Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Shuai Leng, Qinglin Xia, Tongfei Li, Xiaocheng Wang, Mengyu Zhao, Feng Zhang. Geodynamic Simulation of the Pulang Porphyry Deposit in Southwest China: Implications for Ore Genesis and Exploration. Journal of Earth Science, 2025, 36(6): 2513-2525. doi: 10.1007/s12583-022-1727-9
Citation: Shuai Leng, Qinglin Xia, Tongfei Li, Xiaocheng Wang, Mengyu Zhao, Feng Zhang. Geodynamic Simulation of the Pulang Porphyry Deposit in Southwest China: Implications for Ore Genesis and Exploration. Journal of Earth Science, 2025, 36(6): 2513-2525. doi: 10.1007/s12583-022-1727-9

Geodynamic Simulation of the Pulang Porphyry Deposit in Southwest China: Implications for Ore Genesis and Exploration

doi: 10.1007/s12583-022-1727-9
More Information
  • Corresponding author: Qinglin Xia, qlxia@cug.edu.cn
  • Received Date: 20 Apr 2022
  • Accepted Date: 16 Aug 2022
  • Issue Publish Date: 30 Dec 2025
  • The giant Pulang porphyry copper deposit, located in the southern Yidun arc segment of southeastern Tibetan Plateau, represents one of the region's largest mineral systems. This study employs numerical simulation to unravel its metallogenic processes. By integrating field-based geological observations with mineralogical and geochemical data, we developed a coupled model encompassing five key stages of ore formation. The simulation successfully reproduced thermal anomalies and accurately predicted the spatial distribution of mineralization zones at Pulang. Coupling dynamic modeling results with chalcopyrite precipitation rates and average Cu grades enabled quantitative estimation of deposit formation duration (0.99–1.22 Ma). Compared with conventional geochronological approaches, this process-constrained modeling framework provides unprecedented insights into the thermodynamic mechanisms controlling porphyry copper system evolution, offering valuable implications for regional exploration strategies.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aghbelagh, Y. B., Yang, J. W., 2014. Effect of Graphite Zone in the Formation of Unconformity-Related Uranium Deposits: Insights from Reactive Mass Transport Modeling. Journal of Geochemical Exploration, 144: 12–27. https://doi.org/10.1016/j.gexplo.2014.01.020
    Bernabé, Y., Mok, U., Evans, B., 2003. Permeability-Porosity Relationships in Rocks Subjected to Various Evolution Processes. Pure and Applied Geophysics, 160(5/6): 937–960. https://doi.org/10.1007/pl00012574
    Buret, Y., Wotzlaw, J. F., Roozen, S., et al., 2017. Zircon Petrochronological Evidence for a Plutonic-Volcanic Connection in Porphyry Copper Deposits. Geology, 45(7): 623–626. https://doi.org/10.1130/g38994.1
    Cao, K., Xu, J. F., Chen, J. L., et al., 2016. Double-Layer Structure of the Crust beneath the Zhongdian Arc, SW China: U-Pb Geochronology and Hf Isotope Evidence. Journal of Asian Earth Sciences, 115: 455–467. https://doi.org/10.1016/j.jseaes.2015.10.024
    Cao, K., Yang, Z. -M., Mavrogenes, J., et al., 2019. Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, Southwest China. Economic Geology, 114(2): 275–301. https://doi.org/10.5382/econgeo.2019.4631
    Chen, J. L., Xu, J. F., Ren, J. B., et al., 2014. Geochronology and Geochemical Characteristics of Late Triassic Porphyritic Rocks from the Zhongdian Arc, Eastern Tibet, and Their Tectonic and Metallogenic Implications. Gondwana Research, 26(2): 492–504. https://doi.org/10.1016/j.gr.2013.07.022
