Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 4
Aug 2023
Turn off MathJax
Article Contents
Leilei Dong, Zhiming Yang, Mingchun Song. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 2023, 34(4): 1150-1164. doi: 10.1007/s12583-022-1737-7
Citation: Leilei Dong, Zhiming Yang, Mingchun Song. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 2023, 34(4): 1150-1164. doi: 10.1007/s12583-022-1737-7

Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula

doi: 10.1007/s12583-022-1737-7
More Information
  • Corresponding author: Leilei Dong, leileidong@ustb.edu.cn
  • Received Date: 30 Jun 2022
  • Accepted Date: 05 Sep 2022
  • Available Online: 01 Aug 2023
  • Issue Publish Date: 30 Aug 2023
  • The nature of lithosphere mantle beneath North China Craton (NCC) has been changed during the Mesozoic. We investigated the mafic dykes in Jiaodong to put constraint on the origin of them and reveal the mantle evolution of the NCC. Zircons from Kunyushan and Nansu mafic dykes give concordia U-Pb ages of 114.9 and 52.8 Ma, respectively. The Kunyushan mafic dyke has high MgO (~8.0 wt.%) and Cr (> 380 ppm) but lower FeO (< 10 wt.%) contents. Large ion lithophile elements (LILE) are enriched compared to primitive mantle. The εHf(t) values of zircons are between -15.0 and -20.1. All these geochemical data imply an old and enriched lithosphere mantle source. In contrast, the Nansu mafic dyke has lower concentrations of MgO (< 7.0 wt.%) and Cr (200 ppm–230 ppm) but higher FeO (> 11 wt.%) contents. The LILE and light rare earth elements (LREE) are not so strongly enriched relative to the mafic dyke from Kunyushan but display slight enrichment compared to the primitive mantle. Positive zircon εHf(t) values are obtained (from +11.7 to +19.5, with one outlier of +3.4). It is suggested that the Nansu dyke sourced from an enriched MORB mantle and was generated by fluid flux melting.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1737-7
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
    Ayers, J. C., Bruce Watson, E., 1991. Solubility of Apatite, Monazite, Zircon, and Rutile in Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 365–375. https://doi.org/10.1098/rsta.1991.0052
    Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329–353. https://doi.org/10.1093/petrology/egi077
    Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
    Chapman, J. B., Gehrels, G. E., Ducea, M. N., et al., 2016. A New Method for Estimating Parent Rock Trace Element Concentrations from Zircon. Chemical Geology, 439: 59–70. https://doi.org/10.1016/j.chemgeo.2016.06.014
    Chen, J. F., Xie, Z., Li, H. M., et al., 2003. U-Pb Zircon Ages for a Collision-Related K-Rich Complex at Shidao in the Sulu Ultrahigh Pressure Terrane, China. Geochemical Journal, 37(1): 35–46. https://doi.org/10.2343/geochemj.37.35
    Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10): 1857–1898. https://doi.org/10.1093/petrology/egp055
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469
    Deng, J., Liu, X. F., Wang, Q. F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking—Lithospheric Extension in the North China Craton, Eastern Asia. Geological Society of America Bulletin, 129(11/12): 1379–1407. https://doi.org/10.1130/b31609.1
    DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821x(81)90153-9
    Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3/4): 347–366. https://doi.org/10.1016/j.epsl.2004.07.019
    Fan, Q. C., Hooper, P. R., 1989. The Mineral Chemistry of Ultramafic Xenoliths of Eastern China: Implications for Upper Mantle Composition and the Paleogeotherms. Journal of Petrology, 30(5): 1117–1158. https://doi.org/10.1093/petrology/30.5.1117
    Fan, W. M., Zhang, H. F., Baker, J., et al., 2000. On and off the North China Craton: Where is the Archaean Keel?. Journal of Petrology, 41(7): 933–950. https://doi.org/10.1093/petrology/41.7.933
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. https://doi.org/10.1029/2012gc004334
    Geng, X. L., Foley, S. F., Liu, Y. S., et al., 2019a. Thermal-Chemical Conditions of the North China Mesozoic Lithospheric Mantle and Implication for the Lithospheric Thinning of Cratons. Earth and Planetary Science Letters, 516: 1–11. https://doi.org/10.1016/j.epsl.2019.03.012
    Geng, X. L., Liu, Y. S., Wang, X. C., et al., 2019b. The Role of Earth's Deep Volatile Cycling in the Generation of Intracontinental High-Mg Andesites: Implication for Lithospheric Thinning beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 124(1/2/3/4): 1305–1323. https://doi.org/10.1029/2018JB016157
    Green, T. H., 1994. Experimental Studies of Trace-Element Partitioning Applicable to Igneous Petrogenesis—Sedona 16 Years Later. Chemical Geology, 117(1/2/3/4): 1–36. https://doi.org/10.1016/0009-2541(94)90119-8
    Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643–646. https://doi.org/10.1130/g23603a.1
    Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
