Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Benxun Su. Cretaceous Meteorite Impact-Induced Initial Subduction: Records of highly Siderophile Element Abundances and Re-Os Isotopes in Ophiolites. Journal of Earth Science, 2022, 33(6): 1526-1534. doi: 10.1007/s12583-022-1734-x
Citation: Benxun Su. Cretaceous Meteorite Impact-Induced Initial Subduction: Records of highly Siderophile Element Abundances and Re-Os Isotopes in Ophiolites. Journal of Earth Science, 2022, 33(6): 1526-1534. doi: 10.1007/s12583-022-1734-x

Cretaceous Meteorite Impact-Induced Initial Subduction: Records of highly Siderophile Element Abundances and Re-Os Isotopes in Ophiolites

doi: 10.1007/s12583-022-1734-x
More Information
  • Corresponding author: Benxun Su, subenxun@mail.igcas.ac.cn
  • Received Date: 04 Jul 2022
  • Accepted Date: 01 Sep 2022
  • Issue Publish Date: 30 Dec 2022
  • Compiled global ophiolite data reveal that Cretaceous ophiolites exhibit broaden variations in 187Re/188Os and 187Os/188Os values, increases in Re concentrations and thus Re/Os ratios in all peridotites and chromitites, and additional increased PPGE/IPGE (Pd-subgroup platinum-group element (PGE)/Ir-subgroup PGE) ratios in chromitites and dunites relative to pre-Cretaceous ophiolites. These compositional changes in Cretaceous ophiolites, which mostly formed in subduction initiation settings, cannot be attributed solely to involvement of subducting or previously subducted crustal materials. Here, the author proposes a Cretaceous meteorite impact model that led to impact-induced disruption of oceanic lithosphere, asthenosphere upwelling, subduction initiation at edges of laterally spreading anomalies. High-pressure and high-temperature conditions during the impacts caused melting of the meteorites and the ambient crustal and mantle rocks, producing hybrid melts containing partially unmelted fragments. Crustal materials contributed to the elevated 187Os/188Os values, Re and Re/Os ratios, whereas the undifferentiated meteorite accounted for the increases in the PPGE/IPGE and decreased 187Os/188Os ratios. Shock pressure and super-reduced phases were likely generated by this process and were subsequently transported into the newly formed mantle peridotites and chromitites of future ophiolites. The remaining meteoritic and lithospheric fragments most likely sank deeper and were distributed widely in the convecting mantle to produce the observed global compositional heterogeneities.

     

  • Electronic Supplementary Materials: Supplementary materials (Data Sources and Fig. S1) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1734-x.
  • loading
  • Bai, W. J., Zhou, M. F., Robinson, P., 1993. Possibly Diamond-Bearing Mantle Peridotites and Podiform Chromitites in the Luobusa and Donqiao Ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650–1659. https://doi.org/10.1139/e93-143
    Becker, H., 2000. Re-Os Isotopic Systematics of Eclogites: Implications for Crustal Recycling. Earth and Planetary Science Letters, 177: 287–300. https://doi.org/10.1016/s0012-821x(00)00052-2
    Becker, H., Dale, C. W., 2016. Re-Pt-Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. Reviews in Mineralogy and Geochemistry, 81(1): 369–440. https://doi.org/10.2138/rmg.2016.81.7
    Becker, H., Horan, M. F., Walker, R. J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528–4550. https://doi.org/10.1016/j.gca.2006.06.004
    Brandon, A. D., Becker, H., Carlson, R. W., et al., 1999. Isotopic Constraints on Time Scales and Mechanisms of Slab Material Transport in the Mantle Wedge: Evidence from the Simcoe Mantle Xenoliths, Washington, USA. Chemical Geology, 160(4): 387–407. https://doi.org/10.1016/s0009-2541(99)00109-6
    Brandon, A. D., Walker, R. J., 2005. The Debate over Core-Mantle Interaction. Earth and Planetary Sciences Letters, 232(3/4): 211–225. https://doi.org/10.1016/j.epsl.2005.01.034
    Brenan, J. M., McDonough, W. F., 2009. Core Formation and Metal-Silicate Fractionation of Osmium and Iridium from Gold. Nature Geoscience, 2(11): 798–801. https://doi.org/10.1038/ngeo658
    Chen, X., Wang, C. S., Wu, H. C., et al., 2015. Orbitally Forced Sea-Level Changes in the Upper Turonian-Lower Coniacian of the Tethyan Himalaya, Southern Tibet. Cretaceous Research, 56: 691–701. https://doi.org/10.1016/j.cretres.2014.07.010
    Chou, C. L., 1978. Fractionation of Siderophile Elements in the Earth's Upper Mantle. Proceedings of the 9th Lunar and Planetary Science Conference, 1: 219–230
    Dauphas, N., Reisberg, L., Marty, B., 2002. An Alternative Explanation for the Distribution of Highly Siderophile Elements in the Earth. Geochemical Journal, 36(5): 409–419. https://doi.org/10.2343/geochemj.36.409
    Day, J. M. D., Pearson, D. G., Taylor, L. A., 2007. Highly Siderophile Element Constraints on Accretion and Differentiation of the Earth-Moon System. Science, 315(5809): 217–219. https://doi.org/10.1126/science.1133355
    Gong, X. H., Shi, R. D., Griffin, W., et al., 2016. Recycling of Ancient Subduction-Modified Mantle Domains in the Purang Ophiolite (South-western Tibet). Lithos, 262: 11–26. https://doi.org/10.1016/j.lithos.2016.06.025
    Guilmette, C., Smit, M. A., van Hinsbergen, D. J. J., et al., 2018. Forced Subduction Initiation Recorded in the Sole and Crust of the Semail Ophiolite of Oman. Nature Geoscience, 11(9): 688–695. https://doi.org/10.1038/s41561-018-0209-2
    Hansen, V. L., 2007. Subduction Origin on Early Earth: A Hypothesis. Geology, 35(12): 1059–1062. https://doi.org/10.1130/g24202a.1
    Harvey, J., Gannoun, A., Burton, K. W., et al., 2006. Ancient Melt Extraction from the Oceanic Upper Mantle Revealed by Re-Os Isotopes in Abyssal Peridotites from the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 244(3): 606–621. https://doi.org/10.1016/j.epsl.2006.02.031
    Herrle, J. O., Schröder-Adams, C. J., Davis, W., et al., 2015. Mid-Cretaceous High Arctic Stratigraphy, Climate, and Oceanic Anoxic Events. Geology, 43(5): 403–406. https://doi.org/10.1130/G36439.1
    Kent, D. V., Muttoni, G., 2008. Equatorial Convergence of India and Early Cenozoic Climate Trends. Proceedings of the National Academy of Sciences of the United States of America, 105(42): 16065–16070. https://doi.org/10.1073/pnas.0805382105
    Khosla, A., Lucas, S. G., 2021. End-Cretaceous Extinctions. In: Elias, S., Alderton, D., eds., Encyclopedia of Geology, 2nd Ed. Elsevier, Amsterdam
    Kimura, K., Lewis, R. S., Anders, E., 1974. Distribution of Gold and Rhenium between Nickel-Iron and Silicate Melts—Implications for Abundance of Siderophile Elements on Earth and Moon. Geochimica et Cosmochimica Acta, 38(5): 683–701. https://doi.org/10.1016/0016-7037(74)90144-6
    Kvasnytsya, V. M., Wirth, R., 2022. Impact Diamonds from Meteorite Craters and Neogene Placers in Ukraine. Mineralogy and Petrology, 116(3): 169–187. https://doi.org/10.1007/s00710-022-00778-y
    Mann, U., Frost, D., Rubie, D., et al., 2012. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between Liquid Metal and Silicate at High Pressures and High Temperatures—Implications for the Origin of Highly Siderophile Element Concentrations in the Earth's Mantle. Geochimica et Cosmo-chimica Acta, 84: 593–613. https://doi.org/10.1016/j.gca.2012.01.026
    Marty, B., 2008. Leftovers from Core Formation. Nature Geoscience, 1(5): 290–291. https://doi.org/10.1038/ngeo193
    Misra, S., Froelich, P. N., 2012. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science, 335(6070): 818–823. https://doi.org/10.1126/science.1214697
    O'Neill, C., Marchi, S., Zhang, S., et al., 2017. Impact-Driven Subduction on the Hadean Earth. Nature Geoscience, 10(10): 793–797. https://doi.org/10.1038/ngeo3029
    Paquet, M., Day, J. M., Brown, D. B., et al., 2022. Effective Global Mixing of the Highly Siderophile Elements into Earth's Mantle Inferred from Oceanic Abyssal Peridotites. Geochimica et Cosmochimica Acta, 316: 347–362. https://doi.org/10.1016/j.gca.2021.09.033
    Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12(5): 205–219. https://doi.org/10.1046/j.1365-3121.2000.00295.x
    Phelps, R. M., Kerans, C., Da-Gama, R. O., et al., 2015. Response and Recovery of the Comanche Carbonate Platform Surrounding Multiple Cretaceous Oceanic Anoxic Events, Northern Gulf of Mexico. Cretaceous Research, 54: 117–144. https://doi.org/10.1016/j.cretres.2014.09.002
    Righter, K., Humayun, M., Danielson, L., 2008. Partitioning of Palladium at High Pressures and Temperatures during Core Formation. Nature Geoscience, 1(5): 321–323. https://doi.org/10.1038/ngeo180
    Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2): 486–506. https://doi.org/10.1016/j.gr.2014.06.003
    Saal, A. E., Rudnick, R. L., Ravizza, G. E., et al., 1998. Re-Os Isotope Evidence for the Composition, Formation and Age of the Lower Continental Crust. Nature, 393(6680): 58–61. https://doi.org/10.1038/29966
