Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 4
Aug 2022
Turn off MathJax
Article Contents
Xiaobo He. Small-Scale Heterogeneity and Seismic Anisotropy in the Mid-Mantle: Oceanic Crust versus Meta-Stable Olivine. Journal of Earth Science, 2022, 33(4): 1056-1058. doi: 10.1007/s12583-022-1700-7
Citation: Xiaobo He. Small-Scale Heterogeneity and Seismic Anisotropy in the Mid-Mantle: Oceanic Crust versus Meta-Stable Olivine. Journal of Earth Science, 2022, 33(4): 1056-1058. doi: 10.1007/s12583-022-1700-7

Small-Scale Heterogeneity and Seismic Anisotropy in the Mid-Mantle: Oceanic Crust versus Meta-Stable Olivine

doi: 10.1007/s12583-022-1700-7
More Information
  • Corresponding author: Xiaobo He,
  • Received Date: 23 May 2022
  • Accepted Date: 15 Jun 2022
  • Available Online: 06 Aug 2022
  • Issue Publish Date: 30 Aug 2022
  • loading
  • Ballmer, M. D., Houser, C., Hernlund, J. W., et al., 2017. Persistence of Strong Silica-Enriched Domains in the Earth's Lower Mantle. Nature Geoscience, 10(3): 236–240.
    Ballmer, M. D., Schmerr, N. C., Nakagawa, T., et al., 2015. Compositional Mantle Layering Revealed by Slab Stagnation at ~1 000-km Depth. Science Advances, 1(11): e1500815.
    Faccenda, M., Ferreira, A. M. G., Tisato, N., et al., 2019. Extrinsic Elastic Anisotropy in a Compositionally Heterogeneous Earth's Mantle. Journal of Geophysical Research Solid Earth, 124(2): 1671–1687.
    Ferreira, A. M. G., Faccenda, M., Sturgeon, W., et al., 2019. Ubiquitous Lower-Mantle Anisotropy beneath Subduction Zones. Nature Geoscience, 12(4): 301–306.
    Foley, B. J., Long, M. D., 2011. Upper and Mid-Mantle Anisotropy beneath the Tonga Slab. Geophysical Research Letters, 38(2): 1–5.
    French, S. W., Romanowicz, B., 2015. Broad Plumes Rooted at the Base of the Earth's Mantle beneath Major Hotspots. Nature, 525(7567): 95–99.
    Fukao, Y., Obayashi, M., 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920–5938.
    Haugland, S. M., Ritsema, J., Kaneshima, S., et al., 2017. Estimate of the Rigidity of Eclogite in the Lower Mantle from Waveform Modeling of Broadband S-to-P Wave Conversions. Geophysical Research Letters, 44(23): 11778–11784.
    He, X. B., Zheng, Y. X., 2018. S-to-P Conversions from Mid-Mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?. Pure and Applied Geophysics, 175(6): 2045–2055.
    Hsieh, W. P., Marzotto, E., Tsao, Y. C., et al., 2022. High Thermal Conductivity of Stishovite Promotes Rapid Warming of a Sinking Slab in Earth's Mantle. Earth and Planetary Science Letters, 584: 117477.
    Justo, J. F., Morra, G., Yuen, D. A., 2015. Viscosity Undulations in the Lower Mantle: The Dynamical Role of Iron Spin Transition. Earth and Planetary Science Letters, 421: 20–26.
    Kaneshima, S., 2019. Seismic Scatterers in the Lower Mantle near Subduction Zones. Geophysical Journal International, 219(Supplement_1): S2–S20.
    Kong, F. S., Gao, S. S., Liu, K. H., et al., 2022. Metastable Olivine within Oceanic Lithosphere in the Uppermost Lower Mantle beneath the Eastern United States. Geology, 50(7): 776–780.
    Lynner, C., Long, M. D., 2015. Heterogeneous Seismic Anisotropy in the Transition Zone and Uppermost Lower Mantle: Evidence from South America, Izu-Bonin and Japan. Geophysical Journal International, 201(3): 1545–1552.
    Marquardt, H., Miyagi, L., 2015. Slab Stagnation in the Shallow Lower Mantle Linked to an Increase in Mantle Viscosity. Nature Geoscience, 8(4): 311–314.
