Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Mahaman Salifou Issoufou Aboubacar, Heng Zhang, Boukari Issoufou Ousmane, Jie Li, Zhongxian Cai. An Integrated Approach for Improved Permeability and Reservoir Quality Prediction in Multiporosity Systems, Tahe Ordovician Naturally Fractured Vuggy Carbonates. Journal of Earth Science, 2025, 36(6): 2579-2597. doi: 10.1007/s12583-022-1728-8
Citation: Mahaman Salifou Issoufou Aboubacar, Heng Zhang, Boukari Issoufou Ousmane, Jie Li, Zhongxian Cai. An Integrated Approach for Improved Permeability and Reservoir Quality Prediction in Multiporosity Systems, Tahe Ordovician Naturally Fractured Vuggy Carbonates. Journal of Earth Science, 2025, 36(6): 2579-2597. doi: 10.1007/s12583-022-1728-8

An Integrated Approach for Improved Permeability and Reservoir Quality Prediction in Multiporosity Systems, Tahe Ordovician Naturally Fractured Vuggy Carbonates

doi: 10.1007/s12583-022-1728-8
More Information
  • Carbonates present complex pore systems that strongly influence the physical properties and their interrelationships. This study proposes a new approach to establish pore-type mixing-based permeability transforms by integrating well-log and core data. We investigate the influence of pore-structure heterogeneity on permeability and velocity through the rock-frame flexibility factors (γ and γµ), derivable using standard sonic and density logs. We derive permeability transforms, with correlation coefficients, R of 0.8 to 0.9, from core measurements and pore-structure variations-dependent physical parameters, namely the porosity exponent (m), Poisson's ratio (σ), velocity deviation log (VDL), and velocity ratio (VR). Through extrapolation using log-data, the m- and VDL-based correlations provide significantly better permeability estimates, with the highest accuracy attained with the m-based correlation, whereas the VR- and σ-based correlations lead to permeability overestimation for high porosities. We plotted log-derived porosity vs. permeability, obtained applying the m-based correlation, to generate consistent porosity-permeability relationships, which account for pore-structure heterogeneity, by sorting the scattering points into distinct groups/trends by considering the variations of pore-structure types and abundance of a specific porosity. For the studied oilfield, three porosity-permeability relationships are identified, with correlation coefficients approaching 0.9, thus validating the approach and supporting its application in petrophysically similar reservoirs.

     

  • Electronic Supplementary Materials: Supplementary Materials: Supplementary materials (ESM A, B, Figures S1–S2, Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1728-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aguilera, R., 1976. Analysis of Naturally Fractured Reservoirs from Conventional Well Logs. Journal of Petroleum Technology, 28(7): 764–772. https://doi.org/10.2118/5342-pa
    Ahr, W. M., 2008. Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. John Wiley & Sons, Hoboken. 296
    Akbar, M., Petricola, M., Watfa, M., et al., 1995. Classic Interpretation Problems: Evaluating Carbonates. Oilfield Review, 7: 38–57
    Altunbay, M., Georgi, D., Takezaki, H. M., 1997. Permeability Prediction for Carbonates: Still a Challenge? In: Middle East Oil Show and Conference. March 15–18, 1997, Bahrain. Society of Petroleum Engineers, Richardson. SPE 37753-MS. https://doi.org/10.2118/37753-ms
