Citation: | Leilei Dong, Zhiming Yang, Mingchun Song. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 2023, 34(4): 1150-1164. doi: 10.1007/s12583-022-1737-7 |
The nature of lithosphere mantle beneath North China Craton (NCC) has been changed during the Mesozoic. We investigated the mafic dykes in Jiaodong to put constraint on the origin of them and reveal the mantle evolution of the NCC. Zircons from Kunyushan and Nansu mafic dykes give concordia U-Pb ages of 114.9 and 52.8 Ma, respectively. The Kunyushan mafic dyke has high MgO (~8.0 wt.%) and Cr (> 380 ppm) but lower FeO (< 10 wt.%) contents. Large ion lithophile elements (LILE) are enriched compared to primitive mantle. The
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7 |
Ayers, J. C., Bruce Watson, E., 1991. Solubility of Apatite, Monazite, Zircon, and Rutile in Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 365–375. https://doi.org/10.1098/rsta.1991.0052 |
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329–353. https://doi.org/10.1093/petrology/egi077 |
Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7 |
Chapman, J. B., Gehrels, G. E., Ducea, M. N., et al., 2016. A New Method for Estimating Parent Rock Trace Element Concentrations from Zircon. Chemical Geology, 439: 59–70. https://doi.org/10.1016/j.chemgeo.2016.06.014 |
Chen, J. F., Xie, Z., Li, H. M., et al., 2003. U-Pb Zircon Ages for a Collision-Related K-Rich Complex at Shidao in the Sulu Ultrahigh Pressure Terrane, China. Geochemical Journal, 37(1): 35–46. https://doi.org/10.2343/geochemj.37.35 |
Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10): 1857–1898. https://doi.org/10.1093/petrology/egp055 |
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469 |
Deng, J., Liu, X. F., Wang, Q. F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking—Lithospheric Extension in the North China Craton, Eastern Asia. Geological Society of America Bulletin, 129(11/12): 1379–1407. https://doi.org/10.1130/b31609.1 |
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821x(81)90153-9 |
Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3/4): 347–366. https://doi.org/10.1016/j.epsl.2004.07.019 |
Fan, Q. C., Hooper, P. R., 1989. The Mineral Chemistry of Ultramafic Xenoliths of Eastern China: Implications for Upper Mantle Composition and the Paleogeotherms. Journal of Petrology, 30(5): 1117–1158. https://doi.org/10.1093/petrology/30.5.1117 |
Fan, W. M., Zhang, H. F., Baker, J., et al., 2000. On and off the North China Craton: Where is the Archaean Keel?. Journal of Petrology, 41(7): 933–950. https://doi.org/10.1093/petrology/41.7.933 |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0 |
Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. https://doi.org/10.1029/2012gc004334 |
Geng, X. L., Foley, S. F., Liu, Y. S., et al., 2019a. Thermal-Chemical Conditions of the North China Mesozoic Lithospheric Mantle and Implication for the Lithospheric Thinning of Cratons. Earth and Planetary Science Letters, 516: 1–11. https://doi.org/10.1016/j.epsl.2019.03.012 |
Geng, X. L., Liu, Y. S., Wang, X. C., et al., 2019b. The Role of Earth's Deep Volatile Cycling in the Generation of Intracontinental High-Mg Andesites: Implication for Lithospheric Thinning beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 124(1/2/3/4): 1305–1323. https://doi.org/10.1029/2018JB016157 |
Green, T. H., 1994. Experimental Studies of Trace-Element Partitioning Applicable to Igneous Petrogenesis—Sedona 16 Years Later. Chemical Geology, 117(1/2/3/4): 1–36. https://doi.org/10.1016/0009-2541(94)90119-8 |
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643–646. https://doi.org/10.1130/g23603a.1 |
Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3 |
Guo, J. -F., Ma, Q., Zheng, J. -P., et al., 2022. Spatial and Temporal Evolution of Lithospheric Mantle beneath the Eastern North China Craton: Constraints from Mineral Chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and a Regional Synthesis. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1691-4 |
Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton. Earth Science, (11): 3892–3909. https://doi.org/10.3799/dqkx.2021.016 (in Chinese with English Abstract) |
Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. https://doi.org/10.1016/S0012-821X(98)00152-6 |
Hart, S. R., Dunn, T., 1993. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1–8. https://doi.org/10.1007/BF00320827 |
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0 |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027 |
Hu, F. F., Fan, H. R., Yang, J., et al., 2007. Petrogenesis of Gongjia Gabbro-Diorite in the Kunyushan Area, Jiaodong Peninsula: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotopes. Acta Petrologica Sinica, 23(2): 369–380 (in Chinese with English Abstract) |
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055 |
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/S0009-2541(98)00197-1 |
Kelemen, P., Hanghøj, K., Greene, A., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Holland, H. D., Turekian, K. K, eds., Treatise on Geochemistry: 2nd Edition. Elsevier, Amsterdam. 1–70 |
Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120–180 km Depth. Nature, 437(7059): 724–727. https://doi.org/10.1038/nature03971 |
LeBas, M. J., Maitre, R. W. L., Streckeisen, A., 1986. IUGS Subcommission on the Systematics of Igneous Rocks. a Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silicadiagram. Journal of Petrology, 27: 745–750 doi: 10.1093/petrology/27.3.745 |
Lee, C. T., Yin, Q. Z., Rudnick, R. L., et al., 2001. Preservation of Ancient and Fertile Lithospheric Mantle beneath the Southwestern United States. Nature, 411(6833): 69–73. https://doi.org/10.1038/35075048 |
Li, X. C., Fan, H. R., Santosh, M., et al., 2012. An Evolving Magma Chamber within Extending Lithosphere: An Integrated Geochemical, Isotopic and Zircon U-Pb Geochronological Study of the Gushan Granite, Eastern North China Craton. Journal of Asian Earth Sciences, 50: 27–43. https://doi.org/10.1016/j.jseaes.2012.01.016 |
Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 |
Liu, J., Yuan, L. L., Yang, Z. L, 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271–1294. https://doi.org/10.3799/dqkx.2021.104 (in Chinese with English Abstract) |
Liu, J. G., Cai, R. H., Pearson, D. G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017 |
Liu, S., Hu, R. Z., Gao, S., et al., 2012. Geochemical and Isotopic Constraints on the Age and Origin of Mafic Dikes from Eastern Shandong Province, Eastern North China Craton. International Geology Review, 54(12): 1389–1400. https://doi.org/10.1080/00206814.2011.641732 |
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034 |
Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits. Society of Economic Geologists Special Publication, 19: 329–347 |
Ma, L., Jiang, S. Y., Hofmann, A. W., et al., 2014a. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250–271. https://doi.org/10.1016/j.gca.2013.09.035 |
Ma, L., Jiang, S. Y., Hou, M. L., et al., 2014b. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2): 859–872. https://doi.org/10.1016/j.gr.2013.05.012 |
Ma, L., Jiang, S. Y., Hofmann, A. W., et al., 2016. Rapid Lithospheric Thinning of the North China Craton: New Evidence from Cretaceous Mafic Dikes in the Jiaodong Peninsula. Chemical Geology, 432: 1–15. https://doi.org/10.1016/j.chemgeo.2016.03.027 |
Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473 |
Matzen, A. K., Baker, M. B., Beckett, J. R., et al., 2013. The Temperature and Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt. Journal of Petrology, 54(12): 2521–2545. https://doi.org/10.1093/petrology/egt055 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471–483. https://doi.org/10.1016/S0012-821X(97)00048-4 |
Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. The Origin of E-Type MORB at Ridges far from Mantle Plumes: The East Pacific Rise at 11º20'N. Journal of Geophysical Research: Solid Earth, 104(4): 7076–7087 |
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016 |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745 |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2 |
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K, eds., Treatise on Geochemistry: 2nd Edition. Elsevier, Amsterdam. 1–64. |
