Citation: | Jintao Kong, Zhongjie Xu, Rihui Cheng, Duo Wan. Provenance of the Southeastern South China Block in the Late Triassic and Initiation of Paleo-Pacific Subduction: Evidence from Detrital Zircon U-Pb Geochronology. Journal of Earth Science, 2024, 35(5): 1426-1446. doi: 10.1007/s12583-022-1694-1 |
During the Late Paleozoic–Early Mesozoic Era, the sediment transport system and tectonic regime in the southeastern margin of the South China Block (SESCB) all changed, significantly affected by the Paleo-Pacific subduction. However, controversy exists about the Paleo-Pacific subduction's initiation time. This study uses detrital zircon U-Pb ages to discuss the Late Triassic source-to-sink system in the SESCB. It provides some references for the Paleo-Pacific subduction process based on crucial age information and zircons' trace elements. The paleogeography and similarity of detrital zircon age distribution indicate that three sinks were found in the SESCB during the Late Triassic: 1. the Yangchun-Kaiping-Gaoming area, comprising major age ranges of 260–220, 460–400, and 1 200–800 Ma, which might be sourced from the Yunkai terrane; 2. the Jiexi-Kanshi-Nanjing area, characterized by the significant age component of 2 000–1 800 Ma, which corresponded to the Wuyi terrane; 3. the Xinan area, consisting of significant age groups of 290–250 and 380–320 Ma, which might be sourced from the magmatic rocks formed by the Huinan Movement and Paleo-Pacific subduction. Note that 290–250 Ma zircons were widely distributed in the Upper Triassic strata, and their trace elements suggested the existence of a magmatic arc near the SESCB during the 290–250 Ma. Thus, we propose that the Paleo-Pacific subduction might have begun in the Early Permian.
Allen, P. A., Allen, J. R., 2013. Basin Analysis: Principles and Applications. Wiley-Blackwell, Oxford |
Allen, P. A., 2008. From Landscapes into Geological History. Nature, 451: 274–276. https://doi.org/10.1038/nature06586 |
Amidon, W., Burbank, D., Gehrels, G., 2005. U-Pb Zircon Ages as a Sediment Mixing Tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235(1/2): 244–260. https://doi.org/10.1016/j.epsl.2005.03.019 |
Axen, G. J., van Wijk, J. W., Currie, C. A., 2018. Basal Continental Mantle Lithosphere Displaced by Flat-Slab Subduction. Nature Geoscience, 11: 961–964. https://doi.org/10.1038/s41561-018-0263-9 |
Belousova, E., Griffin, W., Oreilly, S., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7 |
Bruguier, O., Lancelot, J. R., Malavieille, J., 1997. U-Pb Dating on Single Detrital Zircon Grains from the Triassic Songpan-Ganze Flysch (Central China): Provenance and Tectonic Correlations. Earth and Planetary Science Letters, 152(1/2/3/4): 217–231. https://doi.org/10.1016/s0012-821x(97)00138-6 |
BGMRFP (Bureau of Geology and Mineral Resources of Fujian Province), 1985. Regional Geology of Fujian Province. Geological Publishing House, Beijing (in Chinese) |
BGMRGP (Bureau of Geology and Mineral Resources of Guangdong Province), 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing (in Chinese) |
Carroll, A. R., Graham, S. A., Hendrix, M. S., et al., 1995. Late Paleozoic Tectonic Amalgamation of Northwestern China: Sedimentary Record of the Northern Tarim, Northwestern Turpan, and Southern Junggar Basins. Geological Society of America Bulletin, 107(5): 571–594. https://doi.org/10.1130/0016-7606(1995)1070571:lptaon>2.3.co;2 doi: 10.1130/0016-7606(1995)1070571:lptaon>2.3.co;2 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1 |
Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1): 83–92. https://doi.org/10.1016/j.lithos.2008.06.009 |
Chen, S. R., Xu, Z. J., Kong, J. T., et al., 2021. Paleoclimatic Evolution during Late Triassic-Early-Middle Jurassic in South Guangdong of South China Continental Margin and Its Responses to the Tectonic Regime Transition. Earth Science, 46(9): 3290–3306 (in Chinese with English Abstract) |
