Citation: | Jian-Fang Guo, Qiang Ma, Jian-Ping Zheng, Yu-Ping Su. Spatial and Temporal Evolution of Lithospheric Mantle beneath the Eastern North China Craton: Constraints from Mineral Chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and a Regional Synthesis. Journal of Earth Science, 2025, 36(2): 474-484. doi: 10.1007/s12583-022-1691-4 |
Mineralogical data are presented for the peridotite xenoliths from Miocene (~19 Ma) Qingyuan basalts in the eastern North China Craton (NCC), with the aim of constraining on property of the sub-continental lithospheric mantle (SCLM) beneath the northern Tan-Lu fault zone (TLFZ) during the Cenozoic. The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg# olivines (89.4 to 91.2), suggesting that the regional SCLM is mainly transitional and fertile. Light rare earth element (LREE)-depleted, slightly depleted and enriched clinopyroxenes (Cpx) are identified in different peridotites. Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism. The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space. The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone. The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism, respectively. The spatial-temporal lithospheric mantle heterogeneity in composition, age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
Bai, X. J., Qiu, H. N., Liu, W. G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408–415. https://doi.org/10.1007/s12583-017-0948-9 |
Bailey, D. K., 1987. Mantle Metasomatism—Perspective and Prospect. Geological Society, London, Special Publications, 30(1): 1–13. https://doi.org/10.1144/gsl.sp.1987.030.01.02 |
Bertrand, P., Mercier, J. C. C., 1985. The Mutual Solubility of Coexisting Ortho- and Clinopyroxene: Toward an Absolute Geothermometer for the Natural System? Earth and Planetary Science Letters, 76(1/2): 109–122. https://doi.org/10.1016/0012-821x(85)90152-9 |
Bian, X., Su, Y. P., Zheng, J. P., et al., 2021. Multi-Stage Mantle Accretions and Metasomatisms Related to Peripheral Subduction or Collision in the Northern North China Craton: Evidence from the Nangaoya Peridotite Xenoliths. Lithos, 390/391: 106116. https://doi.org/10.1016/j.lithos.2021.106116 |
Brey, G. P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites Ⅱ. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353–1378. https://doi.org/10.1093/petrology/31.6.1353 |
Boyd, F. R., Gurney, J. J., 1986. Diamonds and the African Lithosphere. Science (New York, NY), 232(4749): 472–477. https://doi.org/10.1126/science.232.4749.472 |
Boyd, F. R., Nixon, P. H., 1978. Ultramafic Nodules from the Kimberley Pipes, South Africa. Geochimica et Cosmochimica Acta, 42(9): 1367–1382. https://doi.org/10.1016/0016-7037(78)90042-x |
Cao, R., Zhao, H. Q., Lan, Z. W., 2023. Calcite U-Pb Geochronology Revealing Late Ediacaran–Early Paleozoic Hydrothermal Alteration in the Stenian-Tonian Carbonate of Northeastern North China Craton. Journal of Earth Science, 34(6): 1724–1731. https://doi.org/10.1007/s12583-023-1859-6 |
Chen, L., Cheng, C., Wei, Z. G., 2009. Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness beneath the Central and Western North China Craton. Earth and Planetary Science Letters, 286(1/2): 171–183. https://doi.org/10.1016/j.epsl.2009.06.022 |
Chen, L., Jiang, M., Yang, J., et al., 2014. Presence of an Intralithospheric Discontinuity in the Central and Western North China Craton: Implications for Destruction of the Craton. Geology, 42(3): 223–226. https://doi.org/10.1130/g35010.1 |
Chen, X., Zheng, J. P., 2009. Mineral Chemistry of Peridotite Xenoliths in Yangyuan Cenozoic Basalts: Significance for Lithospheric Mantle Evolution beneath the North China Craton. Journal of Earth Science, 34: 203–239 (in Chinese with English Abstract) doi: 10.1016/S1874-8651(10)60080-4 |