    Mohiuddin, A., Long, M. D., Lynner, C., 2015. Mid-Mantle Seismic Anisotropy beneath Southwestern Pacific Subduction Systems and Implications for Mid-Mantle Deformation. Physics of the Earth and Planetary Interiors, 245: 1–14.
    Niu, F. L., 2014. Distinct Compositional Thin Layers at Mid-Mantle Depths beneath Northeast China Revealed by the USArray. Earth and Planetary Science Letters, 402: 305–312.
    Niu, F. L., Kawakatsu, H., Fukao, Y., 2003. Seismic Evidence for a Chemical Heterogeneity in the Midmantle: A Strong and Slightly Dipping Seismic Reflector beneath the Mariana Subduction Zone. Journal of Geophysical Research Atmospheres, 108(B9): 2419.
    Nowacki, A., Kendall, J. M., Wookey, J., et al., 2015. Mid-Mantle Anisotropy in Subduction Zones and Deep Water Transport. Geochemistry, Geophysics, Geosystems, 16(3): 764–784.
    Rudolph, M. L., Lekić, V., Lithgow-Bertelloni, C., 2015. Viscosity Jump in Earth's Mid-Mantle. Science, 350(6266): 1349–1352.
    Shahnas, M. H., Pysklywec, R. N., Justo, J. F., et al., 2017a. Spin Transition-Induced Anomalies in the Lower Mantle: Implications for Mid-Mantle Partial Layering. Geophysical Journal International, 210(2): 765–773.
    Shahnas, M. H., Yuen, D. A., Pysklywec, R. N., 2017b. Mid-Mantle Heterogeneities and Iron Spin Transition in the Lower Mantle: Implications for Mid-Mantle Slab Stagnation. Earth and Planetary Science Letters, 458: 293–304.
    Tsuchiya, T., 2011. Elasticity of Subducted Basaltic Crust at the Lower Mantle Pressures: Insights on the Nature of Deep Mantle Heterogeneity. Physics of the Earth and Planetary Interiors, 188(3/4): 142–149.
    Tsujino, N., Nishihara, Y., Yamazaki, D., et al., 2016. Mantle Dynamics Inferred from the Crystallographic Preferred Orientation of Bridgmanite. Nature, 539(7627): 81–84.
    Wang, L. M., He, X. B., 2020. Sharpness of the Paired 660-km Discontinuity beneath the Izu-Bonin Area. Earth and Planetary Physics, 4(6): 627–638
    Wang, W. Z., Xu, Y. H., Sun, D. Y., et al., 2020. Velocity and Density Characteristics of Subducted Oceanic Crust and the Origin of Lower-Mantle Heterogeneities. Nature Communications, 11: 64.
    Waszek, L., Schmerr, N. C., Ballmer, M. D., 2018. Global Observations of Reflectors in the Mid-Mantle with Implications for Mantle Structure and Dynamics. Nature Communications, 9: 385.
    Wookey, J., Kendall, J. M., Barruol, G., 2002. Mid-Mantle Deformation Inferred from Seismic Anisotropy. Nature, 415(6873): 777–780.
    Xiang, G. J., Wang, Z. S., Kusky, T. M., 2021. Density and Viscosity Changes between Depleted and Primordial Mantle at ~1 000 km Depth Influence Plume Upwelling Behavior. Earth and Planetary Science Letters, 576: 117213.
    Yang, Z. T., He, X. B., 2015. Oceanic Crust in the Mid-Mantle beneath West-Central Pacific Subduction Zones: Evidence from S to P Converted Waveforms. Geophysical Journal International, 203(1): 541–547.
    Yuan, Y., Sun, D., Leng, W., et al., 2021. Southeastward Dipping Mid-Mantle Heterogeneities beneath the Sea of Okhotsk. Earth and Planetary Science Letters, 573: 117151.
    Zhang, L. M., Li, J., Wang, T., et al., 2020. Body Waves Retrieved from Noise Cross-Correlation Reveal Lower Mantle Scatterers beneath the Northwest Pacific Subduction Zone. Geophysical Research Letters, 47(19): 1873.
    Zhang, Y. Y., Fu, S. Y., Karato, S. I., et al., 2022. Elasticity of Hydrated Al-Bearing Stishovite and Post-Stishovite: Implications for Understanding Regional Seismic VS Anomalies along Subducting Slabs in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 127(4): e2021JB023170.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views(5) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint