Abarghani, A., Ostadhassan, M., Bubach, B., et al., 2019. Estimation of Thermal Maturity in the Bakken Source Rock from a Combination of Well Logs, North Dakota, USA. Marine and Petroleum Geology, 105: 32–44. https://doi.org/10.1016/j.marpetgeo.2019.04.005 |
Ahmadi, M. A., Bahadori, A., 2017. Characterization of Shale Oil. In: Bahadori, A., ed., Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs. Elsevier, Amsterdam. 483–519. https://doi.org/10.1016/b978-0-12-803437-8.00010-5 |
Bai, Y. L., Ma, Y. H., 2020. Geology of the Chang 7 Member Oil Shale of the Yanchang Formation of the Ordos Basin in Central North China. Petroleum Geoscience, 26(2): 355–371. https://doi.org/10.1144/petgeo2018-091 |
Butt, H. J., Kappl, M., 2009. Normal Capillary Forces. Advances in Colloid and Interface Science, 146(1/2): 48–60. https://doi.org/10.1016/j.cis.2008.10.002 |
Crnkovic-Friis, L., Erlandson, M., 2015. Geology Driven EUR Prediction Using Deep Learning. SPE Annual Technical Conference and Exhibition, September 28–30, 2015, Houston, Texas, USA. https://doi.org/10.2118/174799-MS |
Dang, W., Zhang, J. C., Tang, X., et al., 2018. Investigation of Gas Content of Organic-Rich Shale: A Case Study from Lower Permian Shale in Southern North China Basin, Central China. Geoscience Frontiers, 9(2): 559–575. https://doi.org/10.1016/j.gsf.2017.05.009 |
EIA, 2011. Bakken Formation Oil and Gas Drilling Activity Mirrors Development in the Barnett. 2011 (2 November 2019) |
EIA, 2014. Updates to the EIA Eagle Ford Play Maps. 2014 (December 2014) |
EIA, 2018. Assumptions to the Annual Energy Outlook 2018: Oil and Gas Supply Module. 2018 (5 April 2018) |
Espitalié, J., Marquis, F., Barsony, I., 1984. Geochemical Logging. In: Voorhees, K. J., ed., Analytical Pyrolysis. Elsevier, Amsterdam. 276–304. https://doi.org/10.1016/b978-0-408-01417-5.50013-5 |
French, K. L., Birdwell, J. E., Lewan, M. D., 2020. Trends in Thermal Maturity Indicators for the Organic Sulfur-Rich Eagle Ford Shale. Marine and Petroleum Geology, 118: 104459. https://doi.org/10.1016/j.marpetgeo.2020.104459 |
Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 998–1008. https://doi.org/10.1016/S1876-3804(18)30104-6 |
Gaswirth, S. B., Marra, K. R., 2015. U. S. Geological Survey 2013 Assessment of Undiscovered Resources in the Bakken and Three Forks Formations of the U. S. Williston Basin Province. AAPG Bulletin, 99(4): 639–660. https://doi.org/10.1306/08131414051 |
Gherabati, S. A., Browning, J., Male, F., et al., 2016. The Impact of Pressure and Fluid Property Variation on Well Performance of Liquid-Rich Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 33: 1056–1068. https://doi.org/10.1016/j.jngse.2016.06.019 |
Gherabati, S. A., Hamlin, H. S., Smye, K. M., et al., 2019. Evaluating Hydrocarbon-in-Place and Recovery Factor in a Hybrid Petroleum System: Case of Bakken and Three Forks in North Dakota. Interpretation, 7(3): T607–T624. https://doi.org/10.1190/int-2018-0213.1 |
Gherabati, S. A., Hammes, U., Male, F., et al., 2018. Assessment of Hydrocarbon in Place and Recovery Factors in the Eagle Ford Shale Play. SPE Reservoir Evaluation & Engineering, 21(2): 291–306. https://doi.org/10.2118/189982-pa |
Gong, X. L., McVay, D., Bickel, J., et al., 2011. Integrated Reservoir and Decision Modeling to Optimize Northern Barnett Shale Development Strategies. SPE/IADC Middle East Drilling Technology Conference and Exhibition, May 23–25, 2023, Abu Dhabi, UAE. SPE-149459-MS. https://doi.org/10.2118/149459-ms |