    Amaefule, J. O., Altunbay, M., Tiab, D., et al., 1993. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In: SPE Annual Technical Conference and Exhibition. October 3–6, 1993, Houston, Texas. Society of Petroleum Engineers, Richardson. SPE 26436-MS. https://doi.org/10.2118/26436-ms
    Anselmetti, F. S., Eberli, G. P., 1999. The Velocity-Deviation Log: A Tool to Predict Pore Type and Permeability Trends in Carbonate Drill Holes from Sonic and Porosity or Density Logs. AAPG Bulletin, 83(3): 450–466. https://doi.org/10.1306/00aa9bce-1730-11d7-8645000102c1865d
    Anselmetti, F. S., Eberli, G. P., 1993. Controls on Sonic Velocity in Carbonates. Pure and Applied Geophysics, 141(2): 287–323. https://doi.org/10.1007/bf00998333
    Archie, G. E., 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(1): 54–62. https://doi.org/10.2118/942054-g
    Archie, G. E., 1952. Classification of Carbonate Reservoir Rocks and Petrophysical Considerations. AAPG Bulletin, 36(2): 278–298. https://doi.org/10.1306/3d9343f7-16b1-11d7-8645000102c1865d
    Archilha, N. L., Missagia, R. M., Hollis, C., et al., 2016. Permeability and Acoustic Velocity Controlling Factors Determined from X-Ray Tomography Images of Carbonate Rocks. AAPG Bulletin, 100(8): 1289–1309. https://doi.org/10.1306/02251615044
    Babadagli, T., Al-Salmi, S., 2004. A Review of Permeability-Prediction Methods for Carbonate Reservoirs Using Well-Log Data. SPE Reservoir Evaluation & Engineering, 7(2): 75–88. https://doi.org/10.2118/87824-pa
    Balossino, P., Pampuri, F., Bruni, C., et al., 2006. A New Integrated Approach to Obtain Reliable Permeability Profiles from Logs in a Carbonate Reservoir. In: SPE Russian Oil and Gas Technical Conference and Exhibition. October 3–6, 2006, Moscow. Society of Petroleum Engineers, Richardson. SPE 102289-MS. https://doi.org/10.2118/102289-ms
    Baqués, V., Ukar, E., Laubach, S. E., et al., 2020. Fracture, Dissolution, and Cementation Events in Ordovician Carbonate Reservoirs, Tarim Basin, NW China. Geofluids, 243: 9037429. https://doi.org/10.1155/2020/9037429
    Berg, R. R., 1970. Method for Determining Permeability from Reservoir Rock Properties. Gulf Coast Association of Geological Societies Transactions, 20: 303–317
    Berg, R. R., 1975. Capillary Pressures in Stratigraphic Traps. AAPG Bulletin, 59(6): 929–956. https://doi.org/10.1306/83d91ef7-16c7-11d7-8645000102c1865d
    Bryant, S. L., King, P. R., Mellor, D. W., 1993. Network Model Evaluation of Permeability and Spatial Correlation in a Real Random Sphere Packing. Transport in Porous Media, 11(1): 53–70. https://doi.org/10.1007/bf00614635
    Budd, D. A., Saller, A. H., Harris, P. M., 1995. Unconformities and Porosity in Carbonate Strata. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/m63592
    Carman, P. C., 1938. The Determination of Specific Surfaces of Powders. I. J. Soc. Chem. Indus. , 57: 225–234
    Carman, P. C., 1956. Flow of Gases Through Porous Media. Academic Press Inc., New York. 187
    Choquette, P. W., James, N. P., 1987. Diagenesis #12. Diagenesis in Limestones: 3. The Deep Burial Environment. Geoscience Canada, 14: 3–35
    Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2): 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d
    Cilli, P. A., Chapman, M., 2020. The Power-Law Relation between Inclusion Aspect Ratio and Porosity: Implications for Electrical and Elastic Modeling. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB019187. https://doi.org/10.1029/2019jb019187
    Clerke, E. A., Mueller, H. W. Ⅲ, Phillips, E. C., et al., 2008. Application of Thomeer Hyperbolas to Decode the Pore Systems, Facies and Reservoir Properties of the Upper Jurassic Arab D Limestone, Ghawar Field, Saudi Arabia: A "Rosetta Stone" Approach. GeoArabia, 13(4): 113–160. https://doi.org/10.2113/geoarabia1304113