    Shi, R. D., Alard, O., Zhi, X. C., et al., 2007. Multiple Events in the Neo-Tethyan Oceanic Upper Mantle: Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet. Earth and Planetary Sciences Letters, 261(1): 33–48. https://doi.org/10.1016/j.epsl.2007.05.044
    Shirey, S. B., Walker, R. J., 1998. The Re-Os Isotope System in Cosmochemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1): 423–500. https://doi.org/10.1146/annurev.earth.26.1.423
    Su, B. X., Zhou, M. F., Jing, J. J., et al., 2019. Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet: Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 64(2): 108–121. https://doi.org/10.1016/j.scib.2018.12.018
    Su, B. X., Robinson, P. T., Chen, C., et al., 2020. The Occurrence, Origin, and Fate of Water in Chromitites in Ophiolites. American Mineralogist, 105(6): 894–903. https://doi.org/10.2138/am-2020-7270
    Turekian, K. K., Pegram, W. J., 1997. Os Isotope Record in a Cenozoic Deep-Sea Core: Its Relation to Global Tectonics and Climate. Tectonic Uplift and Climate Change. In: Tectonic Uplift and Climate Change. Springer, Boston, MA. 383–397. https://doi.org/10.1007/978-1-4615-5935-1_17
    Urrutia-Fucugauchi, J., Camargo-Zanoguera, A., Pérez-Cruz, L., et al., 2011. The Chicxulub Multi-Ring Impact Crater, Yucatan Carbonate Platform, Gulf of Mexico. Geofísica Internacional, 50(1): 99–127. https://doi.org/10.22201/igeof.00167169p.2011.50.1.125
    Walker, R. J., Prichard, H. M., Ishiwatari, A., et al., 2002. The Osmium Isotopic Composition of Convecting Upper Mantle Deduced from Ophiolite Chromites. Geochimica et Cosmochimica Acta, 66(2): 329–345. https://doi.org/10.1016/s0016-7037(01)00767-0
    Walker, R. J., 2009. Highly Siderophile Elements in the Earth, Moon and Mars: Update and Implications for Planetary Accretion and Differentiation. Geochemistry, 69(2): 101–125. https://doi.org/10.1016/j.chemer.2008.10.001
    Walker, R. J., Carlson, R. W., Shirey, S. B., et al., 1989. Os, Sr, Nd, and Pb Isotope Systematics of Southern African Peridotite Xenoliths: Implications for the Chemical Evolution of Subcontinental Mantle. Geochimica et Cosmochimica Acta, 53(7): 1583–1595. https://doi.org/10.1016/0016-7037(89)90240-8
    Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45: 2764–2784. https://doi.org/10.3799/dqkx.2020.083 (in Chinese with English Abstract)
    Wilkinson, B. H., Walker, J. C. G., 1989. Phanerozoic Cycling of Sedimentary Carbonate. American Journal of Science, 289(4): 525–548. https://doi.org/10.2475/ajs.289.4.525
    Xiao, Y., Pan, Q. Q., Tang, D. M., et al., 2021. Retrospects and Prospects on Li Isotope Geochemistry during Petrogenesis and Mineralization of Mafic-Ultramafic Rocks. Earth Science, 46: 4334–4345. https://doi.org/10.3799/dqkx.2021.111 (in Chinese with English Abstract)
    Xin, G. Y., Chu, Y., Su, B. X., et al., 2021. Rapid Transition from MORB-Type to SSZ-Type Oceanic Crust Generation Following Subduction Initiation: Insights from the Mafic Dikes and Metamorphic Soles in the Pozantı-Karsantı Ophiolite, SE Turkey. Contributions to Mineralogy and Petrology, 176(9): 64. https://doi.org/10.1007/s00410-021-01821-5
    Xiong, F. H., Yang, J. S., Paul T, R., et al., 2016. Diamonds and other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica—English Edition, 90(2): 425–439. https://doi.org/10.1111/1755-6724.12681
    Xu, Y. J., Liu, J. G., Xiong, Q., et al., 2020. The Complex Life Cycle of Oceanic Lithosphere: A Study of Yarlung-Zangbo Ophiolitic Peridotites, Tibet. Geochimica et Cosmochimica Acta, 277: 175–191. https://doi.org/10.1016/j.gca.2020.03.024
    Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 35(10): 875–878. https://doi.org/10.1130/g23766a.1
    Yu, H. T., Xu, Z. J., Cheng, R. H., et al., 2021. Paleoclimate Evolution and Elemental Geochemical Response during Middle Jurassic–Early Cretaceous in Tectonic Regime Transition Period in the North Yellow Sea Basin. Earth Science, 46: 1100–1118. https://doi.org/10.3799/dqkx.2020.232 (in Chinese with English Abstract)
    Zhou, M. F., Robinson, P. T., Bai, W. J., 1994. Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle. Mineralium Deposita, 29(1): 98–101. https://doi.org/10.1007/bf03326400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(184) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return