Gong, X., Tian, Y., McVay, D. A., et al., 2013. Assessment of Eagle Ford Shale Oil and Gas Resources. SPE Unconventional Resources Conference Canada, November 5–7, 2013, Calgary, Alberta, Canada. SPE-167241-MS. https://doi.org/10.2118/167241-ms |
Gullickson, G., Fiscus, K., Cook, P., 2014. Completion Influence on Production Decline in the Bakken/Three Forks Play. SPE Western North American and Rocky Mountain Joint Meeting, April 16–18, 2014, Denver, Colorado, USA. SPE-169531-MS. https://doi.org/10.1016/10.2118/169531-ms |
Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8–51. https://doi.org/10.1016/j.coal.2016.06.010 |
Hackley, P. C., Zhang, L. X., Zhang, T. W., 2017. Organic Petrology of Peak Oil Maturity Triassic Yanchang Formation Lacustrine Mudrocks, Ordos Basin, China. Interpretation, 5(2): SF211–SF223. https://doi.org/10.1190/int-2016-0111.1 |
Han, S. B., Horsfield, B., Zhang, J. C., et al., 2014. Hydrocarbon Generation Kinetics of Lacustrine Yanchang Shale in Southeast Ordos Basin, North China. Energy & Fuels, 28(9): 5632–5639. https://doi.org/10.1021/ef501011b |
He, Z. Y., Murray, A., 2019. Top Down Petroleum System Analysis: Exploiting Geospatial Patterns in the Properties of Hydrocarbon Fluids. In: AAPG Annual Convention and Exhibition, AAPG Datapages: Search and Discovery Article #90350 |
He, Z. Y., Murray, A., 2020. Migration Loss, Lag and Fractionation: Implications for Fluid Properties and Charge Risk. In: AAPG Annual Convention and Exhibition, AAPG Datapages: Search and Discovery Article |
He, Z. Y., Xia, D. N., 2017. HC Migration and Trapping in Unconventional Plays. In: AAPG Annual Convention and Exhibition, AAPG Datapages: Search and Discovery Article #90291 |
Honarpour, M. M., Nagarajan, N. R., Orangi, A., et al., 2012. Characterization of Critical Fluid, Rock, and Rock-Fluid Properties-Impact on Reservoir Performance of Liquid-Rich Shales. SPE Annual Technical Conference and Exhibition, October 8–10, 2012, San Antonio, Texas, USA. SPE-158042-MS. https://doi.org/10.2118/158042-ms |
Huang, S. P., Liu, D., Wang, Z. C., et al., 2015. Genetic Origin of Gas Condensate in Permian and Triassic Strata in the Southern Sichuan Basin, SW China. Organic Geochemistry, 85: 54–65. https://doi.org/10.1016/j.orggeochem.2015.05.003 |
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. https://doi.org/10.1306/12190606068 |
Jarvie, D. M., Jarvie, B. M., Weldon, W. D., et al., 2015. Geochemical Assessment of Petroleum in Unconventional Resource Systems. SPE/AAPG/SEG Unconventional Resources Technology Conference, July 20–22, 2015, San Antonio, Texas, USA. URTEC-2173379-MS. https://doi.org/10.15530/urtec-2015-2173379 |
Jones, R. S. Jr., 2017. Producing-Gas/Oil-Ratio Behavior of Multifractured Horizontal Wells in Tight Oil Reservoirs. SPE Reservoir Evaluation & Engineering, 20(03): 589–601. https://doi.org/10.2118/184397-PA |
Katz, B. J., Lin, F., 2021. Consideration of the Limitations of Thermal Maturity with Respect to Vitrinite Reflectance, Tmax, and other Proxies. AAPG Bulletin, 105(4): 695–720. https://doi.org/10.1306/09242019261 |
Khoshghadam, M., Khanal, A., Lee, W. J., 2015. Numerical Study of Production Mechanisms and Gas-Oil Ratio Behavior of Liquid-Rich Shale Oil Reservoirs. SPE Annual Technical Conference and Exhibition, 28–30 September 2015, Houston, Texas, USA, SPE-175137-MS. https://doi.org/10.2118/175137-ms |
Kissell, F. N., McCulloch, C. M., Elder, C. H., 1973. The Direct Method of Determining Methane Content of Coalbeds for Ventilation Design. US Department of Interior, Bureau of Mines |