    Coates, G. R., Miller, M., Gillen, M., et al., 1991. The MRIL in Conoco 33-1: An Investigation of a New Magnetic Resonance Imaging Log. 32nd SPWLA Annual Logging Symposium. SPWLA-1991-DD
    Cossio, M., Moridis, G. J. J., Blasingame, T. A. A., 2013. A Semianalytic Solution for Flow in Finite-Conductivity Vertical Fractures by Use of Fractal Theory. SPE Journal, 18(1): 83–96. https://doi.org/10.2118/153715-pa
    CPI, 2007. Professional Standard for Practices for Core Analysis, SY/T5336-2006. Chinese Petroleum Industry, Beijing. 227 (in Chinese)
    David, C., 1993. Geometry of Flow Paths for Fluid Transport in Rocks. Journal of Geophysical Research: Solid Earth, 98(B7): 12267–12278. https://doi.org/10.1029/93jb00522
    Denicol, P. S., 1993. Effects of Pore Geometry on Log-Derived Cementation Exponents in Carbonate Reservoirs. SPWLA 34th Annual Logging Symposium. SPWLA-1993-M
    Dernaika, M., Masalmeh, S., Mansour, B., et al., 2019. Geology-Based Porosity-Permeability Correlations in Carbonate Rock Types. SPE Reservoir Characterisation and Simulation Conference and Exhibition. September 17–19, 2019, Abu Dhabi. Society of Petroleum Engineers, Richardson. SPE 196665-MS. https://doi.org/10.2118/196665-ms
    Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013. Hydrothermal Alteration of Dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple Constraints from Petrology, Isotope Geochemistry and Fluid Inclusion Microthermometry. Marine and Petroleum Geology, 46(9): 270–286. https://doi.org/10.1016/j.marpetgeo.2013.06.013
    Dou, Q. F., Sun, Y. F., Sullivan, C., 2011. Rock-Physics-Based Carbonate Pore Type Characterization and Reservoir Permeability Heterogeneity Evaluation, Upper San Andres Reservoir, Permian Basin, West Texas. Journal of Applied Geophysics, 74(1): 8–18. https://doi.org/10.1016/j.jappgeo.2011.02.010
    Dunham, R. J., 1962. Classification of Carbonate Rocks According to Depositional Texture. In: Ham, W. E., ed., Classifications of Carbonate Rocks—A Symposium. AAPG Memory, 1: 108–121
    Ehrenberg, S. N., 2019. Petrophysical Heterogeneity in a Lower Cretaceous Limestone Reservoir, Onshore Abu Dhabi, United Arab Emirates. AAPG Bulletin, 103(3): 527–546. https://doi.org/10.1306/09061817298
    Ehrenberg, S. N., Morad, S., Liu, Y. X., et al., 2016. Stylolites and Porosity in a Lower Cretaceous Limestone Reservoir, Onshore Abu Dhabi, U. A. E. Journal of Sedimentary Research, 86(10): 1228–1247. https://doi.org/10.2110/jsr.2016.68
    Ehrenberg, S. N., Zhang, J., Gomes, J. S., 2020a. Regional Porosity Variation in Thamama-B Reservoirs of Abu Dhabi. Marine and Petroleum Geology, 114: 104245. https://doi.org/10.1016/j.marpetgeo.2020.104245
    Ehrenberg, S. N., Zhang, J., Gomes, J. S., 2020b. Regional Variation of Permeability in Thamama-B Reservoirs of Abu Dhabi. Marine and Petroleum Geology, 116: 104248. https://doi.org/10.1016/j.marpetgeo.2020.104248
    El Husseiny, A., Vanorio, T., 2017. Porosity-Permeability Relationship in Dual-Porosity Carbonate Analogs. Geophysics, 82(1): MR65–MR74. https://doi.org/10.1190/geo2015-0649.1
    Etnyre, L. M., 1989. Finding Oil and Gas from Well Logs. Springer Science Business Media, New York. 312
    Fitch, P. J. R., Lovell, M. A., Davies, S. J., et al., 2015. An Integrated and Quantitative Approach to Petrophysical Heterogeneity. Marine and Petroleum Geology, 63: 82–96. https://doi.org/10.1016/j.marpetgeo.2015.02.014
    Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Verlag, Berlin Heidelberg. 996
    Focke, J. W., Munn, D., 1987. Cementation Exponents in Middle Eastern Carbonate Reservoirs. SPE Formation Evaluation, 2(2): 155–167. https://doi.org/10.2118/13735-pa
    Georgi, D. T., Menger, S. K., 1994. Reservoir Quality, Porosity and Permeability Relationships. Mintrop Seminar
    Ghadami, N., Rasaei, M. R., Hejri, S., et al., 2015. Consistent Porosity-Permeability Modeling, Reservoir Rock Typing and Hydraulic Flow Unitization in a Giant Carbonate Reservoir. Journal of Petroleum Science and Engineering, 131: 58–69. https://doi.org/10.1016/j.petrol.2015.04.017
    Glover, P. W., Zadjali, I. I., Frew, K. A., 2006. Permeability Prediction from MICP and NMR Data Using an Electrokinetic Approach. Geophysics, 71(4): F49–F60. https://doi.org/10.1190/1.2216930
    Gómez-Rivero, O., 1976. A Practical Method for Determining Cementation Exponents and Some Other Parameters as an Aid in Well Log Analysis. The Log Analyst, 17(5): 8–27
    Gómez-Rivero, O., 1977. Some Considerations about the Possible Use of the Parameters a and m as a Formation Evaluation Tool Through Well Logs. SPWLA 18th Annual Logging Symposium. SPWLA-1977-J
    Guo, C., Chen, D. Z., Qing, H. R., et al., 2016. Multiple Dolomitization and Later Hydrothermal Alteration on the Upper Cambrian-Lower Ordovician Carbonates in the Northern Tarim Basin, China. Marine and Petroleum Geology, 72: 295–316. https://doi.org/10.1016/j.marpetgeo.2016.01.023
    Hansen, J. P., Skjeltorp, A. T., 1988. Fractal Pore Space and Rock Permeability Implications. Physical Review B, Condensed Matter, 38(4): 2635–2638. https://doi.org/10.1103/physrevb.38.2635
    Hassall, J. K., Ferraris, P., Al-Raisi, M., et al., 2004. Comparison of Permeability Predictors from NMR, Formation Image and Other Logs in a Carbonate Reservoir. Abu Dhabi International Conference and Exhibition. October 10–13, 2004, Abu Dhabi, United Arab Emirates. Society of Petroleum Engineers, Richardson. SPE 88683-MS. https://doi.org/10.2118/88683-ms
    Hidajat, I., Singh, M., Cooper, J., et al., 2002. Permeability of Porous Media from Simulated NMR Response. Transport in Porous Media, 48(2): 225–247. https://doi.org/10.1023/a:1015682602625
    Huang, Q., Dou, Q., Sun, Y., 2017. Characterization of Pore Structure Variation and Permeability Heterogeneity in Carbonate Rocks Using MICP and Sonic Logs: Puguang Gas Field, China. Petrophysics, 58(6): 576–591
    Issoufou Aboubacar, M. S., Cai, Z. X., 2020. A Quadruple-Porosity Model for Consistent Petrophysical Evaluation of Naturally Fractured Vuggy Reservoirs. SPE Journal, 25(5): 2678–2693. https://doi.org/10.2118/201248-pa
    Issoufou Aboubacar, M. S., Zhang, H., Boukari, I. O., et al., 2021. New Vuggy Porosity Models-Based Interpretation Methodology for Reliable Pore System Characterization, Ordovician Carbonate Reservoirs in Tahe Oilfield, North Tarim Basin. Journal of Petroleum Science and Engineering, 196: 107700. https://doi.org/10.1016/j.petrol.2020.107700
    Issoufou Aboubacar, M. S., Zhang, H., Li, J., et al., 2022. Prediction of Petrophysical Classes and Reservoir Beds through Microfacies and Pore Types Characterization, Tahe Ordovician Naturally Fractured Vuggy Carbonates. Interpretation, 10(4): T837–T854. https://doi.org/10.1190/int-2022-0008.1
    James, N. P., Choquette, P. W., 1988. Paleokarst. Springer-Verlag, New York. 416
    Jennings, J. W. Jr, Lucia, F. J., 2003. Predicting Permeability from Well Logs in Carbonates with a Link to Geology for Interwell Permeability Mapping. SPE Reservoir Evaluation & Engineering, 6(4): 215–225. https://doi.org/10.2118/84942-pa