Coltorti, M., Bonadiman, C., Hinton, R. W., et al., 1999. Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1): 133–165. https://doi.org/10.1093/petroj/40.1.133 |
Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10): 1857–1898. https://doi.org/10.1093/petrology/egp055 |
Deng, L. X., Liu, Y. S., Zong, K. Q., et al., 2017. Trace Element and Sr Isotope Records of Multi-Episode Carbonatite Metasomatism on the Eastern Margin of the North China Craton. Geochemistry, Geophysics, Geosystems, 18(1): 220–237. https://doi.org/10.1002/2016gc006618 |
Ding, C. W., Liu, Y. F., Dai, P., et al., 2023. Zircon U-Pb Geochronology of Baoyintu Group in the Northwestern Margin of the North China Craton and Its Geological Significance. Journal of Earth Science, 34(5): 1511–1526. https://doi.org/10.1007/s12583-021-1564-2 |
Du, Y. S., Zhou, Z. G., Wang, G. S., et al., 2024. Druse Calcite Crystals Formed by Mesoproterozoic Paleo-Earthquake Activity in the Northern Margin of the North China Craton. Journal of Earth Science, 35(2): 514–524. https://doi.org/10.1007/s12583-021-1416-0 |
Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307–322. https://doi.org/10.1016/s0012-821x(02)00489-2 |
Griffin, W. L., Zhang, A. D., O'Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C., 107–126. |
Gervasoni, F., Klemme, S., Rohrbach, A., et al., 2017. Experimental Constraints on Mantle Metasomatism Caused by Silicate and Carbonate Melts. Lithos, 282/283: 173–186. https://doi.org/10.1016/j.lithos.2017.03.004 |
Hellebrand, E., Snow, J. E., Dick, H. J., et al., 2001. Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites. Nature, 410(6829): 677–681. https://doi.org/10.1038/35070546 |
Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/S0098-3004(01)00095-4 |
Li, Z., Wei, C. J., Yang, C., et al., 2024. A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes. Journal of Earth Science, 35(1): 29–40. https://doi.org/10.1007/s12583-023-1807-5 |
Li, Z. X., 1994. Collision between the North and South China Blocks: A Crustal-Detachment Model for Suturing in the Region East of the Tanlu Fault. Geology, 22(8): 739–742. https://doi.org/10.1130/0091-7613(1994)0220739:cbtnas>2.3.co;2 doi: 10.1130/0091-7613(1994)0220739:cbtnas>2.3.co;2 |
Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339. https://doi.org/10.1130/0091-7613(1992)0200339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)0200339:romcit>2.3.co;2 |
Liu, J. G., Rudnick, R. L., Walker, R. J., et al., 2011. Mapping Lithospheric Boundaries Using Os Isotopes of Mantle Xenoliths: an Example from the North China Craton. Geochimica et Cosmochimica Acta, 75(13): 3881–3902. https://doi.org/10.1016/j.gca.2011.04.018 |
Liu, J. G., Cai, R. H., Pearson, D. G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017 |
Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473 |
Ma, Q., Xu, Y. G., Deng, Y. F., et al., 2019. Similar Crust beneath Disrupted and Intact Cratons: Arguments Against Lower-Crust Delamination as a Decratonization Trigger. Tectonophysics, 750: 1–8. https://doi.org/10.1016/j.tecto.2018.11.007 |
Ma, Q., Xu, Y. G., Huang, X. L., et al., 2020. Eoarchean to Paleoproterozoic Crustal Evolution in the North China Craton: Evidence from U-Pb and Hf-O Isotopes of Zircons from Deep-Crustal Xenoliths. Geochimica et Cosmochimica Acta, 278: 94–109. https://doi.org/10.1016/j.gca.2019.09.009 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Menzies, M., Xu, Y. G., Zhang, H. F., et al., 2007. Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 96(1/2): 1–21. https://doi.org/10.1016/j.lithos.2006.09.008 |
Norman, M. D., 1998. Melting and Metasomatism in the Continental Lithosphere: Laser Ablation ICPMS Analysis of Minerals in Spinel Lherzolites from Eastern Australia. Contributions to Mineralogy and Petrology, 130(3): 240–255. https://doi.org/10.1007/s004100050363 |
