| Citation: | Miao Wang, Xinqiang Niu, Gang Ma, Shumei Zhang, Wei Zhou. Flow and Deposit Characteristics of Submerged Granular Column Collapse under Different Densities Ambient Fluids. Journal of Earth Science, 2025, 36(6): 2642-2657. doi: 10.1007/s12583-022-1713-2 |
The reservoir landslide is typically characterized by high-speed movement of a particle-fluid mixture, and its flow and deposit mechanisms are complex. This paper presents the mechanism of submerged granular column collapse under different densities ambient fluids based on coupled computational fluid dynamics and discrete element method (CFD-DEM) analysis. Important fluid-particle interaction forces, such as the drag force and the buoyancy, are considered by exchanging interaction forces between the CFD and DEM computations. We focus on the flow and deposit characteristics of submerged granular column collapse, namely the runout distance, the tail end height, the particle velocity, the energy, and deposit morphology, which are analyzed qualitatively and quantitatively. The change in fluid field caused by submerged granular column collapse and the formation of eddies are also discussed. A relatively dense fluid can significantly hinder the motion of granular flow, but can improve the conversion efficiency of kinetic energy from the vertical to the horizontal direction. Moreover, the eddies caused by fluid turbulence erode the surface of the granular pile, which is especially marked in a high-density fluid. The findings can provide vital theoretical support for the flow and deposit characteristics of granular flow under fluid and offer insights for the study of reservoir landslides.
| Amritkar, A., Deb, S., Tafti, D., 2014. Efficient Parallel CFD-DEM Simulations Using OpenMP. Journal of Computational Physics, 256: 501–519. https://doi.org/10.1016/j.jcp.2013.09.007 |
| Azmir, J., Hou, Q. F., Yu, A. B., 2019. CFD-DEM Simulation of Drying of Food Grains with Particle Shrinkage. Powder Technology, 343: 792–802. https://doi.org/10.1016/j.powtec.2018.11.097 |
| Batchelor, C. K., Batchelor, G. K. 1959. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. 36–38. https://doi.org/10.1063/1.3060769 |
| Bougouin, A., Lacaze, L., 2018. Granular Collapse in a Fluid: Different Flow Regimes for an Initially Dense-Packing. Physical Review Fluids, 3(6): 064305. https://doi.org/10.1103/physrevfluids.3.064305 |
| Cabrera, M., Estrada, N., 2019. Granular Column Collapse: Analysis of Grain-Size Effects. Physical Review E, 99(1): 012905. https://doi.org/10.1103/physreve.99.012905 |
| Cabrera, M. A., Pinzon, G., Take, W. A., et al., 2020. Wave Generation across a Continuum of Landslide Conditions from the Collapse of Partially Submerged to Fully Submerged Granular Columns. Journal of Geophysical Research: Oceans, 125(12): e2020JC016465. https://doi.org/10.1029/2020jc016465 |
| Cassar, C., Nicolas, M., Pouliquen, O., 2005. Submarine Granular Flows down Inclined Planes. Physics of Fluids, 17(10): 103301. https://doi.org/10.1063/1.2069864 |
| Cheng, K., Wang, Y., Yang, Q., 2018. A Semi-Resolved CFD-DEM Model for Seepage-Induced Fine Particle Migration in Gap-Graded Soils. Computers and Geotechnics, 100: 30–51. https://doi.org/10.1016/j.compgeo.2018.04.004 |
| Chu, K. W., Yu, A. B., 2008. Numerical Simulation of Complex Particle-Fluid Flows. Powder Technology, 179(3): 104–114. https://doi.org/10.1016/j.powtec.2007.06.017 |
| Courrech du Pont, S., Gondret, P., Perrin, B., et al., 2003. Granular Avalanches in Fluids. Physical Review Letters, 90(4): 044301. https://doi.org/10.1103/physrevlett.90.044301 |