    Jin, Z. J., Zhu, D. Y., Hu, W. X., et al., 2009. Mesogenetic Dissolution of the Middle Ordovician Limestone in the Tahe Oilfield of Tarim Basin, NW China. Marine and Petroleum Geology, 26(6): 753–763. https://doi.org/10.1016/j.marpetgeo.2008.08.005
    Jin, Z. J., 2012. Formation and Accumulation of Oil and Gas in Marine Carbonate Sequences in Chinese Sedimentary Basins. Science China Earth Sciences, 55(3): 368–385. https://doi.org/10.1007/s11430-011-4264-4
    Jivkov, A. P., Hollis, C., Etiese, F., et al., 2013. A Novel Architecture for Pore Network Modelling with Applications to Permeability of Porous Media. Journal of Hydrology, 486: 246–258. https://doi.org/10.1016/j.jhydrol.2013.01.045
    Jorgensen, D. G., 1988. Using Geophysical Logs to Estimate Porosity, Water Resistivity, and Intrinsic Permeability. USGS, Water-Supply Paper 2321
    Kausik, R., Prado, A., Gkortsas, V. M., et al., 2021. Dual Neural Network Architecture for Determining Permeability and Associated Uncertainty. Petrophysics, 62(1): 122–134. https://doi.org/10.30632/pjv62n1-2021a8
    Kenyon, W. E., Day, P. I., Straley, C., et al., 1988. A Three-Part Study of NMR Longitudinal Relaxation Properties of Water-Saturated Sandstones. SPE Formation Evaluation, 3(3): 622–636. https://doi.org/10.2118/15643-pa
    Kolodzie, S. Jr., 1980. Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado. SPE Annual Technical Conference and Exhibition. September 21–24, 1980, Dallas, Texas. Society of Petroleum Engineers, Richardson. SPE 9382-MS. https://doi.org/10.2118/9382-ms
    Leverett, M. C., 1941. Capillary Behavior in Porous Solids. Transactions of the AIME, 142(1): 152–169. https://doi.org/10.2118/941152-g
    Li, C. Y., Pi, J., He, J., et al., 2020. Absolute Permeability Prediction Model Based on Fractal Theory of Porous Media. Abu Dhabi International Petroleum Exhibition & Conference, November 9–12, 2020, Abu Dhabi, UAE. Society of Petroleum Engineers, Richardson. SPE 202644-MS. https://doi.org/10.2118/202644-ms
    Li, H. B., Zhang, J. J., 2018. Well Log and Seismic Data Analysis for Complex Pore-Structure Carbonate Reservoir Using 3D Rock Physics Templates. Journal of Applied Geophysics, 151: 175–183. https://doi.org/10.1016/j.jappgeo.2018.02.017
    Li, X. Y., Qin, R. B., Mao, Z. Q., et al., 2013. Building a Computational Model of the Cementation Exponent for Complex Porous Reservoirs Based on the Maxwell Equations. Petrophysics, 54(4): 341–348
    Lin, C. S., Li, H., Liu, J. Y., 2012. Major Unconformities, Tectonostratigraphic Framework, and Evolution of the Superimposed Tarim Basin, Northwest China. Journal of Earth Science, 23(4): 395–407. https://doi.org/10.1007/s12583-012-0263-4
    Liu, H. Y., Shi, K. B., Liu, B., et al., 2021. Insights into the Pore Structure of Strong Heterogeneous Carbonates in the Mesopotamian Basin. Energy & Fuels, 35(5): 3841–3856. https://doi.org/10.1021/acs.energyfuels.0c03869
    Liu, L. H., Ma, Y. S., Liu, B., et al., 2017. Hydrothermal Dissolution of Ordovician Carbonates Rocks and Its Dissolution Mechanism in Tarim Basin, China. Carbonates and Evaporites, 32(4): 525–537. https://doi.org/10.1007/s13146-016-0309-2
    Lønøy, A., 2006. Making Sense of Carbonate Pore Systems. AAPG Bulletin, 90(9): 1381–1405. https://doi.org/10.1306/03130605104
    Lopes, T. V., Rocha, A. C., Murad, M. A., et al., 2020. A New Computational Model for Flow in Karst-Carbonates Containing Solution-Collapse Breccias. Computational Geosciences, 24(1): 61–87. https://doi.org/10.1007/s10596-019-09894-9
