Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 1
Feb 2024
Turn off MathJax
Article Contents
Xingao Hou, Zhiqiang Yu, Shefa Chen, Lei Liu, Yilin Xiao. Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central-East China. Journal of Earth Science, 2024, 35(1): 1-15. doi: 10.1007/s12583-022-1692-3
Citation: Xingao Hou, Zhiqiang Yu, Shefa Chen, Lei Liu, Yilin Xiao. Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central-East China. Journal of Earth Science, 2024, 35(1): 1-15. doi: 10.1007/s12583-022-1692-3

Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central-East China

doi: 10.1007/s12583-022-1692-3
More Information
  • Corresponding author: Lei Liu, liu01@ustc.edu.cn
  • Received Date: 21 Feb 2022
  • Accepted Date: 01 Jun 2022
  • Issue Publish Date: 29 Feb 2024
  • In order to decipher element mobility in UHP meta-sedimentary rocks in the continental subduction zone, major and trace element compositions are investigated for a continuous profile from a representative UHP region in the Dabie Mountains. Among the lithologic contact zone, contents of K, Ca, LREE, and LILE exhibit varying degrees of downward trends in both marble and eclogite toward the contact zone, indicating that marble and their associated eclogite can release a large amount of K, Ca, and a small number of LILEs and LREEs. Titanite is the main Ti phase in both marble and eclogite. Titanite rims around rutile can occasionally be seen in eclogite. Contents of Ti and HFSE exhibit a well-coupled relation among marble and eclogite, indicating that substantial Ti and HFSEs were migrated from eclogite to marble, in accord with the capacity of a melt medium. Rutiles and titanites in marble exhibit a relatively limited variation in Nb/Ta ratios (12.9–16.2), similar to those of titanites in eclogite (14.2–16.7), which demonstrates that rutiles and titanites in marble were sourced from eclogite because of short-distance migrations of Ti and HFSEs. According to the P-T path and the temperature and pressure conditions of the peak metamorphism reported by previous studies, the eclogite associated with marble may not form supercritical fluids in the subduction zone because of the addition of carbonate minerals.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1692-3.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adam, J., Green, T., 2001. Experimentally Determined Partition Coefficients for Minor and Trace Elements in Peridotite Minerals and Carbonatitic Melt, and Their Relevance to Natural Carbonatites. European Journal of Mineralogy, 13(5): 815–827. https://doi.org/10.1127/0935-1221/2001/0013/0815
    Arculus, R. J., Lapierre, H., Jaillard, É., 1999. Geochemical Window into Subduction and Accretion Processes: Raspas Metamorphic Complex, Ecuador. Geology, 27(6): 547–550. https://doi.org/10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2
    Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125–148. https://doi.org/10.1007/s00410-006-0104-5
    Barth, M. G., Foley, S. F., Horn, I., 2002. Partial Melting in Archean Subduction Zones: Constraints from Experimentally Determined Trace Element Partition Coefficients between Eclogitic Minerals and Tonalitic Melts under Upper Mantle Conditions. Precambrian Research, 113(3/4): 323–340. https://doi.org/10.1016/S0301-9268(01)00216-9
    Becker, H., Jochum, K. P., Carlson, R. W., 2000. Trace Element Fractionation during Dehydration of Eclogites from High-Pressure Terranes and the Implications for Element Fluxes in Subduction Zones. Chemical Geology, 163(1/2/3/4): 65–99. https://doi.org/10.1016/S0009-2541(99)00071-6
    Beinlich, A., Klemd, R., John, T., et al., 2010. Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit: Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction. Geochimica et Cosmochimica Acta, 74(6): 1892–1922. https://doi.org/10.1016/j.gca.2009.12.011
    Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54–56. https://doi.org/10.1038/378054a0
    Buob, A., 2006. Experiments on CaCO3-MgCO3 Solid Solutions at High Pressure and Temperature. American Mineralogist, 91(2/3): 435–440. https://doi.org/10.2138/am.2006.1910
    Bureau, H., Keppler, H., 1999. Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165(2): 187–196. https://doi.org/10.1016/S0012-821X(98)00266-0
    Byrnes, A. P., Wyllie, P. J., 1981. Subsolidus and Melting Relations for the Join CaCO3-MgCO3 at 10 Kbar. Geochimica et Cosmochimica Acta, 45(3): 321–328. https://doi.org/10.1016/0016-7037(81)90242-8
    Carswell, D. A., Wilson, R. N., Zhai, M., 1996. Ultra-High Pressure Aluminous Titanites in Carbonate-Bearing Eclogites at Shuanghe in Dabieshan, Central China. Mineralogical Magazine, 60(400): 461–471. doi: 10.1180/minmag.1996.060.400.07
    Chen, R. X., Yin, Z. Z., Xia, C. P., 2019. Crustal Metasomatism of Mantle Wedge during Collisional Orogeny: Insights from Orogenic Peridotites in the Dabie-Sulu Orogenic Belt. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 459–484, 438. https://doi.org/10.19658/j.issn.1007-2802.2019.38.068 (in Chinese with English Abstract)
    Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007a. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299–2325. https://doi.org/10.1016/j.gca.2007.02.012
    Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007b. Oxygen Isotope Geochemistry of Ultrahigh-Pressure Metamorphic Rocks from 200–4 000 m Core Samples of the Chinese Continental Scientific Drilling. Chemical Geology, 242(1/2): 51–75. https://doi.org/10.1016/j.chemgeo.2007.03.008
    Chen, Y. X., Tang, J., Zheng, Y. F., et al., 2016. Geochemical Constraints on Petrogenesis of Marble-Hosted Eclogites from the Sulu Orogen in China. Chemical Geology, 436: 35–53. https://doi.org/10.1016/j.chemgeo.2016.05.006
    Chen, Y. X., Zheng, Y. F., Hu, Z., 2013. Petrological and Zircon Evidence for Anatexis of UHP Quartzite during Continental Collision in the Sulu Orogen. Journal of Metamorphic Geology, 31(4): 389–413. https://doi.org/10.1111/jmg.12026
    Chu, X. L., Guo, J. H., Fan, H. R., et al., 2003. Oxygen Isotope Compositions of Eclogites in Rongcheng, Eastern China. Chinese Science Bulletin, 48(4): 372–378. https://doi.org/10.1007/BF03183233
    Cong, B. L., Zhai, M. G., Carswell, D. A. C., et al., 1995. Petrogenesis of Ultrahigh-Pressure Rocks and Their Country Rocks at Shuanghe in Dabieshan, Central China. European Journal of Mineralogy, 7(1): 119–138. https://doi.org/10.1127/ejm/7/1/0119
    Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73–85. https://doi.org/10.1016/j.epsl.2004.08.004
    Frost, B. R., Chamberlain, K. R., Schumacher, J. C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131–148. https://doi.org/10.1016/S0009-2541(00)00240-0
    Fu, B., Zheng, Y. F., Wang, Z. R., et al., 1999. Oxygen and Hydrogen Isotope Geochemistry of Gneisses Associated with Ultrahigh Pressure Eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology, 134(1): 52–66. https://doi.org/10.1007/s004100050468
    Gao, J., John, T., Klemd, R., et al., 2007. Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974–4996. https://doi.org/10.1016/j.gca.2007.07.027
    Gao, X. Y., Zheng, Y. F., Chen, Y. X., 2011. U-Pb Ages and Trace Elements in Metamorphic Zircon and Titanite from UHP Eclogite in the Dabie Orogen: Constraints on P-T-t Path. Journal of Metamorphic Geology, 29(7): 721–740. https://doi.org/10.1111/j.1525-1314.2011.00938.x
    Grassi, D., Schmidt, M. W., 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. Journal of Petrology, 52(4): 765–789. https://doi.org/10.1093/petrology/egr002
    Green, T. H., Pearson, N. J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P, T. Chemical Geology, 54(3/4): 185–201. https://doi.org/10.1016/0009-2541(86)90136-1