Ko, L. T., Loucks, R. G., Ruppel, S. C., et al., 2017. Origin and Characterization of Eagle Ford Pore Networks in the South Texas Upper Cretaceous Shelf. AAPG Bulletin, 101(3): 387–418. https://doi.org/10.1306/08051616035 |
Ko, L. T., Loucks, R. G., Zhang, T. W., et al., 2016. Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford–Equivalent) Mudrocks: Results from Gold Tube Pyrolysis Experiments. AAPG Bulletin, 100(11): 1693–1722. https://doi.org/10.1306/04151615092 |
Leverett, M. C., 1941. Capillary Behavior in Porous Solids. Transactions of the AIME, 142(1): 152–169. https://doi.org/10.2118/941152-G |
Li, D. L., Li, R. X., Zhu, Z. W., et al., 2017. Origin of Organic Matter and Paleo-Sedimentary Environment Reconstruction of the Triassic Oil Shale in Tongchuan City, Southern Ordos Basin (China). Fuel, 208: 223–235. https://doi.org/10.1016/j.fuel.2017.07.008 |
Li, L., Sheng, J. J., 2017. Nanopore Confinement Effects on Phase Behavior and Capillary Pressure in a Wolfcamp Shale Reservoir. Journal of the Taiwan Institute of Chemical Engineers, 78: 317–328. https://doi.org/10.1016/j.jtice.2017.06.024 |
Li, Y. H., Song, Y., Jiang, S., et al., 2019a. Influence of Gas and Oil State on Oil Mobility and Sweet-Spot Distribution in Tight Oil Reservoirs from the Perspective of Capillary Force. SPE Reservoir Evaluation & Engineering, 23(3): 824–842. https://doi.org/10.2118/198888-PA |
Li, Y. H., Song, Y., Jiang, S., et al., 2019b. Tight Reservoir Oiliness Numerical Simulation Based on a Markov Chain Monte Carlo (MCMC) Method: A Case Study of the Upper Triassic Yanchang-6 Formation (T3ch6 Fm.) Outcrop of Ordos Basin. Journal of Petroleum Science and Engineering, 175: 1150–1159. https://doi.org/10.1016/j.petrol.2019.01.010 |
Li, Y. H., Xu, X. Y., Zhang, J. F., et al., 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation(K1sh Fm. ), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728–1747. https://doi.org/10.3799/dqkx.2022.015 (in Chinese with English Abstract) |
Li, Y. H., Yang, W., Wang, Q. Y., et al., 2019c. Influence of the Actively Migrated Diagenetic Elements on the Hydrocarbon Generation Potential in Tuffaceous Shale. Fuel, 256: 115795. https://doi.org/10.1016/j.fuel.2019.115795 |
Lohr, C. D., Hackley, P. C., 2021. Relating Tmax and Hydrogen Index to Vitrinite and Solid Bitumen Reflectance in Hydrous Pyrolysis Residues: Comparisons to Natural Thermal Indices. International Journal of Coal Geology, 242: 103768. https://doi.org/10.1016/j.coal.2021.103768 |
Mahmoud, O., Ibrahim, M., Pieprzica, C., et al., 2018. EUR Prediction for Unconventional Reservoirs: State of the Art and Field Case. SPE Trinidad and Tobago Section Energy Resources Conference, June 25–26, 2018, Port of Spain, Trinidad and Tobago. SPE-191160-MS. https://doi.org/10.2118/191160-MS |
McCain, J., W D, 1990. The Properties of Petroleum Fluids. PennWell Books, PennWell Publishing Company, Tulsa, USA |
Mesbah, M., Bahadori, A., 2017. Equations of State. In: Bahadori, A., ed., Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs. Elsevier, Amsterdam. 65–116. https://doi.org/10.1016/b978-0-12-803437-8.00002-6 |
Mullins, O. C., Daigle, T., Crowell, C., et al., 2001. Gas-Oil Ratio of Live Crude Oils Determined by Near-Infrared Spectroscopy. Applied Spectroscopy, 55(2): 197–201. https://doi.org/10.1366/0003702011951506 |
Murray, A., He, Z., Edwards, C., 2021. Oil by Exception: Where and Why Oil Occurs in the Gassy Petroleum Systems of the NW Shelf of Australia. In: Advanced Petroleum Systems Analysis in the Asia Pacific Region, New Technology and Applications |