    Lucia, F. J., 1983. Petrophysical Parameters Estimated from Visual Descriptions of Carbonate Rocks: A Field Classification of Carbonate Pore Space. Journal of Petroleum Technology, 35(3): 629–637. https://doi.org/10.2118/10073-pa
    Lucia, F. J., 1995. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization. AAPG Bulletin, 79(9): 1275–1300. https://doi.org/10.1306/7834d4a4-1721-11d7-8645000102c1865d
    Lucia, F. J., 2000. San Andres and Grayburg Imbibition Reservoirs. SPE Permian Basin Oil and Gas Recovery Conference. March 21–23, 2000. Midland, Texas. Society of Petroleum Engineers, Richardson. : SPE 59691-MS. https://doi.org/10.2118/59691-ms
    Lucia, F. J., 2007. Carbonate Reservoir Characterization: An Integrated Approach. Springer Verlag, Berlin. 342
    Lucia, F. J., Conti, R. D., 1987. Rock Fabric, Permeability, and Log Relationships in an Upward-shoaling, Vuggy Carbonate Sequence. University of Texas at Austin, Bureau of Economic Geology, Geological Circular 87-5
    Lucia, F. J., Jennings, J. W. Jr., Rahnis, M., et al., 2001. Permeability and Rock Fabric from Wireline Logs, Arab-D Reservoir, Ghawar Field, Saudi Arabia. GeoArabia, 6(4): 619–646. https://doi.org/10.2113/geoarabia0604619
    Luffel, D. L., Howard, W. E., Hunt, E. R., 1991. Travis Peak Core Permeability and Porosity Relationships at Reservoir Stress. SPE Formation Evaluation, 6(3): 310–318. https://doi.org/10.2118/19008-pa
    Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. Freeman, New York. 976
    Meng, M. M., Fan, T. L., Duncan, I. J., et al., 2018. Characterization of Carbonate Microfacies and Reservoir Pore Types Based on Formation MicroImager Logging: A Case Study from the Ordovician in the Tahe Oilfield, Tarim Basin, China. Interpretation, 6(1): T71–T82. https://doi.org/10.1190/int-2017-0043.1
    Mohaghegh, S., Balan, B., Ameri, S., 1997. Permeability Determination from Well Log Data. SPE Formation Evaluation, 12(3): 170–174. https://doi.org/10.2118/30978-pa
    Myers, M. T., 1991. Pore Combination Modeling: a Technique for Modeling the Permeability and Resistivity Properties of Complex Pore Systems. SPE Annual Technical Conference and Exhibition. October 6–9, 1991, Dallas, Texas. Society of Petroleum Engineers, Richardson. SPE 22662-MS. https://doi.org/10.2118/22662-ms
    Neale, G. H., Nader, W. K., 1973. The Permeability of a Uniformly Vuggy Porous Medium. Society of Petroleum Engineers Journal, 13(2): 69–74. https://doi.org/10.2118/3812-pa
    Nelson, P. H., 1994. Permeability-Porosity Relationships in Sedimentary Rocks. The Log Analyst, 35(03): 38–61
    Nurmi, R. D., 1984. Carbonate Pore Systems: Porosity/Permeability Relationships and Geologic Analysis. AAPG Bulletin, 68: 513–514. https://doi.org/10.1306/ad461075-16f7-11d7-8645000102c1865d
    Oliveira, G. L. P., Ceia, M. A. R., Missagia, R. M., et al., 2020. Core Plug and 2D/3D-Image Integrated Analysis for Improving Permeability Estimation Based on the Differences between Micro- and Macroporosity in Middle East Carbonate Rocks. Journal of Petroleum Science and Engineering, 193: 107335. https://doi.org/10.1016/j.petrol.2020.107335
    Pape, H., Clauser, C., Iffland, J., 1999. Permeability Prediction Based on Fractal Pore-Space Geometry. Geophysics, 64(5): 1447–1460. https://doi.org/10.1190/1.1444649
    Phillips, T., Kampman, N., Bisdom, K., et al., 2020. Controls on the Intrinsic Flow Properties of Mudrock Fractures: A Review of Their Importance in Subsurface Storage. Earth-Science Reviews, 211: 103390. https://doi.org/10.1016/j.earscirev.2020.103390