O'Reilly, S. Y., Griffin, W. L., 2013. Mantle Metasomatism. In: Harlow, D. E., Austrheim, H., eds., Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. Springer, New York |
Pearson, D. G., Scott, J. M., Liu, J. G., et al., 2021. Deep Continental Roots and Cratons. Nature, 596(7871): 199–210. https://doi.org/10.1038/s41586-021-03600-5 |
Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410(6825): 197–200. https://doi.org/10.1038/35065583 |
Shmelev, V. R., Arai, S., Tamura, A., 2019. Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data. Journal of Earth Science, 30(3): 431–450. https://doi.org/10.1007/s12583-019-1224-y |
Sun, J., Liu, C. Z., Wu, F. Y., et al., 2012. Metasomatic Origin of Clinopyroxene in Archean Mantle Xenoliths from Hebi, North China Craton: Trace-Element and Sr-Isotope Constraints. Chemical Geology, 328: 123–136. https://doi.org/10.1016/j.chemgeo.2012.03.014 |
Tu, X. L., Zhang, H., Deng, W. F., et al., 2011. Application of Resolution in situ Laser Ablation ICP-MS in Trace Element Analyses. Geochimica, 40: 83–89 |
Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2011. Multistage Melt/Fluid-Peridotite Interactions in the Refertilized Lithospheric Mantle beneath the North China Craton: Constraints from the Li-Sr-Nd Isotopic Disequilibrium between Minerals of Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 161(6): 845–861. https://doi.org/10.1007/s00410-010-0568-1 |
Tang, Y. J., Ying, J. F., Zhao, Y. P., et al., 2021. Nature and Secular Evolution of the Lithospheric Mantle beneath the North China Craton. Science China Earth Sciences, 64(9): 1492–1503. https://doi.org/10.1007/s11430-020-9737-4 |
Vernières, J., Godard, M., Bodinier, J. L., 1997. A Plate Model for the Simulation of Trace Element Fractionation during Partial Melting and Magma Transport in the Earth's Upper Mantle. Journal of Geophysical Research: Solid Earth, 102(B11): 24771–24784. https://doi.org/10.1029/97jb01946 |
Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129–139. https://doi.org/10.1007/bf00372872 |
Wu, F. Y., Walker, R. J., Yang, Y. H., et al., 2006. The Chemical-Temporal Evolution of Lithospheric Mantle Underlying the North China Craton. Geochimica et Cosmochimica Acta, 70(19): 5013–5034. https://doi.org/10.1016/j.gca.2006.07.014 |
Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173–195. https://doi.org/10.1146/annurev-earth-053018-060342 |
Xia, Q. K., Hao, Y. T., Li, P., et al., 2010. Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton. Journal of Geophysical Research, 115(B7): B07207. https://doi.org/10.1029/2009jb006694 |
Xiao, Y., Zhang, H. F., Fan, W. M., et al., 2010. Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton: Evidence from Petrology and Geochemistry of Peridotite Xenoliths. Lithos, 117(1/2/3/4): 229–246. https://doi.org/10.1016/j.lithos.2010.02.017 |
Xie, G. H., Wang, J. W., Wei, K. J., et al., 1992. The Study on Geochemistry of Cenozoic Volcanic Rock in Huangyishan, Kuandian, Liaoning Province. In: Liu, R. X., ed., The Age and Geochemistry of Cenozoic Volcanic Rock in China. Seismic Press, Beijing, 101–113 (in Chinese) |
Xu, Y. G., 2001. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 747–757. https://doi.org/10.1016/s1464-1895(01)00124-7 |
Xu, Y. G., Menzies, M. A., Thirlwall, M. F., et al., 2003. "Reactive" Harzburgites from Huinan, NE China: Products of the Lithosphere-Asthenosphere Interaction during Lithospheric Thinning? Geochimica et Cosmochimica Acta, 67(3): 487–505. https://doi.org/10.1016/s0016-7037(02)01089-x |
Xu, Y. G., Blusztajn, J., Ma, J. L., et al., 2008. Late Archean to Early Proterozoic Lithospheric Mantle beneath the Western North China Craton: Sr-Nd-Os Isotopes of Peridotite Xenoliths from Yangyuan and Fansi. Lithos, 102(1/2): 25–42. https://doi.org/10.1016/j.lithos.2007.04.005 |