Nojabaei, B., Johns, R. T., Chu, L., 2013. Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales. SPE Reservoir Evaluation & Engineering, 16(3): 281–289. https://doi.org/10.2118/159258-Pa |
Nojabaei, B., Siripatrachai, N., Johns, R. T., et al., 2016. Effect of Large Gas-Oil Capillary Pressure on Production: A Compositionally-Extended Black Oil Formulation. Journal of Petroleum Science and Engineering, 147: 317–329. https://doi.org/10.1016/j.petrol.2016.05.048 |
Smith, D. M., Williams, F. L., 1981. New Technique for Determining the Methane Content of Coal. In: Proceedings of the 16th Intersociety Energy Conversion Engineering Conference, American Society of Mechanical Engineers, August 9–14, 1981, Atlanta, GA, USA. 1272–1277 |
Smith, D. M., Williams, F. L., 1984. Direct Method of Determining the Methane Content of Coal—A Modification. Fuel, 63(3): 425–427. https://doi.org/10.1016/0016-2361(84)90024-3 |
Soeder, D. J., 2018. The Successful Development of Gas and Oil Resources from Shales in North America. Journal of Petroleum Science and Engineering, 163: 399–420. https://doi.org/10.1016/j.petrol.2017.12.084 |
Speight, J., 2020. Analysis of Gas and Condensate from Tight Formations. In: Speight, J., ed., Shale Oil and Gas Production Processes. Elsevier, Amsterdam. 373–450. https://doi.org/10.1016/b978-0-12-813315-6.00007-5 |
Strąpoć, D., Jacquet, B., Torres, O., et al., 2020. Deep Biogenic Methane and Drilling-Associated Gas Artifacts: Influence on Gas-Based Characterization of Petroleum Fluids. AAPG Bulletin, 104(4): 887–912. https://doi.org/10.1306/08301918011 |
Swindell, G. S., 2012. Eagle Ford Shale—An Early Look at Ultimate Recovery. SPE Annual Technical Conference and Exhibition, October 8–10, 2012, San Antonio, Texas, USA. SPE-158207-MS. https://doi.org/10.2118/158207-MS |
Symcox, C., Philp, R. P., 2019. Heterogeneity of STACK/SCOOP Production in the Anadarko Basin, Oklahoma—Geochemistry of Produced OilsProceedings of the 7th Unconventional Resources Technology Conference. July 22–24, 2019. Denver, Colorado, USA. Tulsa, OK, USA. URTEC-2019-513-MS. https://doi.org/10.15530/urtec-2019-513 |
Tissot, B. P., Durand, B., Espitalié, J., et al., 1974. Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum. AAPG Bulletin, 58(3): 499–506. https://doi.org/10.1306/83d91425-16c7-11d7-8645000102c1865d |
Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71: 1445–1466. https://doi.org/10.1306/703c80e7-1707-11d7-8645000102c1865d |
Tohidi-Hosseini, S. M., Hajirezaie, S., Hashemi-Doulatabadi, M., et al., 2016. Toward Prediction of Petroleum Reservoir Fluids Properties: A Rigorous Model for Estimation of Solution Gas-Oil Ratio. Journal of Natural Gas Science and Engineering, 29: 506–516. https://doi.org/10.1016/j.jngse.2016.01.010 |
Travers, P. D., Cumella, S., Dolan, M., 2014. Using Production Gas Carbon and Hydrogen Stable Isotope Signatures to Predict Fluid Quality: Wattenberg Field, Colorado, USA. SPE Western North American and Rocky Mountain Joint Meeting, April 16–18, 2014, Denver, Colorado, USA. SPE-169487-MS. https://doi.org/10.2118/169487-ms |
Wachtmeister, H., Lund, L., Aleklett, K., et al., 2017. Production Decline Curves of Tight Oil Wells in Eagle Ford Shale. Natural Resources Research, 26(3): 365–377. https://doi.org/10.1007/s11053-016-9323-2 |
Wang, M., Tian, S. S., Chen, G. H., et al., 2014. Correction Method of Light Hydrocarbons Losing and Heavy Hydrocarbon Handling for Residual Hydrocarbon (S1) from Shale. Acta Geologica Sinica: English Edition, 88(6): 1792–1797. https://doi.org/10.1111/1755-6724.12345 |
Wang, Q. Y., Li, Y. H., Yang, W., et al., 2019. Finite Element Simulation of Multi-Scale Bedding Fractures in Tight Sandstone Oil Reservoir. Energies, 13(1): 131. https://doi.org/10.3390/en13010131 |