Cui, Y. C., Shao, L., Li, Z. X., et al., 2021. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36–52. https://doi.org/10.1016/j.gr.2021.06.021 |
DeCelles, P., Gehrels, G., Quade, J., et al., 2000. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science, 288(5465): 497–499. https://doi.org/10.1126/science.288.5465.497 |
Dickinson, W. R., Gehrels, G. E., 2003. U-Pb Ages of Detrital Zircons from Permian and Jurassic Eolian Sandstones of the Colorado Plateau, USA: Paleogeographic Implications. Sedimentary Geology, 163(1/2): 29–66. https://doi.org/10.1016/s0037-0738(03)00158-1 |
Dickinson, W. R., Lawton, T. F., Pecha, M., et al., 2012. Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous–Paleogene Provenance Evolution in the Utah Foreland: Evidence from U-Pb Ages of Detrital Zircons, Paleocurrent Trends, and Sandstone Petrofacies. Geosphere, 8(4): 854–880. https://doi.org/10.1130/ges00763.1 |
Dickinson, W., Suczek, C., 1979. Plate Tectonics and Sandstone Compositions. American Association of Petroleum Geologists Bulletin, 63(12): 2164–2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d |
Federico, L., Capponi, G., Crispini, L., et al., 2004. Exhumation of Alpine High-Pressure Rocks: Insights from Petrology of Eclogite Clasts in the Tertiary Piedmontese Basin (Ligurian Alps, Italy). Lithos, 74(1/2): 21–40. https://doi.org/10.1016/j.lithos.2003.12.001 |
Faure, M., Lin, W., Chu, Y., et al., 2016. Triassic Tectonic of the Ailaoshan Belt (SW China): Early Triassic Collision between the South China and Indochina Blocks, and Middle Triassic Intracontinental Shearing. Tectonophysics, 683: 27–42. https://doi.org/10.1016/j.tecto.2016.06.015(2016) |
Gan, X. C., Ji, H. M., Sun, D. Z., et al., 1995. A Geochronological Study on Early Proterozoic Granitic Rocks, Southwestern Zhejiang. Acta Petrologica et Minerologica, 14: 1–8 (in Chinese with English Abstract) |
Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266–294. https://doi.org/10.1016/j.earscirev.2017.07.016 |
Gehrels, G. E., Blakey, R., Karlstrom, K. E., et al., 2011. Detrital Zircon U-Pb Geochronology of Paleozoic Strata in the Grand Canyon, Arizona. Lithosphere, 3(3): 183–200. https://doi.org/10.1130/l121.1 |
Gehrels, G. E., Yin, A., Wang, X. F., 2003. Detrital-Zircon Geochronology of the Northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881–896. https://doi.org/10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 doi: 10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 |
Gehrels, G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences, 42(1): 127–149. https://doi.org/10.1146/annurev-earth-050212-124012 |
Griffin, W. L., Powell, W. J., Pearson, N. J., et al., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: Sylvester, P., ed., Laser Ablation-ICP-MS in the Earth Sciences, Mineralogical Association of Canada Short Course Series, 204–207 |
Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic–Early Jurassic Tectonic Unroofing. Journal of Geophysical Research, 105(B6): 13339–13364. https://doi.org/110.1029/2000jb900039 |
Hacker, B. R., Wang, Q., 1995. Ar/Ar Geochronology of Ultrahigh-Pressure Metamorphism in Central China. Tectonics, 14(4): 994–1006. https://doi.org/10.1029/95tc00932 |
Han, K. Y., Xu, K. J., Gao, L. Z., et al., 2017. U-Pb Age and Lu-Hf Isotope of Detrital Zircons from Meta-Sedimentary Rocks in the Yunkai Region and Their Geological Significance. Acta Petrologica Sinica, 33: 2939–2956 (in Chinese with English Abstract) |
Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66–82. https://doi.org/10.1007/s00410000021 |
Horn, I., Rudnick, R. L., McDonough, W. F., 2000. Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS: Application to U-Pb Geochronology. Chemical Geology, 164(3/4): 281–301. https://doi.org/10.1016/s0009-2541(99)00168-0 |
Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027 |
Hu, L. S., Cawood, P. A., Du, Y. S., et al., 2015. Late Paleozoic to Early Mesozoic Provenance Record of Paleo-Pacific Subduction beneath South China. Tectonics, 34(5): 986–1008. https://doi.org/10.1002/2014tc003803 |
