Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Miao Wang, Xinqiang Niu, Gang Ma, Shumei Zhang, Wei Zhou. Flow and Deposit Characteristics of Submerged Granular Column Collapse under Different Densities Ambient Fluids. Journal of Earth Science, 2025, 36(6): 2642-2657. doi: 10.1007/s12583-022-1713-2
Citation: Miao Wang, Xinqiang Niu, Gang Ma, Shumei Zhang, Wei Zhou. Flow and Deposit Characteristics of Submerged Granular Column Collapse under Different Densities Ambient Fluids. Journal of Earth Science, 2025, 36(6): 2642-2657. doi: 10.1007/s12583-022-1713-2

Flow and Deposit Characteristics of Submerged Granular Column Collapse under Different Densities Ambient Fluids

doi: 10.1007/s12583-022-1713-2
More Information
  • Corresponding author: Xinqiang Niu, niuxinqiang@cjwsjy.com.cn
  • Received Date: 06 Apr 2022
  • Accepted Date: 30 Jul 2022
  • Issue Publish Date: 30 Dec 2025
  • The reservoir landslide is typically characterized by high-speed movement of a particle-fluid mixture, and its flow and deposit mechanisms are complex. This paper presents the mechanism of submerged granular column collapse under different densities ambient fluids based on coupled computational fluid dynamics and discrete element method (CFD-DEM) analysis. Important fluid-particle interaction forces, such as the drag force and the buoyancy, are considered by exchanging interaction forces between the CFD and DEM computations. We focus on the flow and deposit characteristics of submerged granular column collapse, namely the runout distance, the tail end height, the particle velocity, the energy, and deposit morphology, which are analyzed qualitatively and quantitatively. The change in fluid field caused by submerged granular column collapse and the formation of eddies are also discussed. A relatively dense fluid can significantly hinder the motion of granular flow, but can improve the conversion efficiency of kinetic energy from the vertical to the horizontal direction. Moreover, the eddies caused by fluid turbulence erode the surface of the granular pile, which is especially marked in a high-density fluid. The findings can provide vital theoretical support for the flow and deposit characteristics of granular flow under fluid and offer insights for the study of reservoir landslides.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Amritkar, A., Deb, S., Tafti, D., 2014. Efficient Parallel CFD-DEM Simulations Using OpenMP. Journal of Computational Physics, 256: 501–519. https://doi.org/10.1016/j.jcp.2013.09.007
    Azmir, J., Hou, Q. F., Yu, A. B., 2019. CFD-DEM Simulation of Drying of Food Grains with Particle Shrinkage. Powder Technology, 343: 792–802. https://doi.org/10.1016/j.powtec.2018.11.097
    Batchelor, C. K., Batchelor, G. K. 1959. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. 36–38. https://doi.org/10.1063/1.3060769
    Bougouin, A., Lacaze, L., 2018. Granular Collapse in a Fluid: Different Flow Regimes for an Initially Dense-Packing. Physical Review Fluids, 3(6): 064305. https://doi.org/10.1103/physrevfluids.3.064305
    Cabrera, M., Estrada, N., 2019. Granular Column Collapse: Analysis of Grain-Size Effects. Physical Review E, 99(1): 012905. https://doi.org/10.1103/physreve.99.012905
    Cabrera, M. A., Pinzon, G., Take, W. A., et al., 2020. Wave Generation across a Continuum of Landslide Conditions from the Collapse of Partially Submerged to Fully Submerged Granular Columns. Journal of Geophysical Research: Oceans, 125(12): e2020JC016465. https://doi.org/10.1029/2020jc016465
    Cassar, C., Nicolas, M., Pouliquen, O., 2005. Submarine Granular Flows down Inclined Planes. Physics of Fluids, 17(10): 103301. https://doi.org/10.1063/1.2069864