Wang, X. Z., Peng, X. L., Zhang, S. J., et al., 2018. Characteristics of Oil Distributions in Forced and Spontaneous Imbibition of Tight Oil Reservoir. Fuel, 224: 280–288. https://doi.org/10.1016/j.fuel.2018.03.104 |
Williams, R. D., Willberg, D. M., Handwerger, D., et al., 2014. Advanced Core Analysis Methodologies Quantify and Characterize Prolific Liquid Hydrocarbon Quantities in the Vaca Muerta Shale. SPE/AAPG/SEG Unconventional Resources Technology Conference, August 25–27, 2014, Denver, Colorado, USA. URTEC-1922938-MS. https://doi.org/10.15530/urtec-2014-1922938 |
Yang, W., Song, Y., Jiang, Z. X., et al., 2018. Whole-Aperture Characteristics and Controlling Factors of Pore Structure in the Chang 7th Continental Shale of the Upper Triassic Yanchang Formation in the Southeastern Ordos Basin, China. Interpretation, 6(1): T175–T190. https://doi.org/10.1190/int-2017-0090.1 |
Yang, W., Wang, Q. Y., Song, Y., et al., 2020a. New Scaling Model of the Spontaneous Imbibition Behavior of Tuffaceous Shale: Constraints from the Tuff-Hosted and Organic Matter-Covered Pore System. Journal of Natural Gas Science and Engineering, 81: 103389. https://doi.org/10.1016/j.jngse.2020.103389 |
Yang, W., Wang, Q. Y., Wang, Y. H., et al., 2020b. Pore Characteristic Responses to Categories of Depositional Microfacies of Delta-Lacustrine Tight Reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, NW China. Marine and Petroleum Geology, 118: 104423. https://doi.org/10.1016/j.marpetgeo.2020.104423 |
Yang, Y. T., Li, W., Ma, L., 2005. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 89(2): 255–269. https://doi.org/10.1306/10070404027 |
Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260–1277. https://doi.org/10.1007/s12583-022-1735-9 |
Yee, D., Seidle, J. P., Hanson, W. B., 1993. Gas Sorption on Coal and Measurement of Gas Content. Hydrocarbons from Coal, American Association of Petroleum Geologists. 38: 203–218. https://doi.org/10.1306/st38577c9 |
Zhang, M. A., Ayala, L. F., 2016. Analytical Study of Constant Gas/Oil-Ratio Behavior as an Infinite-Acting Effect in Unconventional Multiphase Reservoir Systems. SPE Journal, 22(1): 289–299. https://doi.org/10.2118/175079-pa |
Zhang, M. A., Becker, M. D., Ayala, L. F., 2016. A Similarity Method Approach for Early-Transient Multiphase Flow Analysis of Liquid-Rich Unconventional Gas Reservoirs. Journal of Natural Gas Science and Engineering, 28: 572–586. https://doi.org/10.1016/j.jngse.2015.11.044 |
Zhang, T. W., Sun, X., Milliken, K. L., et al., 2017. Empirical Relationship between Gas Composition and Thermal Maturity in Eagle Ford Shale, South Texas. AAPG Bulletin, 101(8): 1277–1307. https://doi.org/10.1306/09221615209 |
Zhang, X. S., Wang, H. J., Ma, F., et al., 2016. Classification and Characteristics of Tight Oil Plays. Petroleum Science, 13(1): 18–33. https://doi.org/10.1007/s12182-015-0075-0 |
Zhang, Y., Lashgari, H. R., Di, Y., et al., 2017. Capillary Pressure Effect on Phase Behavior of CO2/Hydrocarbons in Unconventional Reservoirs. Fuel, 197: 575–582. https://doi.org/10.1016/j.fuel.2017.02.021 |
Zhao, H., Givens, N. B., Curtis, B., 2007. Thermal Maturity of the Barnett Shale Determined from Well-Log Analysis. AAPG Bulletin, 91(4): 535–549. https://doi.org/10.1306/10270606060 |
Zou, C. N., Yang, Z., Li, G., et al., 2022. Why Can China Realize the Continental "Shale Oil Revolution"? Earth Science, 47(10): 3860–3863. https://doi.org/10.3799/dqkx.2022.841 (in Chinese with English Abstract) |