Hu, X. J., 1994. Geochronology of Lower Proterozoic Badu Group, Southwestern Zhejiang Province. Geochimica, 23: 1–24 (in Chinese with English Abstract) |
Hu, X. J., Xu, J. K., Chen, C. H., et al., 1992. U-Pb Ages of Single-Zircons from Paleoproterozoic Granites and Pegmatite, Southwestern Zhejiang. Chinese Science Bulletin, 37: 1016–1018 (in Chinese with English Abstract) doi: 10.1360/csb1992-37-11-1016 |
Huang, D. L., Wang, X. L., 2019. Reviews of Geochronology, Geochemistry, and Geodynamic Processes of Ordovician–Devonian Granitic Rocks in Southeast China. Journal of Asian Earth Sciences, 184: 104001. https://doi.org/10.1016/j.jseaes.2019.104001 |
Huang, H. B., Guo, X. W., Xia, S. H., et al., 2014. Study of Crustal Thickness and Poisson's Ratio in the Coastal Area of South China. Chinese Journal of Geophysics, 57(6): 860–871. https://doi.org/10.1002/cjg2.20148 |
Huang, X. L., Yu, Y., Li, J., et al., 2013. Geochronology and Petrogenesis of the Early Paleozoic Ⅰ-Type Granite in the Taishan Area, South China: Middle-Lower Crustal Melting during Orogenic Collapse. Lithos, 177: 268–284. https://doi.org/10.1016/j.lithos.2013.07.002 |
Jiang, Y. H., Jiang, S. Y., Dai, B. Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 107(3/4): 185–204. https://doi.org/10.1016/j.lithos.2008.10.006 |
Jiang, Y. H., Wang, G. C., Liu, Z., et al., 2015. Repeated Slab Advance-Retreat of the Palaeo-Pacific Plate underneath SE China. International Geology Review, 57(4): 472–491. https://doi.org/10.1080/00206814.2015.1017775 |
Jiao, S. J., Li, X. H., Huang, H. Q., et al., 2015. Metasedimentary Melting in the Formation of Charnockite: Petrological and Zircon U-Pb-Hf-O Isotope Evidence from the Darongshan S-Type Granitic Complex in Southern China. Lithos, 239: 217–233. https://doi.org/10.1016/j.lithos.2015.10.004 |
Kirkland, C. L., Slagstad, T., Johnson, T. E., 2018. Zircon as a Metamorphic Timekeeper: A Case Study from the Caledonides of Central Norway. Gondwana Research, 61: 63–72. https://doi.org/10.1016/j.gr.2018.05.005 |
Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212/213/214/215: 397–414. https://doi.org/10.1016/j.lithos.2014.11.021 |
Kong, J. T., Xu, Z. J., Cheng, R. H., et al., 2021. Provenance of Lower Jurassic Sediments in the South China Continental Margin: Evidence from U-Pb Ages of Detrital Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 569: 110341. https://doi.org/10.1016/j.palaeo.2021.110341 |
Kong, J. T., Xu, Z. J., Tao, G. Z., et al., 2022. U-Pb Geochronology of Upper Triassic–Lower Jurassic Detrital Sequences from SE Margin of the South China Block: Implications for Palaeo-Pacific Subduction and Tectonic Evolution. Geological Magazine, 159(6): 833–852. https://doi.org/10.1017/s0016756821001394 |
Li, L. M., Lin, S. F., Xing, G. F., et al., 2018. Geochronology and Geochemistry of Volcanic Rocks from the Jingtan Formation in the Eastern Jiangnan Orogen, South China: Constraints on Petrogenesis and Tectonic Implications. Precambrian Research, 309: 166–180. https://doi.org/10.1016/j.precamres.2017.02.012 |
Li, S. Z., Zang, Y. B., Wang, P. C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24: 213–225 (in Chinese with English Abstract) |
Li, S. Z., Yu, S., Zhao, S., et al., 2013. Tectonic Transition and Plate Reconstructions of the East Asian Continental Margin. Marine Geology & Quaternary Geology, 33: 65–94 (in Chinese with English Abstract) |
Li, X. F., Yu, Y., Wang, C. Z., 2017. Caledonian Granitoids in the Jinxiu Area, Guangxi, South China: Implications for Their Tectonic Setting. Lithos, 272/273: 249–260. https://doi.org/10.1016/j.lithos.2016.12.016 |
Li, X. H., Li, Z. X., He, B., et al., 2012. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block: In Situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328: 195–207. https://doi.org/10.1016/j.chemgeo.2011.10.027 |