    Guo, S., Su, B., John, T., et al., 2022. Boron Release and Transfer Induced by Phengite Breakdown in Subducted Impure Metacarbonates. Lithos, 408/409: 106548. https://doi.org/10.1016/j.lithos.2021.106548
    Guo, S., Zhao, K. D., John, T., et al., 2019. Metasomatic Flow of Metacarbonate-Derived Fluids Carrying Isotopically Heavy Boron in Continental Subduction Zones: Insights from Tourmaline-Bearing Ultra-High Pressure Eclogites and Veins (Dabie Terrane, Eastern China). Geochimica et Cosmochimica Acta, 253: 159–200. https://doi.org/10.1016/j.gca.2019.03.013
    Hammouda, T., Moine, B. N., Devidal, J. L., et al., 2009. Trace Element Partitioning during Partial Melting of Carbonated Eclogites. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 60–69. https://doi.org/10.1016/j.pepi.2008.06.009
    Hawkesworth, C. J., Hergt, J. M., Ellam, R. M., et al., 1991. Element Fluxes Associated with Subduction Related Magmatism. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 393–405. https://doi.org/10.1098/rsta.1991.0054
    Hellman, P. L., Green, T. H., 1979. The Role of Sphene as an Accessory Phase in the High-Pressure Partial Melting of Hydrous Mafic Compositions. Earth and Planetary Science Letters, 42(2): 191–201. https://doi.org/10.1016/0012-821X(79)90024-4
    Hermann, J., 2002. Allanite: Thorium and Light Rare Earth Element Carrier in Subducted Crust. Chemical Geology, 192(3/4): 289–306. https://doi.org/10.1016/S0009-2541(02)00222-X
    Hermann, J., Spandler, C. J., 2008. Sediment Melts at Sub-Arc Depths: An Experimental Study. Journal of Petrology, 49(4): 717–740. https://doi.org/10.1093/petrology/egm073
    Hermann, J., Spandler, C., Hack, A., et al., 2006. Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 92(3/4): 399–417. https://doi.org/10.1016/j.lithos.2006.03.055
    Huang, J. A., Xiao, Y. L., 2014. Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamorphic Rocks from the Dabie UHP Orogen, China: Insights into Supercritical Liquids in Continental Subduction Zones. International Geology Review, 57(9/10): 1103–1129. https://doi.org/10.1080/00206814.2014.893213
    Huang, J., Xiao, Y., Gao, Y., et al., 2012. Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones: Constraints from UHP Eclogite- and Vein-Hosted Rutile from the Dabie Orogen, Central-Eastern China. Journal of Metamorphic Geology, 30(8): 821–842. https://doi.org/10.1111/j.1525-1314.2012.01000.x
    Irving, A. J., Wyllie, P. J., 1975. Subsolidus and Melting Relationships for Calcite, Magnesite and the Join CaCO3-MgCO3 36 Kb. Geochimica et Cosmochimica Acta, 39(1): 35–53. https://doi.org/10.1016/0016-7037(75)90183-0
    Jahn, B. M., 1998. Geochemical and Isotopic Characteristics of UHP Eclogites and Ultramafic Rocks of the Dabie Orogen: Implications for Continental Subduction and Collisional Tectonics. In: Hacker, B. R., Liou, J. G., eds., When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Springer, Dordrecht. 203–239. https://doi.org/10.1007/978-94-015-9050-1_8
    Jahn, B. M., Rumble, D. Liou, J., 2003. Geochemistry and Isotope Tracer Study of UHP Metamorphic Rocks. In: Caeswell, D. A., Compagnoni, R., Rolfo, F., eds., Ultrahigh Pressure Metamorphism. Mineralogical Society of Great Britain and Ireland. 365–414. https://doi.org/10.1180/emu-notes.5.12
    Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DING Reference Glasses for in Situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2): Q02008. https://doi.org/10.1029/2005gc001060
    John, T., Klemd, R., Klemme, S., et al., 2011. Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition. Contributions to Mineralogy and Petrology, 161(1): 35–45. https://doi.org/10.1007/s00410-010-0520-4
    John, T., Scherer, E. E., Haase, K., et al., 2004. Trace Element Fractionation during Fluid-Induced Eclogitization in a Subducting Slab: Trace Element and Lu-Hf-Sm-Nd Isotope Systematics. Earth and Planetary Science Letters, 227(3/4): 441–456. https://doi.org/10.1016/j.epsl.2004.09.009
    Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120–180 km Depth. Nature, 437(7059): 724–727. https://doi.org/10.1038/nature03971
    Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109–3123. https://doi.org/10.1016/S0016-7037(02)00859-1
    Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1/2): 193–205. https://doi.org/10.1016/S0012-821X(97)00018-6
    Li, S. G., Jagoutz, E., Chen, Y. Z., et al., 2000. Sm-Nd and Rb-Sr Isotopic Chronology and Cooling History of Ultrahigh Pressure Metamorphic Rocks and Their Country Rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077–1093. https://doi.org/10.1016/S0016-7037(99)00319-1
    Li, X. P., Zheng, Y. F., Wu, Y. B., et al., 2004. Low-T Eclogite in the Dabie Terrane of China: Petrological and Isotopic Constraints on Fluid Activity and Radiometric Dating. Contributions to Mineralogy and Petrology, 148(4): 443–470. https://doi.org/10.1007/s00410-004-0616-9
    Li, Y. L., Zheng, Y. F., Fu, B., et al., 2001. Oxygen Isotope Composition of Quartz-Vein in Ultrahigh-Pressure Eclogite from Dabieshan and Implications for Transport of High-Pressure Metamorphic Fluid. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 695–704. https://doi.org/10.1016/S1464-1895(01)00120-X
    Liou, J. G., Zhang, R. Y., Jahn, B. M., 1997. Petrology, Geochemistry and Isotope Data on a Ultrahigh-Pressure Jadeite Quartzite from Shuanghe, Dabie Mountains, East-Central China. Lithos, 41(1/2/3): 59–78. https://doi.org/10.1016/S0024-4937(97)82005-1
    Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7): 569–589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
    Liu, L., Xiao, Y. L., Wörner, G., et al., 2014. Detrital Rutile Geochemistry and Thermometry from the Dabie Orogen: Implications for Source-Sediment Links in a UHPM Terrane. Journal of Asian Earth Sciences, 89: 123–140. https://doi.org/10.1016/j.jseaes.2014.04.003
    Liu, Q., Hermann, J., Zhang, J. F., 2013. Polyphase Inclusions in the Shuanghe UHP Eclogites Formed by Subsolidus Transformation and Incipient Melting during Exhumation of Deeply Subducted Crust. Lithos, 177: 91–109. https://doi.org/10.1016/j.lithos.2013.06.010
    Liu, X. C., Hu, K., Li, X. X., et al., 1994. The Diversity and Origion of Eclogites from the Dabie: Sulu High: Pressure Metamorphic Belt. Geological Review, 40(6): 494–501. https://doi.org/10.16509/j.georeview.1994.06.003 (in Chinese with English Abstract)
    Lucassen, F., Dulski, P., Abart, R., et al., 2010. Redistribution of HFSE Elements during Rutile Replacement by Titanite. Contributions to Mineralogy and Petrology, 160(2): 279–295. https://doi.org/10.1007/s00410-009-0477-3
    Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Multistage Metasomatism in Ultrahigh-Pressure Mafic Rocks from the North Dabie Complex (China). Lithos, 90(1/2): 19–42. https://doi.org/10.1016/j.lithos.2006.01.002
    Manning, C. E., 2004. The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223(1/2): 1–16. https://doi.org/10.1016/j.epsl.2004.04.030
    Massonne, H. J., Fockenberg, T., 2022. Melting of Phengite-Bearing Eclogite at Pressures of 4 and 9 GPa Relevant to Deep Regions of a Subduction Zone. Earth and Planetary Science Letters, 584: 117475. https://doi.org/10.1016/j.epsl.2022.117475
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Meinhold, G., 2010. Rutile and Its Applications in Earth Sciences. Earth-Science Reviews, 102(1/2): 1–28. https://doi.org/10.1016/j.earscirev.2010.06.001
    Mibe, K., Kawamoto, T., Matsukage, K. N., et al., 2011. Slab Melting Versus Slab Dehydration in Subduction-Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8177–8182. https://doi.org/10.1073/pnas.1010968108
    Nichols, G. T., Wyllie, P. J., Stern, C. R., 1994. Subduction Zone Melting of Pelagic Sediments Constrained by Melting Experiments. Nature, 371(6500): 785–788. https://doi.org/10.1038/371785a0