    Pirrone, M., Bona, N., 2015. A Novel Approach for a Fast and Accurate Petrophysical Characterization of Carbonate Reservoirs Based on NMR. SPE Reservoir Characterisation and Simulation Conference and Exhibition. September 14–16, 2015. Abu Dhabi, UAE. Society of Petroleum Engineers, Richardson. SPE 175656-MS. https://doi.org/10.2118/175656-ms
    Qin, Z., Pan, H. P., Ma, H. L., et al., 2016. Fast Prediction Method of Archie's Cementation Exponent. Journal of Natural Gas Science and Engineering, 34: 291–297. https://doi.org/10.1016/j.jngse.2016.06.070
    Ragland, D. A., 2002. Trends in Cementation Exponents (m) for Carbonate Pore Systems. Petrophysics, 43(5): 434-446
    Raiga-Clemenceau, J., 1977. The Cementation Exponent in the Formation Factor-Porosity Relation: The Effect of Permeability. SPWLA 8th Annual Logging Symposium. SPWLA-1977-R
    Ransom, P. C., 1984. A Contribution toward a Better Understanding of the Modified Archie Formation Resistivity Factor Relationship. The Log Analyst, 25(2): 7–12
    Rasmus, J. C., 1983. A Variable Cementation Exponent, M, for Fractured Carbonates. The Log Analyst, 24(6): 13–23
    Sadeghnejad, S., Gostick, J., 2020. Multiscale Reconstruction of Vuggy Carbonates by Pore-Network Modeling and Image-Based Technique. SPE Journal, 25(1): 253–267. https://doi.org/10.2118/198902-pa
    Saleh, A. A., Castagna, J. P., 2004. Revisiting the Wyllie Time Average Equation in the Case of Near-Spherical Pores. Geophysics, 69(1): 45–55. https://doi.org/10.1190/1.1649374
    Saner, S., Kissami, M., Al Nufaili, S., 1997. Estimation of Permeability from Well Logs Using Resistivity and Saturation Data. SPE Formation Evaluation, 12(1): 27–31. https://doi.org/10.2118/26277-pa
    Saxena, V., 1994. Permeability Quantification from Borehole Stoneley Waves. SPWLA 35th Annual Logging Symposium. SPWLA-1994-T
    Sok, R. M., Varslot, T., Ghous, A., et al., 2010. Pore Scale Characterization of Carbonates at Multiple Scales: Integration of Micro-CT, BSEM, and FIBSEM. Petrophysics, 51(6): 379–387
    Sun, H. F., Belhaj, H., Tao, G., et al., 2019. Rock Properties Evaluation for Carbonate Reservoir Characterization with Multi-Scale Digital Rock Images. Journal of Petroleum Science and Engineering, 175: 654–664. https://doi.org/10.1016/j.petrol.2018.12.075
    Sun, Y. F., 2000. Core-Log-Seismic Integration in Hemipelagic Marine Sediments on the Eastern Flank of the Juan de Fuca Ridge. In: Fisher, A., Davis, E. E., Escutia, C., eds., Proceedings of the Ocean Drilling Program, 168 Scientific Results. 21–35https://doi.org/10.2973/odp.proc.sr.168.009.2000
    Sun, Y. F., 2004. Pore Structure Effects on Elastic Wave Propagation in Rocks: AVO Modelling. Journal of Geophysics and Engineering, 1(4): 268–276. https://doi.org/10.1088/1742-2132/1/4/005
    Thomeer, J. H. M., 1960. Introduction of a Pore Geometrical Factor Defined by the Capillary Pressure Curve. Journal of Petroleum Technology, 12(3): 73–77. https://doi.org/10.2118/1324-g
    Tiab, D., Donaldson, E. C., 2004. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Gulf Professional Publishing, Houston. 458
    Tian, F., Jin, Q., Lu, X. B., et al., 2016. Multi-Layered Ordovician Paleokarst Reservoir Detection and Spatial Delineation: A Case Study in the Tahe Oilfield, Tarim Basin, Western China. Marine and Petroleum Geology, 69: 53–73. https://doi.org/10.1016/j.marpetgeo.2015.10.015
    Timur, A., 1968. An Investigation of Permeability and Porosity, and Residual Water Saturation Relationship for Sandstone Reservoirs. The Log Analyst, 9(4): 1-8. SPWLA-1968-vIXn4a2