Li, X., Wang, L. Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(9): 1199–1216 (in Chinese with English Abstract) |
Li, Y. J., Wei, J. H., Santosh, M., et al., 2016. Geochronology and Petrogenesis of Middle Permian S-type Granitoid in Southeastern Guangxi Province, South China: Implications for Closure of the Eastern Paleo-Tethys. Tectonophysics, 682: 1–16. https://doi.org/10.1016/j.tecto.2016.05.048 |
Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1 |
Li, Z., Qiu, J. S., Zhou, J. C., 2012. Geochronology, Geochemistry, and Nd–Hf Isotopes of Early Palaeozoic–Early Mesozoic Ⅰ-Type Granites from the Hufang Composite Pluton, Fujian, South China: Crust-Mantle Interactions and Tectonic Implications. International Geology Review, 54(1): 15–32. https://doi.org/10.1080/00206814.2010.496542 |
Li, Z. Q., Li, F. J., Chen, Z. A., et al., 2022. Provenance of Late Mesozoic Strata and Tectonic Implications for the Southwestern Ordos Basin, North China: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Journal of Earth Science, 33(2): 373–394. https://doi.org/10.1007/s12583-021-1450-y |
Lin, C. S., Xia, Q. L., Shi, H. S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22: 9–20 (in Chinese with English Abstract) |
Link, P. K., Fanning, C. M., Beranek, L. P., 2005. Reliability and Longitudinal Change of Detrital-Zircon Age Spectra in the Snake River System, Idaho and Wyoming: An Example of Reproducing the Bumpy Barcode. Sedimentary Geology, 182(1/2/3/4): 101–142. https://doi.org/10.1016/j.sedgeo.2005.07.012 |
Liu, B. J., Xu, X. S., 1994. Atlas of Lithofacies and Palaeogeography of Southern China. Science Press, Beijing |
Liu, N., 2017. Detrital Provenance of the Lower Mesozoic in the Eastern Guangdong Basin and Its Geodynamic Implication: [Dissertation]. Nanjing University, Nanjing (in Chinese with English Abstract) |
Long, W. G. Xu, D. M., Wang, L., et al., 2012. Formation Age of Hypometamorphic Rocks in Basement of Yunkai Area, South China. Geology and Mineral Resources of South China, 28: 290–297 (in Chinese with English Abstract) doi: 10.3969/j.issn.1007-3701.2012.04.002 |
Ludwig, K. R., 2003. Isoplot 3.00. Berkeley Geochronology Center Special Publication No. 4, 1–70 |
Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoicore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48: 267–294 doi: 10.1007/s00126-012-0446-z |
Ma, Y. S., Chen, H., Wang, G., 2009. Sequence Stratigraphy and Paleogeography of South China, Science Press, Beijing (in Chinese) |
Machado, N., Gauthier, G., 1996. Determination of 207Pb/206Pb Ages on Zircon and Monazite by Laser-Ablation ICPMS and Application to a Study of Sedimentary Provenance and Metamorphism in Southeastern Brazil. Geochimica et Cosmochimica Acta, 60(24): 5063–5073. https://doi.org/10.1016/s0016-7037(96)00287-6 |
Manea, V. C., Manea, M., Ferrari, L., et al., 2017. A Review of the Geodynamic Evolution of Flat Slab Subduction in Mexico, Peru, and Chile. Tectonophysics, 695: 27–52. https://doi.org/10.1016/j.tecto.2016.11.037 |
Martinsen, O. J., Sømme, T. O., Thurmond, J. B., et al., 2010. Source-to-Sink Systems on Passive Margins: Theory and Practice with an Example from the Norwegian Continental Margin. Geological Society, London, Petroleum Geology Conference Series, 7(1): 913–920 doi: 10.1144/0070913 |
Meng, L. F., Li, Z. X., Chen, H. L., et al., 2015. Detrital Zircon U-Pb Geochronology, Hf Isotopes and Geochemistry Constraints on Crustal Growth and Mesozoic Tectonics of Southeastern China. Journal of Asian Earth Sciences, 105: 286–299. https://doi.org/10.1016/j.jseaes.2015.01.015 |
Moecher, D. P., Samson, S. D., 2006. Differential Zircon Fertility of Source Terranes and Natural Bias in the Detrital Zircon Record: Implications for Sedimentary Provenance Analysis. Earth and Planetary Science Letters, 247(3/4): 252–266. https://doi.org/10.1016/j.epsl.2006.04.035 |
Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088 |