    Chen, X., Zhuang, D. Y., Zhan, L. T., et al., 2025. Study on the Role of Weak Lower Crust in Cenozoic Tectonic Deformation of Qinghai-Tibet Plateau by an Integrated Centrifugal Analog Mmodeling and Numerical Simulation Approach. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0284-4
    Chiaradia, M., Schaltegger, U., Spikings, R., et al., 2013. How Accurately can we Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems?. Economic Geology, 108(4): 565–584. https://doi.org/10.2113/econgeo.108.4.565
    Deng, J., Wang, C. M., Li, G. J., 2012. Style and Process of the Super-Imposed Mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349–1361 (in Chinese with English Abstract)
    Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268–299. https://doi.org/10.1016/j.earscirev.2014.05.015
    Fan, X., Hu, Z. W., Xu, S. F., et al., 2021. Numerical Simulation Study on Ore-Forming Factors of the Gejiu Ore Deposit, China. Ore Geology Reviews, 135: 104209. https://doi.org/10.1016/j.oregeorev.2021.104209
    Gao, X., Yang, L. Q., Orovan, E. A., 2018. The Lithospheric Architecture of Two Subterranes in the Eastern Yidun Terrane, East Tethys: Insights from Hf-Nd Isotopic Mapping. Gondwana Research, 62: 127–143. https://doi.org/10.1016/j.gr.2018.02.010
    Gow, P. A., Upton, P., Zhao, C., et al., 2002. Copper-Gold Mineralisation in New Guinea: Numerical Modelling of Collision, Fluid Flow and Intrusion-Related Hydrothermal Systems. Australian Journal of Earth Sciences, 49(4): 753–771. https://doi.org/10.1046/j.1440-0952.2002.00945.x
    Guillou-Frottier, L., Burov, E., 2003. The Development and Fracturing of Plutonic Apexes: Implications for Porphyry Ore Deposits. Earth and Planetary Science Letters, 214(1/2): 341–356. https://doi.org/10.1016/s0012-821x(03)00366-2
    Guo, Z. K., Rüpke, L. H., Fuchs, S., et al., 2020. Anhydrite-Assisted Hydrothermal Metal Transport to the Ocean Floor—Insights from Thermo-Hydro-Chemical Modeling. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019035. https://doi.org/10.1029/2019jb019035
    Hart, B. S., Flemings, P. B., Deshpande, A., 1995. Porosity and Pressure: Role of Compaction Disequilibrium in the Development of Geopressures in a Gulf Coast Pleistocene Basin. Geology, 23(1): 45. https://doi.org/10.1130/0091-7613(1995)0230045:paproc>2.3.co;2 doi: 10.1130/0091-7613(1995)0230045:paproc>2.3.co;2
    Hommel, J., Coltman, E., Class, H., 2018. Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)Geochemically Altered Porous Media. Transport in Porous Media, 124(2): 589–629. https://doi.org/10.1007/s11242-018-1086-2
    Hou, Z. Q., Zhou, Y., Wang, R., et al., 2017. Recycling of Metal-Fertilized Lower Continental Crust: Origin of Non-Arc Au-Rich Porphyry Deposits at Cratonic Edges. Geology, 45(6): 563–566. https://doi.org/10.1130/g38619.1
    Hu, B. Q., Wang, F. Z., Sun, Z. X., et al., 2003. The Pressure Gradient in the Lithosphere. Earth Science Frontiers, 10(3): 129–133 (in Chinese with English Abstract)
    Hu, X. Y., Li, X. H., Yuan, F., et al., 2019. Numerical Simulation Based Targeting of the Magushan Skarn Cu-Mo Deposit, Middle-Lower Yangtze Metallogenic Belt, China. Minerals, 9(10): 588. https://doi.org/10.3390/min9100588
    Korges, M., Weis, P., Andersen, C., 2020. The Role of Incremental Magma Chamber Growth on Ore Formation in Porphyry Copper Systems. Earth and Planetary Science Letters, 552: 116584. https://doi.org/10.1016/j.epsl.2020.116584