    Cheng, K., Wang, Y., Yang, Q., 2018. A Semi-Resolved CFD-DEM Model for Seepage-Induced Fine Particle Migration in Gap-Graded Soils. Computers and Geotechnics, 100: 30–51. https://doi.org/10.1016/j.compgeo.2018.04.004
    Chu, K. W., Yu, A. B., 2008. Numerical Simulation of Complex Particle-Fluid Flows. Powder Technology, 179(3): 104–114. https://doi.org/10.1016/j.powtec.2007.06.017
    Courrech du Pont, S., Gondret, P., Perrin, B., et al., 2003. Granular Avalanches in Fluids. Physical Review Letters, 90(4): 044301. https://doi.org/10.1103/physrevlett.90.044301
    Criss, R. E., Yao, W. M., Li, C. D., et al., 2020. A Predictive, Two-Parameter Model for the Movement of Reservoir Landslides. Journal of Earth Science, 31(6): 1051–1057. https://doi.org/10.1007/s12583-020-1331-9
    Dabic, M., Deglon, D. A., Meyer, C. J., 2016. CFD-DEM Simulation of Fluid Suspended Particle Response Behaviour Subject to Transverse Acoustic Standing Fields. Progress in Computational Fluid Dynamics, 16(1): 1. https://doi.org/10.1504/pcfd.2016.074223
    Di Felice, R., 1994. The Voidage Function for Fluid-Particle Interaction Systems. International Journal of Multiphase Flow, 20(1): 153–159. https://doi.org/10.1016/0301-9322(94)90011-6
    Duraisamy, K., Iaccarino, G., Xiao, H., 2019. Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics, 51: 357–377. https://doi.org/10.1146/annurev-fluid-010518-040547
    Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3–17. https://doi.org/10.1007/s10346-007-0112-1
    Hager, A., 2014. CFD-DEM on Multiple Scales: An Extensive Investigation of Particle-Fluid Interactions: [Dissertation]. Johannes Kepler University Linz, Linz
    Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167–194. https://doi.org/10.1007/s10346-013-0436-y
    Hungr, O., Evans, S. G., Bovis, M. J., et al., 2001. A Review of the Classification of Landslides of the Flow Type. Environmental and Engineering Geoscience, 7(3): 221–238. https://doi.org/10.2113/gseegeosci.7.3.221
    Hunt, J. E., Tappin, D. R., Watt, S. F. L., et al., 2021. Submarine Landslide Megablocks Show Half of Anak Krakatau Island Failed on December 22nd, 2018. Nature Communications, 12: 2827. https://doi.org/10.1038/s41467-021-22610-5
    Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897–1910. https://doi.org/10.1029/2000wr900090
    Izard, E., Lacaze, L., Bonometti, T., et al., 2018. Numerical Modeling of a Granular Collapse Immersed in a Viscous Fluid. In: Advances in Hydroinformatics: SimHydro 2017-Choosing the Right Model in Applied Hydraulics. Springer, Singapore. 1099–1116. https://doi.org/10.1007/978-981-10-7218-5_76
    Jafari Nodoushan, E., Shakibaeinia, A., Hosseini, K., 2018. A Multiphase Meshfree Particle Method for Continuum-Based Modeling of Dry and Submerged Granular Flows. Powder Technology, 335: 258–274. https://doi.org/10.1016/j.powtec.2018.04.071
    Jiang, M. J., Shen, Z. F., Wu, D., 2018. CFD-DEM Simulation of Submarine Landslide Triggered by Seismic Loading in Methane Hydrate Rich Zone. Landslides, 15(11): 2227–2241. https://doi.org/10.1007/s10346-018-1035-8
    Jiang, Y. J., Zhao, Y., Towhata, I., et al., 2015. Influence of Particle Characteristics on Impact Event of Dry Granular Flow. Powder Technology, 270: 53–67. https://doi.org/10.1016/j.powtec.2014.10.005
    Jing, L., Yang, G. C., Kwok, C. Y., et al., 2018. Dynamics and Scaling Laws of Underwater Granular Collapse with Varying Aspect Ratios. Physical Review E, 98(4): 042901. https://doi.org/10.1103/physreve.98.042901
    Jing, L., Yang, G. C., Kwok, C. Y., et al., 2019. Flow Regimes and Dynamic Similarity of Immersed Granular Collapse: A CFD-DEM Investigation. Powder Technology, 345: 532–543. https://doi.org/10.1016/j.powtec.2019.01.029