Nie, J. S., Horton, B. K., Saylor, J. E., et al., 2012. Integrated Provenance Analysis of a Convergent Retroarc Foreland System: U-Pb Ages, Heavy Minerals, Nd Isotopes, and Sandstone Compositions of the Middle Magdalena Valley Basin, Northern Andes, Colombia. Earth Science Reviews, 110(1): 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002 |
Nie, S. Y., Yin, A., David, B., et al., 1994. Exhumation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China. Geology, 22(11): 999–1002. https://doi.org/10.1130/0091-7613(1994)022<0999:eotdsu>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0999:eotdsu>2.3.co;2 |
Niemi, N. A., Wernicke, B. P., Brady, R. J., et al., 2001. Distribution and Provenance of the Middle Miocene Eagle Mountain Formation, and Implications for Regional Kinematic Analysis of the Basin and Range Province. Geological Society of America Bulletin, 113(4): 419–442. https://doi.org/10.1130/0016-7606(2001)1130419:dapotm>2.0.co;2 doi: 10.1130/0016-7606(2001)1130419:dapotm>2.0.co;2 |
Peng, S. B., Jin, Z. M., Fu, J. M., et al. 2006. The Geochemical Evidences and Tectonic Significance of Neoproterozoic Ophiolite in Yunkai Area, Western Guangdong Province, China. Acta Geologica Sinica, 80: 814–825 (in Chinese with English Abstract) doi: 10.3321/j.issn:0001-5717.2006.06.004 |
Okay, A. I., Şengör, A. M. C., 1992. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China. Geology, 20(5): 411–414. https://doi.org/10.1130/0091-7613(1992)020<0411:efitre>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0411:efitre>2.3.co;2 |
Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Production and Provenance of Sand. Sand and Sandstone. Springer, New York. https://doi.org/10.1007/978-1-4612-1066-5_7 |
Puetz, S. J., 2018. A Relational Database of Global U-Pb Ages. Geoscience Frontiers, 9(3): 877–891. https://doi.org/10.1016/j.gsf.2017.12.004 |
Qi, C. S., Deng, X. G., Li, W. X., et al., 2007. Origin of the Darongshan-Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi: Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 23(2): 403–412 (in Chinese with English Abstract) |
Qin, X. F., Pan, Y. M., Li, J., et al., 2006. Zircon SHRIMP U-Pb Geochronology of Yunkai Metamorphic Complex in Southeastern Guangxi, China. Geological Bulletin of China, 25(5): 553–559 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2006.05.004 |
Ren, J. S., 1984. The Indosinian Orogeny and Its Significance in the Tectonic Evolution of China. Bulletin of the Chinese Academy of Geological Sciences, 9(2): 31–43 (in Chinese with English Abstract) |
Ren, J. S., Li, C., 2016. Cathaysia Old Land and Relevant Problems: PreDevonian Tectonics of Southern China. Acta Geologica Sinica, 90: 607–614 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2016.04.001 |
Riggs, N., Lehman, T., Gehrels, G., et al., 1996. Detrital Zircon Link between Headwaters and Terminus of the Upper Triassic Chinle-Dockum Paleoriver System. Science, 273(5271): 97–100. https://doi.org/10.1126/science.273.5271.97 |
Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5–22. https://doi.org/10.1016/s1342-937x(05)70883-2 |
Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261–295. https://doi.org/10.2138/rmg.2017.83.9 |
Satkoski, A. M., Wilkinson, B. H., Hietpas, J., et al., 2013. Likeness among Detrital Zircon Populations—An Approach to the Comparison of Age Frequency Data in Time and Space. Geological Society of America Bulletin, 125: 1783–1799 doi: 10.1130/B30888.1 |
Saylor, J. E., Sundell, K. E., 2016. Quantifying Comparison of Large Detrital Geochronology Data Sets. Geosphere, 12(1): 203–220. https://doi.org/10.1130/ges01237.1 |
Saylor, J. E., Knowles, J. N., Horton, B. K., et al., 2013. Mixing of Source Populations Recorded in Detrital Zircon U-Pb Age Spectra of Modern River Sands. Journal of Geology, 121: 17–33 doi: 10.1086/668683 |
