Reservoirs. Marine and Petroleum Geology, 124: 104818. https://doi.org/10.1016/j.marpetgeo.2020.104818 |
Steel, L., MacKay, E., Maroto-Valer, M. M., 2018. Experimental Investigation of CO2-Brine-Calcite Interactions under Reservoir Conditions. Fuel Processing Technology, 169: 122–131. https://doi.org/10.1016/j.fuproc.2017.09.028 |
Surdam, R. C., Boese, S. W., Crossey, L. J., 1984. The Chemistry of Secondary Porosity. AAPG Memoir, 37: 127–149. https://doi.org/10.1111/j.1468-246x.1986.tb00628.x |
Vidal Vargas, J. A., Yasuda, E. Y., Koroishi, E. T., et al., 2020. Dissolution Evaluation of Coquina Part 2: Alternating Carbonated Brine and Equilibrated Brine Injection Using Computed Tomography and PHREEQC. Applied Geochemistry, 113: 104502. https://doi.org/10.1016/j.apgeochem.2019.104502 |
Wang, Z. M., Su, J., Zhu, G. Y., et al., 2013. Characteristics and Accumulation Mechanism of Quasi-Layered Ordovician Carbonate Reservoirs in the Tazhong Area, Tarim Basin. Energy Exploration & Exploitation, 31(4): 545–567. https://doi.org/10.1260/0144-5987.31.4.545 |
Xie, S. Y., Lei, L., Jiao, C. L., et al., 2019. Internal Dissolution and Pore Structural Evolution of Oolitic Dolomite. Geoscience, 33(6): 1174–1187 (in Chinese with English Abstract) |
Zhang, R. H., Hu, S. M., Zhang, X. T., et al., 2007. Dissolution Kinetics of Dolomite in Water at Elevated Temperatures. Aquatic Geochemistry, 13(4): 309–338. https://doi.org/10.1007/s10498-007-9022-z |
Zhang, S. C., Gao, Z. Y., Li, J. J., et al., 2012. Identification and Distribution of Marine Hydrocarbon Source Rocks in the Ordovician and Cambrian of the Tarim Basin. Petroleum Exploration and Development, 39(3): 305–314. https://doi.org/10.1016/s1876-3804(12)60046-9 |
Zhang, Y. C., Tian, W., Qu, X. Y., et al., 2019. Water-Rock Simulation during Limestone Dissolution. Journal of Engineering Science and Technology Review, 12(4): 51–59. https://doi.org/10.25103/jestr.124.06 |
Zhao, C. B., Hobbs, B., Ord, A., 2019. Finite Element Modeling of Convective Pore-Fluid Flow in Fluid-Saturated Porous Rocks within Upper Crust: An Overview. Journal of Central South University, 26(3): 501–514. https://doi.org/10.1007/s11771-019-4022-x |
Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2016. The Thermal History of the Sichuan Basin, SW China: Evidence from the Deep Boreholes. Science China Earth Sciences, 59(1): 70–82. https://doi.org/10.1007/s11430-015-5116-4 |
Zhu, D. Y., Zhang, D. W., Liu, Q. Y., et al., 2017. Activity of Silica-Rich Hydrothermal Fluid and Its Impact on Deep Dolomite Reservoirs in the Sichuan Basin, Southern China. Acta Geologica Sinica - English Edition, 91(6): 2214–2229. https://doi.org/10.1111/1755-6724.13459 |
Zhu, G. Y., Zhang, Y., Zhou, X. X., et al., 2019. TSR, Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field, Tarim Basin, China. Fuel, 236: 1078–1092. https://doi.org/10.1 016/j.fuel.2018.08.119 doi: 10.1016/j.fuel.2018.08.119 |
Zhu, N., Cao, Y. C., Xi, K. L., et al., 2021. Multisourced CO2 Injection in Fan Delta Conglomerates and Its Influence on Reservoir Quality: Evidence from Carbonate Cements of the Baikouquan Formation of Mahu Sag, Junggar Basin, Northwestern China. Journal of Earth Science, 32(4): 901–918. https://doi.org/10.1007/s12583-020-1360-4 |
Zhu, W. H., Qu, X. Y., Qiu, L. W., et al., 2015. Characteristics and Erosion Mechanism of Carbonate in Acetic Acid and Hydrochloride Solutions, an Example from the Nanpu Depression. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 619–625 (in Chinese with English Abstract) |