    Johnson, K. L., Johnson, K. L., 1987. Contact Mechanics. Cambridge University Press, Cambridge
    Jop, P., Forterre, Y., Pouliquen, O., 2006. A Constitutive Law for Dense Granular Flows. Nature, 441(7094): 727–730. https://doi.org/10.1038/nature04801
    Kanitz, M., Grabe, J., 2021. The Influence of the Void Fraction on the Particle Migration: A Coupled Computational Fluid Dynamics-Discrete Element Method Study about Drag Force Correlations. International Journal for Numerical and Analytical Methods in Geomechanics, 45(1): 45–63. https://doi.org/10.1002/nag.3131
    Keishing, J., Huang, X., Hanley, K. J., 2020. Energy Dissipation in Soil Samples during Cyclic Triaxial Simulations. Computers and Geotechnics, 121: 103481. https://doi.org/10.1016/j.compgeo.2020.103481
    Kim, M. I., Yoon, H. S., 2020. Effect of the Liquid Density on a Liquid-Gas-Particle Mixture Flow in Dam Break. International Journal of Heat and Mass Transfer, 148: 119054. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119054
    Kloss, C., Goniva, C., Hager, A., et al., 2012. Models, Algorithms and Validation for Opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 12(2/3): 140. https://doi.org/10.1504/pcfd.2012.047457
    Kumar, K., Delenne, J. Y., Soga, K., 2017. Mechanics of Granular Column Collapse in Fluid at Varying Slope Angles. Journal of Hydrodynamics, Ser. B, 29(4): 529–541. https://doi.org/10.1016/s1001-6058(16)60766-7
    Kumar, K., 2015. Multi-Scale Multiphase Modelling of Granular Flows: [Dissertation]. University of Cambridge Repository, Apollo. https://doi.org/10.17863/cam.14130
    Kutz, J. N., 2017. Deep Learning in Fluid Dynamics. Journal of Fluid Mechanics, 814: 1–4. https://doi.org/10.1017/jfm.2016.803
    Lacaze, L., Phillips, J. C., Kerswell, R. R., 2008. Planar Collapse of a Granular Column: Experiments and Discrete Element Simulations. Physics of Fluids, 20(6): 063302. https://doi.org/10.1063/1.2929375
    Lacaze, L., Bouteloup, J., Fry, B., et al., 2021. Immersed Granular Collapse: From Viscous to Free-Fall Unsteady Granular Flows. Journal of Fluid Mechanics, 912: A15. https://doi.org/10.1017/jfm.2020.1088
    Lai, Z. Q., Vallejo, L. E., Zhou, W., et al., 2017. Collapse of Granular Columns with Fractal Particle Size Distribution: Implications for Understanding the Role of Small Particles in Granular Flows. Geophysical Research Letters, 44(24): 12181–12189. https://doi.org/10.1002/2017gl075689
    Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J. P., 2004. Spreading of a Granular Mass on a Horizontal Plane. Physics of Fluids, 16(7): 2371–2381. https://doi.org/10.1063/1.1736611
    Lajeunesse, E., Monnier, J. B., Homsy, G. M., 2005. Granular Slumping on a Horizontal Surface. Physics of Fluids, 17(10): 103302. https://doi.org/10.1063/1.2087687
    Langlois, V. J., Quiquerez, A., Allemand, P., 2015. Collapse of a Two-Dimensional Brittle Granular Column: Implications for Understanding Dynamic Rock Fragmentation in a Landslide. Journal of Geophysical Research: Earth Surface, 120(9): 1866–1880. https://doi.org/10.1002/2014jf003330
    Lee, C. H., Huang, Z. H., Yu, M. -L., 2018. Collapse of Submerged Granular Columns in Loose Packing: Experiment and Two-Phase Flow Simulation. Physics of Fluids, 30(12): 123307. https://doi.org/10.1063/1.5050994
    Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3/4): 301–331. https://doi.org/10.1016/s0013-7952(01)00090-4
    Li, L. C., Wu, W. B., Liu, H., et al., 2021. DEM Analysis of the Plugging Effect of Open-Ended Pile during the Installation Process. Ocean Engineering, 220: 108375. https://doi.org/10.1016/j.oceaneng.2020.108375
    Li, X. Y., Zhao, J. D., 2018. Dam-Break of Mixtures Consisting of Non-Newtonian Liquids and Granular Particles. Powder Technology, 338: 493–505. https://doi.org/10.1016/j.powtec.2018.07.021