    Timur, A., 1969. Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones. Journal of Petroleum Technology, 21(6): 775–786. https://doi.org/10.2118/2045-pa
    Towle, G., 1962. An Analysis of the Formation Resistivity Factor-Porosity Relationship of Some Assumed Pore Geometries. SPWLA 3rd Annual Meeting. SPWLA-1962-C
    Valentín, M. B., Bom, C. R., Martins Compan, A. L., et al., 2018. Estimation of Permeability and Effective Porosity Logs Using Deep Autoencoders in Borehole Image Logs from the Brazilian Pre-Salt Carbonate. Journal of Petroleum Science and Engineering, 170: 315–330. https://doi.org/10.1016/j.petrol.2018.06.038
    Wang, F. P., Lucia, F. J., Kerans, C., 1998. Integrated Reservoir Characterization Study of a Carbonate Ramp Reservoir: Seminole San Andres Unit, Gaines County, Texas. SPE Reservoir Evaluation & Engineering, 1(2): 105–113. https://doi.org/10.2118/36515-pa
    Wang, F. P., Lucia, F. J., 1993. Comparison of Empirical Models for Calculating the Vuggy Porosity and Cementation Exponent of Carbonates from Log Responses. University of Texas, Bureau of Economic Geology, Geological Circular 93-4. 27. https://doi.org/10.23867/gc9304d
    Wang, H. Y., Sun, S. Z., Yang, H. J., et al., 2011. The Influence of Pore Structure on P- & S-Wave Velocities in Complex Carbonate Reservoirs with Secondary Storage Space. Petroleum Science, 8(4): 394–405. https://doi.org/10.1007/s12182-011-0157-6
    Wang, L. G., Zhang, Y. Z., Zhang, N. Y., et al., 2020. Pore Structure Characterization and Permeability Estimation with a Modified Multimodal Thomeer Pore Size Distribution Function for Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 193: 107426. https://doi.org/10.1016/j.petrol.2020.107426
    Watfa, M., Nurmi, R., 1987. Calculation of Saturation, Secondary Porosity and Producibility in Complex Middle East Carbonate Reservoirs. SPWLA 28th Annual Logging Symposium, Jun. 29, 1987, London. SPWLA-1987-CC
    Weger, R. J., Eberli, G. P., Baechle, G. T., et al., 2009. Quantification of Pore Structure and Its Effect on Sonic Velocity and Permeability in Carbonates. AAPG Bulletin, 93(10): 1297–1317. https://doi.org/10.1306/05270909001
    Wei, D., Gao, Z. Q., Fan, T. L., et al., 2020. The Rock-Fabric/Petrophysical Characteristics and Classification of the Micropores Hosted between the Calcite and Dolomite Crystals. Journal of Petroleum Science and Engineering, 193: 107383. https://doi.org/10.1016/j.petrol.2020.107383
    Wendt, W. A., Sakurai, S., Nelson, P. H., 1986. Permeability Prediction from Well Logs Using Multiple Regression. In: Lake, L. W., Carroll, H. B., eds., Reservoir Characterization. Academic Press Inc., Cambridge, New York. 181-222
    Winn, R. H., 1957. Log Interpretation in Heterogeneous Carbonate Reservoirs. Transactions of the AIME, 210(1): 268–274. https://doi.org/10.2118/818-g
    Wyllie, M. R. J., Gregory, A. R., Gardner, L. W., 1956. Elastic Wave Velocities in Heterogeneous and Porous Media. Geophysics, 21(1): 41–70. https://doi.org/10.1190/1.1438217
    Xu, S. Y., Payne, M. A., 2009. Modeling Elastic Properties in Carbonate Rocks. The Leading Edge, 28(1): 66–74. https://doi.org/10.1190/1.3064148
    Zhang, Z., Cai, Z. X., 2021. Permeability Prediction of Carbonate Rocks Based on Digital Image Analysis and Rock Typing Using Random Forest Algorithm. Energy & Fuels, 35(14): 11271–11284. https://doi.org/10.1021/acs.energyfuels.1c01331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(30) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return