    Kumar, A., Pramanik, S., Mishra, M., 2016. COMSOL Multiphysics Modeling in Darcian and Non-Darcian Porous Media. Proceedings of the 2016 COMSOL Conference, Bangalore
    Kunming Prospecting Design Institute of China Nonferrous Metals Industry (KPDI), 2014. Exploration Report of Pulang Copper Deposit: Yunnan Diqing Nonferrous Metal Co. Ltd. 251
    Large, S. J. E., von Quadt, A., Wotzlaw, J. F., et al., 2018. Magma Evolution Leading to Porphyry Au-Cu Mineralization at the Ok Tedi Deposit, Papua New Guinea: Trace Element Geochemistry and High-Precision Geochronology of Igneous Zircon. Economic Geology, 113(1): 39–61. https://doi.org/10.5382/econgeo.2018.4543
    Leng, C. B., Cooke, D. R., Hou, Z. Q., et al., 2018. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating. Economic Geology, 113(5): 1077–1092. https://doi.org/10.5382/econgeo.2018.4582
    Li, W. C., Yin, G. H., Yu, H. J., et al., 2013. Characteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province. Journal of Jilin University (Earth Science Edition), 43(5): 1436–1447 (in Chinese with English Abstract)
    Li, W. C., Zeng, P. S., Hou, Z. Q., et al., 2011. The Pulang Porphyry Copper Deposit and Associated Felsic Intrusions in Yunnan Province, Southwest China. Economic Geology, 106(1): 79–92. https://doi.org/10.2113/econgeo.106.1.79
    Li, W. C., Yu, H. J., Gao, X., et al., 2017. Review of Mesozoic Multiple Magmatism and Porphyry Cu-Mo (W) Mineralization in the Yidun Arc, Eastern Tibet Plateau. Ore Geology Reviews, 90: 795–812. https://doi.org/10.1016/j.oregeorev.2017.03.009
    Liu, L. M., Wan, C. L., Zhao, C. B., et al., 2011. Geodynamic Constraints on Orebody Localization in the Anqing Orefield, China: Computational Modeling and Facilitating Predictive Exploration of Deep Deposits. Ore Geology Reviews, 43(1): 249–263. https://doi.org/10.1016/j.oregeorev.2011.09.005
    Liu, X. L., 2013. The Research on Porphyry Copper Metallogenicsystem and Post-Ore Modification Preservation since the Indosinian in Geza Arc, Yunnan, SW China: [Dissertation]. China University of Geosciences (Beijing), Beijing (in Chinese with English Abstract)
    Meinert, L. D., 1992. Skarns and Skarn Deposits. Geoscience Canada, 19(4): 145–162
    Mudd, G. M., Jowitt, S. M., 2018. Growing Global Copper Resources, Reserves and Production: Discovery is not the only Control on Supply. Economic Geology, 113(6): 1235–1267. https://doi.org/10.5382/econgeo.2018.4590
    Ni, P., Chi, Z., Pan, J., et al., 2018. The Characteristics of Ore-Forming Fluids and Mineralization Mechanism in Hydrothermal Deposits: A Case Study of Some Typical Deposits in China. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 369–394, 560 (in Chinese with English Abstract)
    Pan, Y., Dong, G., Li, X., et al., 2017. Biotile Mineral Chemistry and Their Implications for Petrogenesis and Mineralization in the Porphyry Copper Deposit in Northwestern Yunnan, China. Earth Science Frontiers, 24(6): 194–207 (in Chinese with English Abstract)
    Pang, Z. S., Du, Y. S., Cao, Y., et al., 2014. Geochemistry and Zircon U-Pb Geochronology of the Pulang Complex, Yunnan Province, China. Journal of Earth System Science, 123(4): 875–885. https://doi.org/10.1007/s12040-014-0429-9
    Park, J. -W., Campbell, I. H., Chiaradia, M., et al., 2021. Crustal Magmatic Controls on the Formation of Porphyry Copper Deposits. Nature Reviews Earth & Environment, 2(8): 542–557. https://doi.org/10.1038/s43017-021-00182-8