Saylor, J. E., Stockli, D. F., Horton, B. K., et al., 2012. Discriminating Rapid Exhumation from Syndepositional Volcanism Using Detrital Zircon Double Dating: Implications for the Tectonic History of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124: 762–779 doi: 10.1130/B30534.1 |
Schaltegger, U., Davies, J., 2017. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Reviews in Mineralogy and Geochemistry, 83: 297–328. https://doi.org/10.2138/rmg.2017.83.10 |
Shao, L. Y., Li, Y. J., Jin, F. X., et al., 2014. Sequence Stratigraphy and Lithofacies Palaeogeography of the Late Triassic Coal Measures in South China. Journal of Palaeography, 16(5): 613–630 (in Chinese with English Abstract) |
Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 3: 1035–1053 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2012.07.003 |
Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600–1621. https://doi.org/10.1002/2015tc003835 |
Shu, L. S., Wang, J. Q., Yao, J. L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42–65. https://doi.org/10.1016/j.precamres.2018.12.007 |
Shu, L. S., Zhou, X. M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48: 249–260 (in Chinese with English Abstract) doi: 10.3321/j.issn:0371-5736.2002.03.004 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., et al., 2009. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems: A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4): 361–387. https://doi.org/10.1111/j.1365-2117.2009.00397.x |
Sømme, T. O., Jackson, C. A. L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 2–Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5): 512–531. https://doi.org/10.1111/bre.12014 |
Sømme, T. O., Jackson, C. A. L., Vaksdal, M., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 1 – Depositional Setting and Fan Evolution. Basin Research, 25(5): 489–511. https://doi.org/10.1111/bre.12013 |
Sundell Kurt, E., George Sarah, W. M., Barbara, C., et al., 2022. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophysical Research Letters, 49(3): e2021GL096443 doi: 10.1029/2021GL096443 |
Tao, Z. L., Yin, J. Y., Chen, W., et al., 2022. Zircon U-Pb Ages and Tectonic Implications of Late Paleozoic Volcanic Rocks in the Western Tianshan, North Xinjiang, China. Journal of Earth Science, 33(3): 736–752. https://doi.org/10.1007/s12583-020-1067-6 |
Tang, M., Ji, W. Q., Chu, X., et al., 2021. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76–80. https://doi.org/10.1130/g47745.1 |
Thomas, W. A., Astini, R. A., Mueller, P. A., et al., 2004. Transfer of the Argentine Precordillera Terrane from Laurentia: Constraints from Detrital-Zircon Geochronology. Geology, 32(11): 965. https://doi.org/10.1130/g20727.1 |
Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petr., 134: 380–404. https://doi.org/10.1007/s00410005049 |
Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312/313: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021 |
Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010 |
Vermeesch, P., 2018. Dissimilarity Measures in Detrital Geochronology. Earth Science Reviews, 178: 310–321. https://doi.org/10.1016/j.earscirev.2017.11.027 |
Wan, Y. S., Liu, D. Y., Wilde, S. A., et al., 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope. Journal of Asian Earth Sciences, 37(2): 140–153. https://doi.org/10.1016/j.jseaes.2009.08.002 |
Wang, G. S., He, F. B., Zhu, W. P., et al., 2009. U-Pb Dating of Detrital Zircons from Late Triassic Wenbinshan Formation in Southwestern Fujian and Its Geological Significance. Geoscience, 23: 246–255 (in Chinese with English Abstract) |
Wang, P. C., Li, S. Z., Liu, X., et al., 2012. Yanshanian Fold-Thrust Tectonics and Dynamics in the Middle–Lower Yangtze River Area, China. Acta Petrologica Sinica, 28(10): 3418–3430 |
Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117–131. https://doi.org/10.1016/j.precamres.2007.06.005 |
Wang, X. S., Yang, F., Klemd, R., et al., 2022. Zircon Ages of Metasedimentary Rocks in the Wuwamen Ophiolitic Mélange, Chinese South Tianshan: Implications for the Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1059–1071. https://doi.org/10.1007/s12583-022-1695-0 |
Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007. Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4): 404–416. https://doi.org/10.1016/j.gr.2006.10.003 |
Wang, Y., Jin, Y., 2000. Permian Palaeogeographic Evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1–2): 35–44. https://doi.org/10.1016/s0031-0182(00)00043-2 |
Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013a. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343–371. https://doi.org/10.1016/j.precamres.2013.03.020 |
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273–1305. https://doi.org/10.1016/j.gr.2012.02.019 |
Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239–260. https://doi.org/10.1016/j.lithos.2011.07.027 |
Weislogel, A. L., Graham, S. A., Chang, E. Z., et al., 2006. Detrital Zircon Provenance of the Late Triassic Songpan-Ganzi Complex: Sedimentary Record of Collision of the North and South China Blocks. Geology, 34(2): 97. https://doi.org/10.1130/g21929.1 |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56–87. https://doi.org/10.1016/j.precamres.2017.02.020 |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141–158. https://doi.org/10.1007/s12583-019-1242-9 |
Xie, C. F., Zhu, J. C., Ding, S. J., et al., 2006. Identification of Hercynian Shoshonitic Intrusive Rocks in Central Hainan Island and Its Geotectonic Implications. Chinese Science Bulletin, 51(20): 2507–2519. https://doi.org/10.1007/s11434-006-2122-0 |
Xu, Q. J., Liu, S. F., Wang, Z. F., et al., 2019. Provenance of the East Guangdong Basin and Yong'an Basin in Southeast China: Response to the Mesozoic Tectonic Regime Transformation. Journal of Asian Earth Sciences, 185: 104024. https://doi.org/10.1016/j.jseaes.2019.104024 |
Xu, X. B., Zhang, Y. Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36: 573–593 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-3657.2009.03.007 |
Xu, X. D., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46: 1133–1150 (in Chinese with English Abstract) |
Xu, Y. J., Du, Y. S., 2018. From periphery Collision to Intraplate Orogeny: Early Palaeozoic Orogenesis in Southeastern Part of South China. Earth Science, 43: 333–353 (in Chinese with English Abstract) |
Xu, Z. J., Lan, Y. Z., Kong, J. T., et al., 2018. Detrital Zircon U-Pb Dating of Late Triassic Wenbinshan Formation in Southwestern Fujian, South China, and Its Geological Significance. Canadian Journal of Earth Sciences, 55(8): 980–996. https://doi.org/10.1139/cjes-2018-0007 |
Yakymchuk, C., Kirkland, C., Clark, C., 2018. Th/U Ratios in Metamorphic Zircon. J. Metamorph Geol. , 36: 715–737 doi: 10.1111/jmg.12307 |
Yan, C. L., Shu, L. S., Michel, F., et al., 2017. Early Paleozoic Intracontinental Orogeny in the Yunkai Domain, South China Block: New Insights from Field Observations, Zircon U-Pb Geochronological and Geochemical Investigations. Lithos, 268: 320–333. https://doi.org/10.1016/j.lithos.2016.11.013 |
Yan, J., Fu, S. L., Liu, S., et al., 2022. Giant Sb Metallogenic Belt in South China: A Product of Late Mesozoic Flat-Slab Subduction of Paleo-Pacific Plate. Ore Geology Reviews, 142: 104697. https://doi.org/10.1016/j.oregeorev.2022.104697 |
Yang, J., Cawood, P. A., Du, Y., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian–Triassic Volcanogenic Sediments in China. Sediment. Geol., 261–262: 120–131. https://doi.org/10.1016/j.sedgeo.2012.03.018(2012) |
Yao, J., Shu, L., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243: 39–62 doi: 10.1016/j.precamres.2013.12.027 |
Yu, J. H., O'Reilly, S. Y., Wang, L. J., 2008. Where was South China in the Rodinia Supercontinent? Precambrian Research, 164(1): 1–15. https://doi.org/10.1016/j.precamres.2008.03.002 |
Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1/2/3/4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016 |
Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347–363. https://doi.org/10.1016/j.precamres.2009.08.009 |