| Criss, R. E., Yao, W. M., Li, C. D., et al., 2020. A Predictive, Two-Parameter Model for the Movement of Reservoir Landslides. Journal of Earth Science, 31(6): 1051–1057. https://doi.org/10.1007/s12583-020-1331-9 |
| Dabic, M., Deglon, D. A., Meyer, C. J., 2016. CFD-DEM Simulation of Fluid Suspended Particle Response Behaviour Subject to Transverse Acoustic Standing Fields. Progress in Computational Fluid Dynamics, 16(1): 1. https://doi.org/10.1504/pcfd.2016.074223 |
| Di Felice, R., 1994. The Voidage Function for Fluid-Particle Interaction Systems. International Journal of Multiphase Flow, 20(1): 153–159. https://doi.org/10.1016/0301-9322(94)90011-6 |
| Duraisamy, K., Iaccarino, G., Xiao, H., 2019. Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics, 51: 357–377. https://doi.org/10.1146/annurev-fluid-010518-040547 |
| Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3–17. https://doi.org/10.1007/s10346-007-0112-1 |
| Hager, A., 2014. CFD-DEM on Multiple Scales: An Extensive Investigation of Particle-Fluid Interactions: [Dissertation]. Johannes Kepler University Linz, Linz |
| Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167–194. https://doi.org/10.1007/s10346-013-0436-y |
| Hungr, O., Evans, S. G., Bovis, M. J., et al., 2001. A Review of the Classification of Landslides of the Flow Type. Environmental and Engineering Geoscience, 7(3): 221–238. https://doi.org/10.2113/gseegeosci.7.3.221 |
| Hunt, J. E., Tappin, D. R., Watt, S. F. L., et al., 2021. Submarine Landslide Megablocks Show Half of Anak Krakatau Island Failed on December 22nd, 2018. Nature Communications, 12: 2827. https://doi.org/10.1038/s41467-021-22610-5 |
| Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897–1910. https://doi.org/10.1029/2000wr900090 |
|
Izard, E., Lacaze, L., Bonometti, T., et al., 2018. Numerical Modeling of a Granular Collapse Immersed in a Viscous Fluid. In: Advances in Hydroinformatics: SimHydro 2017-Choosing the Right Model in Applied Hydraulics. Springer, Singapore. 1099–1116. |
| Jafari Nodoushan, E., Shakibaeinia, A., Hosseini, K., 2018. A Multiphase Meshfree Particle Method for Continuum-Based Modeling of Dry and Submerged Granular Flows. Powder Technology, 335: 258–274. https://doi.org/10.1016/j.powtec.2018.04.071 |
| Jiang, M. J., Shen, Z. F., Wu, D., 2018. CFD-DEM Simulation of Submarine Landslide Triggered by Seismic Loading in Methane Hydrate Rich Zone. Landslides, 15(11): 2227–2241. https://doi.org/10.1007/s10346-018-1035-8 |
| Jiang, Y. J., Zhao, Y., Towhata, I., et al., 2015. Influence of Particle Characteristics on Impact Event of Dry Granular Flow. Powder Technology, 270: 53–67. https://doi.org/10.1016/j.powtec.2014.10.005 |
| Jing, L., Yang, G. C., Kwok, C. Y., et al., 2018. Dynamics and Scaling Laws of Underwater Granular Collapse with Varying Aspect Ratios. Physical Review E, 98(4): 042901. https://doi.org/10.1103/physreve.98.042901 |
| Jing, L., Yang, G. C., Kwok, C. Y., et al., 2019. Flow Regimes and Dynamic Similarity of Immersed Granular Collapse: A CFD-DEM Investigation. Powder Technology, 345: 532–543. https://doi.org/10.1016/j.powtec.2019.01.029 |
| Johnson, K. L., Johnson, K. L., 1987. Contact Mechanics. Cambridge University Press, Cambridge |
| Jop, P., Forterre, Y., Pouliquen, O., 2006. A Constitutive Law for Dense Granular Flows. Nature, 441(7094): 727–730. https://doi.org/10.1038/nature04801 |