    Liang, D. F., He, X. Z., 2014. A Comparison of Conventional and Shear-Rate Dependent Mohr-Coulomb Models for Simulating Landslides. Journal of Mountain Science, 11(6): 1478–1490. https://doi.org/10.1007/s11629-014-3041-1
    Lube, G., Huppert, H. E., Sparks, R. S. J., et al., 2004. Axisymmetric Collapses of Granular Columns. Journal of Fluid Mechanics, 508: 175–199. https://doi.org/10.1017/s0022112004009036
    Ma, H. Q., Zhao, Y. Z., Cheng, Y., 2019. CFD-DEM Modeling of Rod-Like Particles in a Fluidized Bed with Complex Geometry. Powder Technology, 344: 673–683. https://doi.org/10.1016/j.powtec.2018.12.066
    Man, T., Huppert, H. E., Li, L., et al., 2021. Deposition Morphology of Granular Column Collapses. Granular Matter, 23(3): 59. https://doi.org/10.1007/s10035-021-01112-7
    Masson, D. G., Harbitz, C. B., Wynn, R. B., et al., 2006. Submarine Landslides: Processes, Triggers and Hazard Prediction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1845): 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    Meruane, C., Tamburrino, A., Roche, O., 2010. On the Role of the Ambient Fluid on Gravitational Granular Flow Dynamics. Journal of Fluid Mechanics, 648: 381–404. https://doi.org/10.1017/s0022112009993181
    Meruane, C., Tamburrino, A., Roche, O., 2012. Dynamics of Dense Granular Flows of Small-and-Large-Grain Mixtures in an Ambient Fluid. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 86(2 Pt 2): 026311. https://doi.org/10.1103/physreve.86.026311s
    Mindlin, R. D., Deresiewicz, H., 1953. Timoshenko's Shear Coefficient for Flexural Vibrations of Beams. Columbia University Press, New York
    Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, 48(2): 269–299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
    Norourzi, H. R., Zarghami, R., Mostoufi, N., et al., 2016. Coupled CFD-DEM Modeling. John Wiley & Sons
    Pinzon, G., Cabrera, M., 2019. Planar Collapse of a Submerged Granular Column. Physics of Fluids, 31(8): 086603. https://doi.org/10.1063/1.5099494
    Rondon, L., Pouliquen, O., Aussillous, P., 2011. Granular Collapse in a Fluid: Role of the Initial Volume Fraction. Physics of Fluids, 23(7): 073301. https://doi.org/10.1063/1.3594200
    Salazar, A., Sáez, E., Pardo, G., 2015. Modeling the Direct Shear Test of a Coarse Sand Using the 3D Discrete Element Method with a Rolling Friction Model. Computers and Geotechnics, 67: 83–93. https://doi.org/10.1016/j.compgeo.2015.02.017
    Shan, T., Zhao, J. D., 2014. A Coupled CFD-DEM Analysis of Granular Flow Impacting on a Water Reservoir. Acta Mechanica, 225(8): 2449–2470. https://doi.org/10.1007/s00707-014-1119-z
    Si, P. F., Shi, H. B., Yu, X. P., 2018. Development of a Mathematical Model for Submarine Granular Flows. Physics of Fluids, 30(8): 083302. https://doi.org/10.1063/1.5030349
    Staron, L., Hinch, E. J., 2005. Study of the Collapse of Granular Columns Using Two-Dimensional Discrete-Grain Simulation. Journal of Fluid Mechanics, 545: 1–27. https://doi.org/10.1017/s0022112005006415
    Staron, L., Hinch, E. J., 2007. The Spreading of a Granular Mass: Role of Grain Properties and Initial Conditions. Granular Matter, 9(3): 205–217. https://doi.org/10.1007/s10035-006-0033-z
    Sun, Q. -C., Wang, G. -Q., 2008. Force Distribution in Static Granular Matter in Two Dimensions. Acta Physica Sinica, 57(8): 4667. https://doi.org/10.7498/aps.57.4667
    Sun, R., Xiao, H., 2016. SediFoam: A General-Purpose, Open-Source CFD-DEM Solver for Particle-Laden Flow with Emphasis on Sediment Transport. Computers & Geosciences, 89: 207–219. https://doi.org/10.1016/j.cageo.2016.01.011