    Phillips, O. M., 1991. Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge
    Porwal, A., Carranza, E. J. M., 2015. Introduction to the Special Issue: GIS-Based Mineral Potential Modelling and Geological Data Analyses for Mineral Exploration. Ore Geology Reviews, 71: 477–483. https://doi.org/10.1016/j.oregeorev.2015.04.017
    Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254–269. https://doi.org/10.1016/j.jseaes.2010.03.008
    Rohrmeier, M. K., von Quadt, A., Driesner, T., et al., 2013. Post-Orogenic Extension and Hydrothermal Ore Formation: High-Precision Geochronology of the Central Rhodopian Metamorphic Core Complex (Bulgaria-Greece). Economic Geology, 108(4): 691–718. https://doi.org/10.2113/econgeo.108.4.691
    Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
    Tang, C. Y., Tang, H. M., Fang, K., et al., 2025. Formation of the Soil Arch and Load Transfer Mechanism of a Slope Due to Excavation by 3D Particle Flow Code Simulation. Journal of Earth Science, 36(5): 1977–1988. https://doi.org/10.1007/s12583-023-1810-x
    von Quadt, A., Erni, M., Martinek, K., et al., 2011. Zircon Crystallization and the Lifetimes of Ore-Forming Magmatic-Hydrothermal Systems. Geology, 39(8): 731–734. https://doi.org/10.1130/g31966.1
    Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285–301. https://doi.org/10.1016/j.lithos.2013.05.013
    Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1/2): 24–38. https://doi.org/10.1016/j.lithos.2011.07.028
    Wang, R., Tafti, R., Hou, Z. Q., et al., 2017. Across-Arc Geochemical Variation in the Jurassic Magmatic Zone, Southern Tibet: Implication for Continental Arc-Related Porphyry Cu-Au Mineralization. Chemical Geology, 451: 116–134. https://doi.org/10.1016/j.chemgeo.2017.01.010
    Weis, P., 2015. The Dynamic Interplay between Saline Fluid Flow and Rock Permeability in Magmatic-Hydrothermal Systems. Geofluids, 15(1/2): 350–371. https://doi.org/10.1111/gfl.12100
    Weis, P., Driesner, T., Heinrich, C. A., 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114): 1613–1616. https://doi.org/10.1126/science.1225009
    Xia, Q. L., Li, T. F., Kang, L., et al., 2021. Study on the PTx Parameters and Fractal Characteristics of Ore-Forming Fluids in the East Ore Section of the Pulang Copper Deposit, Southwest China. Journal of Earth Science, 32(2): 390–407. https://doi.org/10.1007/s12583-021-1448-5
    Xiao, L., He, Q., Pirajno, F., et al., 2008. Possible Correlation between a Mantle Plume and the Evolution of Paleo-Tethys Jinshajiang Ocean: Evidence from a Volcanic Rifted Margin in the Xiaru-Tuoding Area, Yunnan, SW China. Lithos, 100(1/2/3/4): 112–126. https://doi.org/10.1016/j.lithos.2007.06.020
    Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT—A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145–165. https://doi.org/10.1016/j.cageo.2005.06.014
    Yang, Q., Ren, Y. S., Chen, S. B., et al., 2019. Geological, Geochronological, and Geochemical Insights into the Formation of the Giant Pulang Porphyry Cu (-Mo-Au) Deposit in Northwestern Yunnan Province, SW China. Minerals, 9(3): 191. https://doi.org/10.3390/min9030191
    Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture. Tectonics, 31(4): 2011TC003044. https://doi.org/10.1029/2011tc003044