| Kanitz, M., Grabe, J., 2021. The Influence of the Void Fraction on the Particle Migration: A Coupled Computational Fluid Dynamics-Discrete Element Method Study about Drag Force Correlations. International Journal for Numerical and Analytical Methods in Geomechanics, 45(1): 45–63. https://doi.org/10.1002/nag.3131 |
| Keishing, J., Huang, X., Hanley, K. J., 2020. Energy Dissipation in Soil Samples during Cyclic Triaxial Simulations. Computers and Geotechnics, 121: 103481. https://doi.org/10.1016/j.compgeo.2020.103481 |
| Kim, M. I., Yoon, H. S., 2020. Effect of the Liquid Density on a Liquid-Gas-Particle Mixture Flow in Dam Break. International Journal of Heat and Mass Transfer, 148: 119054. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119054 |
| Kloss, C., Goniva, C., Hager, A., et al., 2012. Models, Algorithms and Validation for Opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 12(2/3): 140. https://doi.org/10.1504/pcfd.2012.047457 |
| Kumar, K., Delenne, J. Y., Soga, K., 2017. Mechanics of Granular Column Collapse in Fluid at Varying Slope Angles. Journal of Hydrodynamics, Ser. B, 29(4): 529–541. https://doi.org/10.1016/s1001-6058(16)60766-7 |
| Kumar, K., 2015. Multi-Scale Multiphase Modelling of Granular Flows: [Dissertation]. University of Cambridge Repository, Apollo. https://doi.org/10.17863/cam.14130 |
| Kutz, J. N., 2017. Deep Learning in Fluid Dynamics. Journal of Fluid Mechanics, 814: 1–4. https://doi.org/10.1017/jfm.2016.803 |
| Lacaze, L., Phillips, J. C., Kerswell, R. R., 2008. Planar Collapse of a Granular Column: Experiments and Discrete Element Simulations. Physics of Fluids, 20(6): 063302. https://doi.org/10.1063/1.2929375 |
| Lacaze, L., Bouteloup, J., Fry, B., et al., 2021. Immersed Granular Collapse: From Viscous to Free-Fall Unsteady Granular Flows. Journal of Fluid Mechanics, 912: A15. https://doi.org/10.1017/jfm.2020.1088 |
| Lai, Z. Q., Vallejo, L. E., Zhou, W., et al., 2017. Collapse of Granular Columns with Fractal Particle Size Distribution: Implications for Understanding the Role of Small Particles in Granular Flows. Geophysical Research Letters, 44(24): 12181–12189. https://doi.org/10.1002/2017gl075689 |
| Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J. P., 2004. Spreading of a Granular Mass on a Horizontal Plane. Physics of Fluids, 16(7): 2371–2381. https://doi.org/10.1063/1.1736611 |
| Lajeunesse, E., Monnier, J. B., Homsy, G. M., 2005. Granular Slumping on a Horizontal Surface. Physics of Fluids, 17(10): 103302. https://doi.org/10.1063/1.2087687 |
| Langlois, V. J., Quiquerez, A., Allemand, P., 2015. Collapse of a Two-Dimensional Brittle Granular Column: Implications for Understanding Dynamic Rock Fragmentation in a Landslide. Journal of Geophysical Research: Earth Surface, 120(9): 1866–1880. https://doi.org/10.1002/2014jf003330 |
| Lee, C. H., Huang, Z. H., Yu, M. -L., 2018. Collapse of Submerged Granular Columns in Loose Packing: Experiment and Two-Phase Flow Simulation. Physics of Fluids, 30(12): 123307. https://doi.org/10.1063/1.5050994 |
| Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3/4): 301–331. https://doi.org/10.1016/s0013-7952(01)00090-4 |
| Li, L. C., Wu, W. B., Liu, H., et al., 2021. DEM Analysis of the Plugging Effect of Open-Ended Pile during the Installation Process. Ocean Engineering, 220: 108375. https://doi.org/10.1016/j.oceaneng.2020.108375 |
| Li, X. Y., Zhao, J. D., 2018. Dam-Break of Mixtures Consisting of Non-Newtonian Liquids and Granular Particles. Powder Technology, 338: 493–505. https://doi.org/10.1016/j.powtec.2018.07.021 |
| Liang, D. F., He, X. Z., 2014. A Comparison of Conventional and Shear-Rate Dependent Mohr-Coulomb Models for Simulating Landslides. Journal of Mountain Science, 11(6): 1478–1490. https://doi.org/10.1007/s11629-014-3041-1 |