Schmidt, M. W., Jagoutz, O., 2017. The Global Systematics of Primitive Arc Melts. Geochemistry, Geophysics, Geosystems, 18(8): 2817–2854. https://doi.org/10.1002/2016gc006699 |
Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645–656. https://doi.org/10.1007/s00126-019-00867-7 |
Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small‐ and Large‐Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433–448. https://doi.org/10.1086/314355 |
Smyth, H. R., Hamilton, P. J., Hall, R., et al., 2007. The Deep Crust beneath Island Arcs: Inherited Zircons Reveal a Gondwana Continental Fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 258(1/2): 269–282. https://doi.org/10.1016/j.epsl.2007.03.044 |
Song, M. C., Li, S. Z., Santosh, M., et al., 2015. Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65: 612–625. https://doi.org/10.1016/j.oregeorev.2014.06.019 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publication, 42(1): 313–345 doi: 10.1144/GSL.SP.1989.042.01.19 |
Tropper, P., Manning, C. E., 2005. Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90(2/3): 502–505. https://doi.org/10.2138/am.2005.1806 |
Ulrich, M., Hémond, C., Nonnotte, P., et al., 2012. OIB/Seamount Recycling as a Possible Process for E-MORB Genesis. Geochemistry, Geophysics, Geosystems, 13(6): Q0AC19. https://doi.org/10.1029/2012gc004078 |
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5 |
Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491–504. https://doi.org/10.1016/0012-821X(93)90078-N |
Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003 |
Wu, F., Yang, J., Xu, Y., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173–195 doi: 10.1146/annurev-earth-053018-060342 |
Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/BF03184122 |
Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007 |
Xiao, W. J., Windley, B., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477–507. https://doi.org/10.1146/annurev-earth-060614-105254 |
Xie, G. Z., Zhang, L. P., Li, J., et al., 2022. Genesis of High Ba-Sr Yashan Intrusion from the Jiaodong Peninsula, Eastern China: Implications for the Destruction of the North China Craton. Journal of Earth Science, 33(3): 567–580. https://doi.org/10.1007/s12583-021-1587-8 |
Xu, Z., Zheng, Y. F., Zhao, Z. F., 2018. Zircon Evidence for Incorporation of Terrigenous Sediments into the Magma Source of Continental Basalts. Scientific Reports, 8: 1–10. https://doi.org/10.1038/s41598-017-18549-7 |
Xue, D. S., Wang, H. Y., Liu, Y. H., et al., 2017. An Improved Procedure for the Determination of Ferrous Iron Mass Fraction in Silicate Rocks Using a Schlenk Line-Based Digestion Apparatus to Exclude Oxygen. Geostandards and Geoanalytical Research, 41(3): 411–425. https://doi.org/10.1111/ggr.12164 |
Yang, J. H., Chung, S. L., Zhai, M. G., et al., 2004. Geochemical and Sr-Nd-Pb Isotopic Compositions of Mafic Dikes from the Jiaodong Peninsula, China: Evidence for Vein-Plus-Peridotite Melting in the Lithospheric Mantle. Lithos, 73(3/4): 145–160. https://doi.org/10.1016/j.lithos.2003.12.003 |
Yang, J. H., O'Reilly, S., Walker, R. J., et al., 2010. Diachronous Decratonization of the Sino-Korean Craton: Geochemistry of Mantle Xenoliths from North Korea. Geology, 38(9): 799–802 doi: 10.1130/G30944.1 |
Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In situ U–Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190. https://doi.org/10.1007/s00410-006-0139-7 |
Zhang, H. F., Deloule, E., Tang, Y. J., et al., 2010. Melt/Rock Interaction in Remains of Refertilized Archean Lithospheric Mantle in Jiaodong Peninsula, North China Craton: Li Isotopic Evidence. Contributions to Mineralogy and Petrology, 160(2): 261–277. https://doi.org/10.1007/s00410-009-0476-4 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47. https://doi.org/10.1016/j.precamres.2006.09.002 |
Zhu, G., Wang, Y. S., Liu, G. S., et al., 2005. 40Ar/39Ar Dating of Strike-Slip Motion on the Tan-Lu Fault Zone, East China. Journal of Structural Geology, 27(8): 1379–1398. https://doi.org/10.1016/j.jsg.2005.04.007 |
Zhu, R. X., Yang, J. H., Wu, F. Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149: 51–60. https://doi.org/10.1016/j.lithos.2012.05.013 |
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425 |