    Zeng, P. S., Hou, Z. Q., Li, L. H., et al., 2004. Age of the Pulang Porphyry Copper Deposit in NW Yunnan and Its Geological Significance. Geological Bulletin of China, 23: 1127–1131 (in Chinese with English Abstract)
    Zhao, C. B., 2014. Physical and Chemical Dissolution Front Instability in Porous Media. Springer, Cham
    Zhao, C. B., Hobbs, B. E., Ord, A., 2008a. Convective Heat Transfer in a Homogeneous Crust. Convective and Advective Heat Transfer in Geological Systems. Springer, Berlin, Heidelberg. 27–47. https://doi.org/10.1007/978-3-540-79511-7_4 doi: 10.1007/978-3-540-79511-7_4
    Zhao, C. B., Hobbs, B. E., Ord, A., et al., 2008b. Morphological Evolution of Three-Dimensional Chemical Dissolution Front in Fluid-Saturated Porous Media: A Numerical Simulation Approach. Geofluids, 8(2): 113–127. https://doi.org/10.1111/j.1468-8123.2008.00210.x
    Zhao, C. B., Hobbs, B. E., Ord, A., 2009. Fundamentals of Computational Geoscience: Numerical Methods and Algorithms. Springer, Berlin, London
    Zhao, C. B., Hobbs, B. E., Ord, A., 2010. Theoretical Analyses of Nonaqueous Phase Liquid Dissolution-Induced Instability in Two-Dimensional Fluid-Saturated Porous Media. International Journal for Numerical and Analytical Methods in Geomechanics, 34(17): 1767–1796. https://doi.org/10.1002/nag.880
    Zhao, C. B., Hobbs, B. E., Ord, A., 2012a. Effects of Domain Shapes on the Morphological Evolution of Nonaqueous-Phase-Liquid Dissolution Fronts in Fluid-Saturated Porous Media. Journal of Contaminant Hydrology, 138/139: 123–140. https://doi.org/10.1016/j.jconhyd.2012.07.001
    Zhao, C. B., Hobbs, B. E., Ord, A., 2012b. Effects of Medium and Pore-Fluid Compressibility on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Media. International Journal for Numerical and Analytical Methods in Geomechanics, 36(8): 1077–1100. https://doi.org/10.1002/nag.1052
    Zhao C. B., Reid, L. B., Regenauer-Lieb, K., et al., 2012c. A porosity-Gradient Replacement Approach for Computational Simulation of Chemical-Dissolution Front Propagation in Fluid-Saturated Porous Media Including Pore-Fluid Compressibility. Computational Geosciences, 16(3): 735–755. https://doi.org/10.1007/s10596-012-9285-3
    Zhao, C. B., Hobbs, B. E., Ord, A., 2013a. Theoretical Analyses of Acidization Dissolution Front Instability in Fluid-Saturated Carbonate Rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 37(13): 2084–2105. https://doi.org/10.1002/nag.2123
    Zhao, B. C., Hobbs, E. B., Ord, A., 2013b. Effects of Medium Permeability Anisotropy on Chemical-Dissolution Front Instability in Fluid-Saturated Porous Rocks. Transport in Porous Media, 99, 119–143. https://doi.org/10.1007/s11242-013-0177-3
    Zhao, C. B., Poulet, T., Regenauer-Lieb, K., et al., 2013c. Computational Modeling of Moving Interfaces between Fluid and Porous Medium Domains. Computational Geosciences, 17(1): 151–166. https://doi.org/10.1007/s10596-012-9322-2
    Zhao, C. B., Hobbs, B. E., Ord, A., 2015a. Theoretical Analyses of Chemical Dissolution-Front Instability in Fluid-Saturated Porous Media under Non-Isothermal Conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 39(8): 799–820. https://doi.org/10.1002/nag.2332
    Zhao, C. B., Hobbs, B. E., Ord, A., 2015b. Computational Simulation of Chemical Dissolution-Front Instability in Fluid-Saturated Porous Media under Non-Isothermal Conditions. International Journal for Numerical Methods in Engineering, 102(2): 135–156. https://doi.org/10.1002/nme.4848