Xu, R., Liu, Y. S., Tong, X. R., et al., 2013. In situ Trace Elements and Li and Sr Isotopes in Peridotite Xenoliths from Kuandian, North China Craton: Insights into Pacific Slab Subduction-Related Mantle Modification. Chemical Geology, 354: 107–123. https://doi.org/10.1016/j.chemgeo.2013.06.022 |
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 1998. The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. Mantle Dynamics and Plate Interactions in East Asia. Washington D. C.: American Geophysical Union, 167–195. |
Ying, J. F., Zhang, H. F., Kita, N., et al., 2006. Nature and Evolution of Late Cretaceous Lithospheric Mantle beneath the Eastern North China Craton: Constraints from Petrology and Geochemistry of Peridotitic Xenoliths from Jünan, Shandong Province, China. Earth and Planetary Science Letters, 244(3/4): 622–638. https://doi.org/10.1016/j.epsl.2006.02.023 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. https://doi.org/10.1016/s0301-9268(00)00154-6 |
Zhao, Y., Zheng, J. P., Xiong, Q., 2019. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 30(3): 666–678. https://doi.org/10.1007/s12583-019-1220-2 |
Zhang, H. F., Yang, Y. H., 2007. Emplacement Age and Sr-Nd-Hf Isotopic Characteristics of the Diamondiferous Kimberlites from the Eastern North China Craton. Acta Petrologica Sinica, 23(2): 285–294 (in Chinese with English Abstract) |
Zhang, H. F., Goldstein, S. L., Zhou, X. H., et al., 2008. Evolution of Subcontinental Lithospheric Mantle beneath Eastern China: Re-Os Isotopic Evidence from Mantle Xenoliths in Paleozoic Kimberlites and Mesozoic Basalts. Contributions to Mineralogy and Petrology, 155(3): 271–293. https://doi.org/10.1007/s00410-007-0241-5 |
Zhang, H. F., Goldstein, S. L., Zhou, X. H., et al., 2009. Comprehensive Refertilization of Lithospheric Mantle beneath the North China Craton: Further Os-Sr-Nd Isotopic Constraints. Journal of the Geological Society, 166(2): 249–259. https://doi.org/10.1144/0016-76492007-152 |
Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 1998. Nature and Evolution of Cenozoic Lithospheric Mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 40(6): 471–499. https://doi.org/10.1080/00206819809465220 |
Zheng, J. P., 1999. Mesozoic–Cenozoic Mantle Replacement and Lithospheric Thinning. China University of Geosciences Press, Wuhan (in Chinese) |
Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 2001. Relict Refractory Mantle beneath the Eastern North China Block: Significance for Lithosphere Evolution. Lithos, 57(1): 43–66. https://doi.org/10.1016/s0024-4937(00)00073-6 |
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11): 2233–2256. https://doi.org/10.1093/petrology/egl042 |
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203–5225. https://doi.org/10.1016/j.gca.2007.07.028 |
Zheng, J. P., 2009. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings: Implications for Destructive and Accretional Processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397–3416. https://doi.org/10.1007/s11434-009-0308-y |
Zheng, J. P., Xia, B., Dai, H. K., et al., 2021. Lithospheric Structure and Evolution of the North China Craton: An Integrated Study of Geophysical and Xenolith Data. Science China Earth Sciences, 64(2): 205–219. https://doi.org/10.1007/s11430-020-9682-5 |
Zong, K. Q., Liu, Y. S., 2018. Carbonate Metasomatism in the Lithospheric Mantle: Implications for Cratonic Destruction in North China. Science China Earth Sciences, 61(6): 711–729. https://doi.org/10.1007/s11430-017-9185-2 |
Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61(4): 386–405. https://doi.org/10.1007/s11430-017-9136-4 |
Zhu, R. X., Chen, L., Wu, F. Y., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54: 789–797 (in Chinese with English Abstract) |
Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565–1587. https://doi.org/10.1007/s11430-012-4516-y |