Yu, J. H., Wei, Z. Y., Wang, L. J., et al., 2006. Cathaysia Block: A Young Continent Composed of Ancient Materials. Geological Journal of China Universities, 12(4): 440–447 (in Chinese with English Abstract) |
Yu, Y., Huang, X. L., Sun, M., et al., 2018. Petrogenesis of Granitoids and Associated Xenoliths in the Early Paleozoic Baoxu and Enping Plutons, South China: Implications for the Evolution of the Wuyi-Yunkai Intracontinental Orogen. Journal of Asian Earth Sciences, 156: 59–74. https://doi.org/10.1016/j.jseaes.2018.01.012 |
Yue, Y., Graham, S. A., Ritts, B. D., et al., 2005. Detrital Zircon Provenance Evidence for Large-Scale Extrusion along the Altyn Tagh Fault. Tectonophysics, 406: 165–178 doi: 10.1016/j.tecto.2005.05.023 |
Zhao, W. H., Li, Q. L., Liu, Y., et al., 2022. Long-Term Reproducibility of SIMS Zircon U-Pb Geochronology. Journal of Earth Science, 33(1): 17–24. https://doi.org/10.1007/s12583-021-1549-1 |
Zhang, A., Wang, Y., Fan, W., et al., 2012. Earliest Neoproterozoic (ca. 1.0 Ga) Arc-Back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block: Geochronological and Geochemical Evidence from the Metabasite. Precambrian Research, 220–221: 217–233 |
Zhang, B. L., Yao, S. P., Ma, A. L., et al., 2022. New Geochemical Constraints on the Development of Active Continental Margin in Southeast China during the Middle Permian and Its Tectonic Implications. Gondwana Research, 103: 458–472. https://doi.org/10.1016/j.gr.2021.11.001 |
Zhang, C. L., Santosh, M., Zou, H. B., et al., 2013. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U-Pb geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos, 179: 263–274 doi: 10.1016/j.lithos.2013.08.015 |
Zhang, F. F., Wang, X. L., Sun, Z. M., et al., 2018. Geochemistry and Zircon-Apatite U-Pb Geochronology of Mafic Dykes in the Shuangxiwu Area: Constraints on the Initiation of Neoproterozoic Rifting in South China. Precambrian Research, 309: 138–151. https://doi.org/10.1016/j.precamres.2017.04.008 |
Zhang, J. B., Ding, X. Z., Liu, Y. X., 2023. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications. Journal of Earth Science, 34(2): 504–517. https://doi.org/10.1007/s12583-020-1090-7 |
Zhang, R. Y., Ao, W. H., Zhao, Y., 2023. U-Pb Zircon Ages and Geochemistry of the Metasedimentary Rocks from the Foping Area in the South Qinling Belt: Evidence for Early Devonian Amalgamation between North China and South China Blocks. Journal of Earth Science, 34(4): 1112–1127. https://doi.org/10.1007/s12583-022-1608-2 |
Zhang, Z. L., Yuan, H. H., Nan, Y., 1998. Whole-Grain Zircon Evaporation for Age of Luoyu Formation, Yunkai Group. Mineralogy and Petrology, 18: 85–90 (in Chinese with English Abstract) |
Zhao, G., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222–223: 13–54 |
Zhao, G., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Super Continent. Earth-Science Reviews, 59: 125–162 |
Zhao, H. G., Liu, C. Y. 2003. Approaches and Prospects of Provenance System Analysis in Sedimentary Basins. Acta Sedimentological Sinica, 21: 409–415 (in Chinese with English Abstract) |
Zhao, J. L., Qiu, J. S., Liu, L., 2021. Early-Middle Jurassic Magmatic Rocks along the Coastal Region of Southeastern China: Petrogenesis and Implications for Paleo-Pacific Plate Subduction. Journal of Asian Earth Sciences, 210: 104687. https://doi.org/10.1016/j.jseaes.2021.104687 |
Zhou, C. M., 2016. Lithostratigraphy and Correlation across the Yangtze Block, South China. Journal of Stratigraphy, 40: 120–135 (in Chinese with English Abstract) |
Zhou, J., Jin, C., Suo, Y. H., et al., 2022. The Yanshanian (Mesozoic) Metallogenesis in China Linked to Crust-Mantle Interaction in the Western Pacific Margin: An Overview from the Zhejiang Province. Gondwana Research, 102: 95–132. https://doi.org/10.1016/j.gr.2020.11.003 |
Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3): 269–287. https://doi.org/10.1016/s0040-1951(00)00120-7 |