    Zhao, C. B., Poulet, T., Regenauer-Lieb, K., 2015c. Numerical Modeling of Toxic Nonaqueous Phase Liquid Removal from Contaminated Groundwater Systems: Mesh Effect and Discretization Error Estimation. International Journal for Numerical and Analytical Methods in Geomechanics, 39(6): 571–593. https://doi.org/10.1002/nag.2327
    Zhao, C. B., Poulet, T., Regenauer-Lieb, K., 2015d. Replacement of Annular Domain with Trapezoidal Domain in Computational Modeling of Nonaqueous-Phase-Liquid Dissolution-Front Propagation Problems. Journal of Central South University, 22(5): 1841–1846. https://doi.org/10.1007/s11771-015-2703-7
    Zhao, C. B., Hobbs, B. E., Ord, A., 2017a. Effects of Acid Dissolution Capacity on the Propagation of an Acid-Dissolution Front in Carbonate Rocks. Computers & Geosciences, 102: 109–115. https://doi.org/10.1016/j.cageo.2017.02.013
    Zhao, C. B., Hobbs, B. E., Ord, A., 2017b. Why Asymptotic Limit of the Acid Dissolution Capacity Can Lead to a Sharp Dissolution Front in Chemical Dissolution of Porous Rocks? International Journal for Numerical and Analytical Methods in Geomechanics, 41(15): 1590–1602. https://doi.org/10.1002/nag.2690
    Zhao, C. B., Hobbs, B., Ord, A., 2017c. A New Alternative Approach for Investigating Acidization Dissolution Front Propagation in Fluid-Saturated Carbonate Rocks. Science China Technological Sciences, 60(8): 1197–1210. https://doi.org/10.1007/s11431-016-0666-1
    Zhao, C. B., Schaubs, P., Hobbs, B., 2017d. Effects of Porosity Heterogeneity on Chemical Dissolution-Front Instability in Fluid-Saturated Rocks. Journal of Central South University, 24(3): 720–725. https://doi.org/10.1007/s11771-017-3473-1
    Zhao, C. B., Lin, G., Hobbs, B. E., et al., 2002. Finite Element Modelling of Reactive Fluids Mixing and Mineralization in Pore-Fluid Saturated Hydrothermal/Sedimentary Basins. Engineering Computations, 19(3): 364–387. https://doi.org/10.1108/02644400210423990
    Zhao, C. B., Schaubs, P., Hobbs, B. E., 2016a. Computational Simulation of Seepage Instability Problems in Fluid-Saturated Porous Rocks: Potential Dynamic Mechanisms for Controlling Mineralisation Patterns. Ore Geology Reviews, 79: 180–188. https://doi.org/10.1016/j.oregeorev.2016.05.002
    Zhao, C. B., Schaubs, P., Hobbs, B. E., 2016b. Acquisition of Spatially-Distributed Geochemical Data in Geoinformatics: Computational Simulation Approach. Journal of Geochemical Exploration, 164: 18–27. https://doi.org/10.1016/j.gexplo.2015.09.005
    Zhao, C. B., Hobbs, B. E., Ord, A., 2016c. Chemical Dissolution-Front Instability Associated with Water-Rock Reactions in Groundwater Hydrology: Analyses of Porosity-Permeability Relationship Effects. Journal of Hydrology, 540: 1078–1087. https://doi.org/10.1016/j.jhydrol.2016.07.022
    Zou, Y. H., Liu, Y., Dai, T. G., et al., 2017. Finite Difference Modeling of Metallogenic Processes in the Hutouya Pb-Zn Deposit, Qinghai, China: Implications for Hydrothermal Mineralization. Ore Geology Reviews, 91: 463–476. https://doi.org/10.1016/j.oregeorev.2017.09.008
    Zou, Y. H., Liu, Y., Pan, Y., et al., 2019. Numerical Simulation of Hydrothermal Mineralization Associated with Simplified Chemical Reactions in Kaerqueka Polymetallic Deposit, Qinghai, China. Transactions of Nonferrous Metals Society of China, 29(1): 165–177. https://doi.org/10.1016/s1003-6326(18)64925-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(33) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return