| Lube, G., Huppert, H. E., Sparks, R. S. J., et al., 2004. Axisymmetric Collapses of Granular Columns. Journal of Fluid Mechanics, 508: 175–199. https://doi.org/10.1017/s0022112004009036 |
| Ma, H. Q., Zhao, Y. Z., Cheng, Y., 2019. CFD-DEM Modeling of Rod-Like Particles in a Fluidized Bed with Complex Geometry. Powder Technology, 344: 673–683. https://doi.org/10.1016/j.powtec.2018.12.066 |
| Man, T., Huppert, H. E., Li, L., et al., 2021. Deposition Morphology of Granular Column Collapses. Granular Matter, 23(3): 59. https://doi.org/10.1007/s10035-021-01112-7 |
| Masson, D. G., Harbitz, C. B., Wynn, R. B., et al., 2006. Submarine Landslides: Processes, Triggers and Hazard Prediction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1845): 2009–2039. https://doi.org/10.1098/rsta.2006.1810 |
| Meruane, C., Tamburrino, A., Roche, O., 2010. On the Role of the Ambient Fluid on Gravitational Granular Flow Dynamics. Journal of Fluid Mechanics, 648: 381–404. https://doi.org/10.1017/s0022112009993181 |
| Meruane, C., Tamburrino, A., Roche, O., 2012. Dynamics of Dense Granular Flows of Small-and-Large-Grain Mixtures in an Ambient Fluid. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 86(2 Pt 2): 026311. https://doi.org/10.1103/physreve.86.026311s |
| Mindlin, R. D., Deresiewicz, H., 1953. Timoshenko's Shear Coefficient for Flexural Vibrations of Beams. Columbia University Press, New York |
| Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, 48(2): 269–299. https://doi.org/10.1046/j.1365-3091.2001.00360.x |
| Norourzi, H. R., Zarghami, R., Mostoufi, N., et al., 2016. Coupled CFD-DEM Modeling. John Wiley & Sons |
| Pinzon, G., Cabrera, M., 2019. Planar Collapse of a Submerged Granular Column. Physics of Fluids, 31(8): 086603. https://doi.org/10.1063/1.5099494 |
| Rondon, L., Pouliquen, O., Aussillous, P., 2011. Granular Collapse in a Fluid: Role of the Initial Volume Fraction. Physics of Fluids, 23(7): 073301. https://doi.org/10.1063/1.3594200 |
| Salazar, A., Sáez, E., Pardo, G., 2015. Modeling the Direct Shear Test of a Coarse Sand Using the 3D Discrete Element Method with a Rolling Friction Model. Computers and Geotechnics, 67: 83–93. https://doi.org/10.1016/j.compgeo.2015.02.017 |
| Shan, T., Zhao, J. D., 2014. A Coupled CFD-DEM Analysis of Granular Flow Impacting on a Water Reservoir. Acta Mechanica, 225(8): 2449–2470. https://doi.org/10.1007/s00707-014-1119-z |
| Si, P. F., Shi, H. B., Yu, X. P., 2018. Development of a Mathematical Model for Submarine Granular Flows. Physics of Fluids, 30(8): 083302. https://doi.org/10.1063/1.5030349 |
| Staron, L., Hinch, E. J., 2005. Study of the Collapse of Granular Columns Using Two-Dimensional Discrete-Grain Simulation. Journal of Fluid Mechanics, 545: 1–27. https://doi.org/10.1017/s0022112005006415 |
| Staron, L., Hinch, E. J., 2007. The Spreading of a Granular Mass: Role of Grain Properties and Initial Conditions. Granular Matter, 9(3): 205–217. https://doi.org/10.1007/s10035-006-0033-z |
| Sun, Q. -C., Wang, G. -Q., 2008. Force Distribution in Static Granular Matter in Two Dimensions. Acta Physica Sinica, 57(8): 4667. https://doi.org/10.7498/aps.57.4667 |
| Sun, R., Xiao, H., 2016. SediFoam: A General-Purpose, Open-Source CFD-DEM Solver for Particle-Laden Flow with Emphasis on Sediment Transport. Computers & Geosciences, 89: 207–219. https://doi.org/10.1016/j.cageo.2016.01.011 |