    Okay, A. I., 1993. Petrology of a Diamond and Coesite-Bearing Metamorphic Terrain: Dabie Shan, China. European Journal of Mineralogy, 5(4): 659–676. https://doi.org/10.1127/ejm/5/4/0659
    Plank, T., Langmuir, C. H., 1993. Tracing Trace Element from Sediment Input to Volcanic Output at Subduction Zones. Nature, 362: 739–742 doi: 10.1038/362739a0
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2
    Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231–254. https://doi.org/10.1016/S0009-2541(01)00363-1
    Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187. https://doi.org/10.1016/S0016-7037(02)01321-2
    Rumble, D., Wang, Q. C., Zhang, R. Y., 2000. Stable Isotope Geochemistry of Marbles from the Coesite UHP Terrains of Dabieshan and Sulu, China. Lithos, 52(1/2/3/4): 79–95. https://doi.org/10.1016/S0024-4937(99)00085-7
    Rüpke, L. H., Morgan, J. P., Hort, M., et al., 2002. Are the Regional Variations in Central American Arc Lavas Due to Differing Basaltic Versus Peridotitic Slab Sources of Fluids? Geology, 30(11): 1035–1038. https://doi.org/10.1130/0091-7613(2002)0301035:atrvic>2.0.co;2 doi: 10.1130/0091-7613(2002)0301035:atrvic>2.0.co;2
    Scambelluri, M., Bottazzi, P., Trommsdorff, V., et al., 2001. Incompatible Element-Rich Fluids Released by Antigorite Breakdown in Deeply Subducted Mantle. Earth and Planetary Science Letters, 192(3): 457–470. https://doi.org/10.1016/S0012-821X(01)00457-5
    Schertl, H. P., Okay, A. I., 1994. A Coesite Inclusion in Dolomite in Dabie Shan, China: Petrological and Rheological Significance. European Journal of Mineralogy, 6(6): 995–1000. https://doi.org/10.1127/ejm/6/6/0995
    Schmidt, M. W., 1996. Experimental Constraints on Recycling of Potassium from Subducted Oceanic Crust. Science, 272(5270): 1927–1930. https://doi.org/10.1126/science.272.5270.1927
    Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1/2): 65–84. https://doi.org/10.1016/j.epsl.2004.09.020
    Shen, A. H., Keppler, H., 1997. Direct Observation of Complete Miscibility in the Albite-H2O System. Nature, 385(6618): 710–712. https://doi.org/10.1038/385710a0
    Sheng, Y. M., Xia, Q. K., Dallai, L., et al., 2007. H2O Contents and D/H Ratios of Nominally Anhydrous Minerals from Ultrahigh-Pressure Eclogites of the Dabie Orogen, Eastern China. Geochimica et Cosmochimica Acta, 71(8): 2079–2103. https://doi.org/10.1016/j.gca.2007.01.018
    Sindern, S., 2017. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS. Physical Sciences Reviews, 2(2): 20160066. https://doi.org/10.1515/psr-2016-0066
    Spandler, C., Hermann, J., Arculus, R., et al., 2003. Redistribution of Trace Elements during Prograde Metamorphism from Lawsonite Blueschist to Eclogite Facies; Implications for Deep Subduction-Zone Processes. Contributions to Mineralogy and Petrology, 146(2): 205–222. https://doi.org/10.1007/s00410-003-0495-5
    Spandler, C., Mavrogenes, J., Hermann, J., 2007. Experimental Constraints on Element Mobility from Subducted Sediments Using High-P Synthetic Fluid/Melt Inclusions. Chemical Geology, 239(3/4): 228–249. https://doi.org/10.1016/j.chemgeo.2006.10.005
    Storkey, A. C., Hermann, J., Hand, M., et al., 2005. Using in situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46(6): 1283–1308. https://doi.org/10.1093/petrology/egi017
    Suito, K., Namba, J., Horikawa, T., et al., 2001. Phase Relations of CaCO3 at High Pressure and High Temperature. American Mineralogist, 86(9): 997–1002. https://doi.org/10.2138/am-2001-8-906
    Suo, S. T., Zhong Z. Q., Zhou H. W., et al., 2012. Multi-Stage Tectonic Exhumation Processes of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Dabie-Sulu Area, East-Central China. Earth Science, 37(1): 1–17. https://doi.org/10.3799/dqkx.2012.001 (in Chinese with English Abstract)
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge
    Tenthorey, E., Hermann, J., 2004. Composition of Fluids during Serpentinite Breakdown in Subduction Zones: Evidence for Limited Boron Mobility. Geology, 32(10): 865–868. https://doi.org/10.1130/g20610.1