    Sun, Y. H., Zhang, W. T., Wang, X. L., et al., 2020. Numerical Study on Immersed Granular Collapse in Viscous Regime by Particle-Scale Simulation. Physics of Fluids, 32(7): 073313. https://doi.org/10.1063/5.0015110
    Talling, P. J., 2014. On the Triggers, Resulting Flow Types and Frequencies of Subaqueous Sediment Density Flows in Different Settings. Marine Geology, 352: 155–182. https://doi.org/10.1016/j.margeo.2014.02.006
    Talling, P. J., Paull, C. K., Piper, D. J. W., 2013. How Are Subaqueous Sediment Density Flows Triggered, what is Their Internal Structure and how does it Evolve? Direct Observations from Monitoring of Active Flows. Earth-Science Reviews, 125: 244–287. https://doi.org/10.1016/j.earscirev.2013.07.005
    Talling, P. J., Masson, D. G., Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 59(7): 1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
    Tang, H. M., Jia, H. B., Hu, X. L., et al., 2010. Characteristics of Landslides Induced by the Great Wenchuan Earthquake. Journal of Earth Science, 21(1): 104–113. https://doi.org/10.1007/s12583-010-0008-1
    Thompson, E. L., Huppert, H. E., 2007. Granular Column Collapses: Further Experimental Results. Journal of Fluid Mechanics, 575: 177–186. https://doi.org/10.1017/s0022112006004563
    Wang, H. J., Bi, N. S., Saito, Y., et al., 2010. Recent Changes in Sediment Delivery by the Huanghe (Yellow River) to the Sea: Causes and Environmental Implications in Its Estuary. Journal of Hydrology, 391(3/4): 302–313. https://doi.org/10.1016/j.jhydrol.2010.07.030
    Wu, C. L., Ayeni, O., Berrouk, A. S., et al., 2014. Parallel Algorithms for CFD-DEM Modeling of Dense Particulate Flows. Chemical Engineering Science, 118: 221–244. https://doi.org/10.1016/j.ces.2014.07.043
    Xiao, H., Sun, J., 2011. Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows. Communications in Computational Physics, 9(2): 297–323. https://doi.org/10.4208/cicp.260509.230210a
    Xu, W. J., Dong, X. Y., Ding, W. T., 2019. Analysis of Fluid-Particle Interaction in Granular Materials Using Coupled SPH-DEM Method. Powder Technology, 353: 459–472. https://doi.org/10.1016/j.powtec.2019.05.052
    Yang, Z. Y., Pourghasemi, H. R., Lee, Y. H., 2016. Fractal Analysis of Rainfall-Induced Landslide and Debris Flow Spread Distribution in the Chenyulan Creek Basin, Taiwan. Journal of Earth Science, 27(1): 151–159. https://doi.org/10.1007/s12583-016-0633-4
    Yu, B., 2008. Research on the Calculating Density by the Deposit of Debris Flows. Acta Sedimentologica Sinica, 26(5): 789–796 (in Chinese with English Abstract)
    Zhang, W. T., An, Y., Liu, Q. Q., et al., 2020. Evolution of Energy in Submerged Granular Column Collapse. Chinese Physics Letters, 37(7): 074502. https://doi.org/10.1088/0256-307x/37/7/074502
    Zhao, J. D., Shan, T., 2013. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics. Powder Technology, 239: 248–258. https://doi.org/10.1016/j.powtec.2013.02.003
    Zhao, T., Utili, S., Crosta, G. B., 2016. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses. Rock Mechanics and Rock Engineering, 49(6): 2437–2456. https://doi.org/10.1007/s00603-015-0731-0
    Zhong, W. Q., Yu, A. B., Liu, X. J., et al., 2016. DEM/CFD-DEM Modelling of Non-Spherical Particulate Systems: Theoretical Developments and Applications. Powder Technology, 302: 108–152. https://doi.org/10.1016/j.powtec.2016.07.010
    Zhou, G. G. D., Cui, K. F. E., Jing, L., et al., 2020. Particle Size Segregation in Granular Mass Flows with Different Ambient Fluids. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019536. https://doi.org/10.1029/2020jb019536
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views(19) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return