| Sun, Y. H., Zhang, W. T., Wang, X. L., et al., 2020. Numerical Study on Immersed Granular Collapse in Viscous Regime by Particle-Scale Simulation. Physics of Fluids, 32(7): 073313. https://doi.org/10.1063/5.0015110 |
| Talling, P. J., 2014. On the Triggers, Resulting Flow Types and Frequencies of Subaqueous Sediment Density Flows in Different Settings. Marine Geology, 352: 155–182. https://doi.org/10.1016/j.margeo.2014.02.006 |
| Talling, P. J., Paull, C. K., Piper, D. J. W., 2013. How Are Subaqueous Sediment Density Flows Triggered, what is Their Internal Structure and how does it Evolve? Direct Observations from Monitoring of Active Flows. Earth-Science Reviews, 125: 244–287. https://doi.org/10.1016/j.earscirev.2013.07.005 |
| Talling, P. J., Masson, D. G., Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 59(7): 1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x |
| Tang, H. M., Jia, H. B., Hu, X. L., et al., 2010. Characteristics of Landslides Induced by the Great Wenchuan Earthquake. Journal of Earth Science, 21(1): 104–113. https://doi.org/10.1007/s12583-010-0008-1 |
| Thompson, E. L., Huppert, H. E., 2007. Granular Column Collapses: Further Experimental Results. Journal of Fluid Mechanics, 575: 177–186. https://doi.org/10.1017/s0022112006004563 |
| Wang, H. J., Bi, N. S., Saito, Y., et al., 2010. Recent Changes in Sediment Delivery by the Huanghe (Yellow River) to the Sea: Causes and Environmental Implications in Its Estuary. Journal of Hydrology, 391(3/4): 302–313. https://doi.org/10.1016/j.jhydrol.2010.07.030 |
| Wu, C. L., Ayeni, O., Berrouk, A. S., et al., 2014. Parallel Algorithms for CFD-DEM Modeling of Dense Particulate Flows. Chemical Engineering Science, 118: 221–244. https://doi.org/10.1016/j.ces.2014.07.043 |
| Xiao, H., Sun, J., 2011. Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows. Communications in Computational Physics, 9(2): 297–323. https://doi.org/10.4208/cicp.260509.230210a |
| Xu, W. J., Dong, X. Y., Ding, W. T., 2019. Analysis of Fluid-Particle Interaction in Granular Materials Using Coupled SPH-DEM Method. Powder Technology, 353: 459–472. https://doi.org/10.1016/j.powtec.2019.05.052 |
| Yang, Z. Y., Pourghasemi, H. R., Lee, Y. H., 2016. Fractal Analysis of Rainfall-Induced Landslide and Debris Flow Spread Distribution in the Chenyulan Creek Basin, Taiwan. Journal of Earth Science, 27(1): 151–159. https://doi.org/10.1007/s12583-016-0633-4 |
| Yu, B., 2008. Research on the Calculating Density by the Deposit of Debris Flows. Acta Sedimentologica Sinica, 26(5): 789–796 (in Chinese with English Abstract) |
| Zhang, W. T., An, Y., Liu, Q. Q., et al., 2020. Evolution of Energy in Submerged Granular Column Collapse. Chinese Physics Letters, 37(7): 074502. https://doi.org/10.1088/0256-307x/37/7/074502 |
| Zhao, J. D., Shan, T., 2013. Coupled CFD-DEM Simulation of Fluid-Particle Interaction in Geomechanics. Powder Technology, 239: 248–258. https://doi.org/10.1016/j.powtec.2013.02.003 |
| Zhao, T., Utili, S., Crosta, G. B., 2016. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses. Rock Mechanics and Rock Engineering, 49(6): 2437–2456. https://doi.org/10.1007/s00603-015-0731-0 |
| Zhong, W. Q., Yu, A. B., Liu, X. J., et al., 2016. DEM/CFD-DEM Modelling of Non-Spherical Particulate Systems: Theoretical Developments and Applications. Powder Technology, 302: 108–152. https://doi.org/10.1016/j.powtec.2016.07.010 |
| Zhou, G. G. D., Cui, K. F. E., Jing, L., et al., 2020. Particle Size Segregation in Granular Mass Flows with Different Ambient Fluids. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019536. https://doi.org/10.1029/2020jb019536 |