    Tropper, P., Manning, C. E., 2008. The Current Status of Titanite-Rutile Thermobarometry in Ultrahigh-Pressure Metamorphic Rocks: The Influence of Titanite Activity Models on Phase Equilibrium Calculations. Chemical Geology, 254(3/4): 123–132. https://doi.org/10.1016/j.chemgeo.2008.03.010
    Tsuno, K., Dasgupta, R., 2012. The Effect of Carbonates on Near-Solidus Melting of Pelite at 3 GPa: Relative Efficiency of H2O and CO2 Subduction. Earth and Planetary Science Letters, 319/320: 185–196. https://doi.org/10.1016/j.epsl.2011.12.007
    Wang, S. J., Teng, F. Z., Li, S. G., 2014. Tracing Carbonate-Silicate Interaction during Subduction Using Magnesium and Oxygen Isotopes. Nature Communications, 5: 5328. https://doi.org/10.1038/ncomms6328
    Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743–3761. https://doi.org/10.1016/j.gca.2006.05.011
    Wyllie, P. J., Ryabchikov, I. D., 2000. Volatile Components, Magmas, and Critical Fluids in Upwelling Mantle. Journal of Petrology, 41(7): 1195–1206. https://doi.org/10.1093/petrology/41.7.1195
    Xia, Q. K., Sheng, Y. M., Yang, X. Z., et al., 2005. Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China. Chemical Geology, 224(4): 237–246. https://doi.org/10.1016/j.chemgeo.2005.08.003
    Xia, Q. X., Zheng, Y. F., Chen, Y. X., 2013. Protolith Control on Fluid Availability for Zircon Growth during Continental Subduction-Zone Metamorphism in the Dabie Orogen. Journal of Asian Earth Sciences, 67/68: 93–113. https://doi.org/10.1016/j.jseaes.2013.02.014
    Xia, Q. X., Zheng, Y. F., Zhou, L. G., 2008. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geochemistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chemical Geology, 247(1/2): 36–65. https://doi.org/10.1016/j.chemgeo.2007.09.013
    Xiao, Y. L., Sun, H., Gu, H. O., et al., 2015. Fluid/Melt in Continental Deep Subduction Zones: Compositions and Related Geochemical Fractionations. Science China Earth Sciences, 58(9): 1457–1476. https://doi.org/10.1007/s11430-015-5149-8
    Xiao, Y. L., Sun, W. D., Hoefs, J., et al., 2006. Making Continental Crust through Slab Melting: Constraints from Niobium-Tantalum Fractionation in UHP Metamorphic Rutile. Geochimica et Cosmochimica Acta, 70(18): 4770–4782. https://doi.org/10.1016/j.gca.2006.07.010
    Xie, Z. J., Liu, X. W., Jin, Z. M., et al., 2020. Microstructures and Phase Transition in Omphacite: Constraints on the P-T Path of Shuanghe Eclogite (Dabie Orogen). Journal of Earth Science, 31(2): 254–261. https://doi.org/10.1007/s12583-019-1279-9
    Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014
    Xiong, X. L., Keppler, H., Audétat, A., et al., 2011. Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673–1692. https://doi.org/10.1016/j.gca.2010.06.039
    Xiong, X., Keppler, H., Audétat, A., et al., 2009. Experimental Constraints on Rutile Saturation during Partial Melting of Metabasalt at the Amphibolite to Eclogite Transition, with Applications to TTG Genesis. American Mineralogist, 94(8/9): 1175–1186. https://doi.org/10.2138/am.2009.3158
    Yan, W. H., Wang, Q., Li, W. Q., 2022. Behavior of Mg-Fe-C-O Isotopes at the Contact Zone between Marble and Eclogite in Subduction Zones. Acta Geologica Sinica, 96(2): 500–516. https://doi.org/10.19762/j.cnki.dizhixuebao.2021169 (in Chinese with English Abstract)
    Ye, K., Liu, J. B., Cong, B. L., et al., 2002. Ultrahigh-Pressure (UHP) Low-Al Titanites from Carbonate-Bearing Rocks in Dabieshan-Sulu UHP Terrane, Eastern China. American Mineralogist, 87(7): 875–881. https://doi.org/10.2138/am-2002-0710
    Zack, T., Kronz, A., Foley, S. F., et al., 2002. Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chemical Geology, 184(1/2): 97–122. https://doi.org/10.1016/S0009-2541(01)00357-6
    Zack, T., Rivers, T., Foley, S., 2001. Cs-Rb-Ba Systematics in Phengite and Amphibole: An Assessment of Fluid Mobility at 2.0 GPa in Eclogites from Trescolmen, Central Alps. Contributions to Mineralogy and Petrology, 140(6): 651–669. https://doi.org/10.1007/s004100000206
    Zhai, M. G., Cong, B. L., Zhao, Z., et al., 1992. High Pressure Jadeitic Quartzite from Dabie Eclogite Belt and Its Geological Implication. Chinese Science Bulletin, 37: 1013–1015 doi: 10.1360/csb1992-37-11-1013
    Zhang, R. Y., Liou, J. G., 1996. Coesite Inclusions in Dolomite from Eclogite in the Southern Dabie Mountains, China; The Significance of Carbonate Minerals in UHPM Rocks. American Mineralogist, 81(1/2): 181–186. https://doi.org/10.2138/am-1996-1-222
    Zhang, R. Y., Liou, J. G., Cong, B. L., 1995. Talc-, Magnesite- and Ti-Clinohumite-Bearing Ultrahigh-Pressure Meta-Mafic and Ultramafic Complex in the Dabie Mountains, China. Journal of Petrology, 36: 1011–1037. https://doi.org/10.1093/petrology/36.4.1011
    Zhang, Z. M., Xiao, Y. L., Xu, Z. Q., et al., 2013. UHP Metamorphic Rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and Geochemistry of the Main Hole (0–2, 050 m). Contributions to Mineralogy and Petrology, 166(1): 1. https://doi.org/10.1007/s00410-006-0080-9
    Zhao, Z. F., Chen, B., Zheng, Y. F., et al., 2007a. Mineral Oxygen Isotope and Hydroxyl Content Changes in Ultrahigh-Pressure Eclogite-Gneiss Contacts from Chinese Continental Scientific Drilling Project Cores. Journal of Metamorphic Geology, 25(2): 165–186. https://doi.org/10.1111/j.1525-1314.2007.00693.x
    Zhao, Z. F., Zheng, Y. F., Chen, R. X., et al., 2007b. Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Geochimica et Cosmochimica Acta, 71(21): 5244–5266. https://doi.org/10.1016/j.gca.2007.09.009
    Zheng, Y. F., Fu, B., Gong, B., et al., 1997. U-Pb Dating of Marble Associated with Eclogite from the Dabie Mountains, East China. Chinese Journal of Geochemistry, 16(3): 193–201. https://doi.org/10.1007/bf02870903
    Zheng, Y. F., Fu, B., Gong, B., et al., 1998a. Carbon Isotope Anomaly in Marbles Associated with Eclogites from the Dabie Mountains. Chinese Science Bulletin, 43(2): 155–160. https://doi.org/10.1007/BF02883933
    Zheng, Y. F., Fu, B., Gong, B., et al., 2003a. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/S0012-8252(02)00133-2
    Zheng, Y. F., Fu, B., Li, Y. L., et al., 1998b. Oxygen and Hydrogen Isotope Geochemistry of Ultrahigh-Pressure Eclogites from the Dabie Mountains and the Sulu Terrane. Earth and Planetary Science Letters, 155(1/2): 113–129. https://doi.org/10.1016/S0012-821X(97)00203-3
    Zheng, Y. F., Fu, B., Xiao, Y. L., et al., 1999. Hydrogen and Oxygen Isotope Evidence for Fluid-Rock Interactions in the Stages of Pre- and Post-UHP Metamorphism in the Dabie Mountains. Lithos, 46(4): 677–693. https://doi.org/10.1016/S0024-4937(98)00090-5
    Zheng, Y. F., Gao, X. Y., Chen, R. X., et al., 2011a. Zr-in-Rutile Thermometry of Eclogite in the Dabie Orogen: Constraints on Rutile Growth during Continental Subduction-Zone Metamorphism. Journal of Asian Earth Sciences, 40(2): 427–451. https://doi.org/10.1016/j.jseaes.2010.09.008
    Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2003b. Two Types of Gneisses Associated with Eclogite at Shuanghe in the Dabie Terrane: Carbon Isotope, Zircon U-Pb Dating and Oxygen Isotope. Lithos, 70(3/4): 321–343. https://doi.org/10.1016/S0024-4937(03)00104-X
    Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378–400. https://doi.org/10.1016/j.epsl.2005.09.025
    Zheng, Y. F., Xia, Q. X., Chen, R. X., et al., 2011b. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth-Science Reviews, 107(3/4): 342–374. https://doi.org/10.1016/j.earscirev.2011.04.004
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2): 127–150. https://doi.org/10.1016/j.lithos.2006.10.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(487) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return