    Guo, J. -F., Ma, Q., Zheng, J. -P., et al., 2022. Spatial and Temporal Evolution of Lithospheric Mantle beneath the Eastern North China Craton: Constraints from Mineral Chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and a Regional Synthesis. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1691-4
    Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton. Earth Science, (11): 3892–3909. https://doi.org/10.3799/dqkx.2021.016 (in Chinese with English Abstract)
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. https://doi.org/10.1016/S0012-821X(98)00152-6
    Hart, S. R., Dunn, T., 1993. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1–8. https://doi.org/10.1007/BF00320827
    Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027
    Hu, F. F., Fan, H. R., Yang, J., et al., 2007. Petrogenesis of Gongjia Gabbro-Diorite in the Kunyushan Area, Jiaodong Peninsula: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotopes. Acta Petrologica Sinica, 23(2): 369–380 (in Chinese with English Abstract)
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/S0009-2541(98)00197-1
    Kelemen, P., Hanghøj, K., Greene, A., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Holland, H. D., Turekian, K. K, eds., Treatise on Geochemistry: 2nd Edition. Elsevier, Amsterdam. 1–70
    Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120–180 km Depth. Nature, 437(7059): 724–727. https://doi.org/10.1038/nature03971
    LeBas, M. J., Maitre, R. W. L., Streckeisen, A., 1986. IUGS Subcommission on the Systematics of Igneous Rocks. a Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silicadiagram. Journal of Petrology, 27: 745–750 doi: 10.1093/petrology/27.3.745
    Lee, C. T., Yin, Q. Z., Rudnick, R. L., et al., 2001. Preservation of Ancient and Fertile Lithospheric Mantle beneath the Southwestern United States. Nature, 411(6833): 69–73. https://doi.org/10.1038/35075048
    Li, X. C., Fan, H. R., Santosh, M., et al., 2012. An Evolving Magma Chamber within Extending Lithosphere: An Integrated Geochemical, Isotopic and Zircon U-Pb Geochronological Study of the Gushan Granite, Eastern North China Craton. Journal of Asian Earth Sciences, 50: 27–43. https://doi.org/10.1016/j.jseaes.2012.01.016
    Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
    Liu, J., Yuan, L. L., Yang, Z. L, 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271–1294. https://doi.org/10.3799/dqkx.2021.104 (in Chinese with English Abstract)
    Liu, J. G., Cai, R. H., Pearson, D. G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017
    Liu, S., Hu, R. Z., Gao, S., et al., 2012. Geochemical and Isotopic Constraints on the Age and Origin of Mafic Dikes from Eastern Shandong Province, Eastern North China Craton. International Geology Review, 54(12): 1389–1400. https://doi.org/10.1080/00206814.2011.641732
    Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
    Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits. Society of Economic Geologists Special Publication, 19: 329–347
    Ma, L., Jiang, S. Y., Hofmann, A. W., et al., 2014a. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250–271. https://doi.org/10.1016/j.gca.2013.09.035
    Ma, L., Jiang, S. Y., Hou, M. L., et al., 2014b. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2): 859–872. https://doi.org/10.1016/j.gr.2013.05.012
    Ma, L., Jiang, S. Y., Hofmann, A. W., et al., 2016. Rapid Lithospheric Thinning of the North China Craton: New Evidence from Cretaceous Mafic Dikes in the Jiaodong Peninsula. Chemical Geology, 432: 1–15. https://doi.org/10.1016/j.chemgeo.2016.03.027
    Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473
    Matzen, A. K., Baker, M. B., Beckett, J. R., et al., 2013. The Temperature and Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt. Journal of Petrology, 54(12): 2521–2545. https://doi.org/10.1093/petrology/egt055
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471–483. https://doi.org/10.1016/S0012-821X(97)00048-4
    Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. The Origin of E-Type MORB at Ridges far from Mantle Plumes: The East Pacific Rise at 11º20'N. Journal of Geophysical Research: Solid Earth, 104(4): 7076–7087
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2
    Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K, eds., Treatise on Geochemistry: 2nd Edition. Elsevier, Amsterdam. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Schmidt, M. W., Jagoutz, O., 2017. The Global Systematics of Primitive Arc Melts. Geochemistry, Geophysics, Geosystems, 18(8): 2817–2854. https://doi.org/10.1002/2016gc006699
    Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645–656. https://doi.org/10.1007/s00126-019-00867-7
    Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small‐ and Large‐Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433–448. https://doi.org/10.1086/314355
    Smyth, H. R., Hamilton, P. J., Hall, R., et al., 2007. The Deep Crust beneath Island Arcs: Inherited Zircons Reveal a Gondwana Continental Fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 258(1/2): 269–282. https://doi.org/10.1016/j.epsl.2007.03.044
    Song, M. C., Li, S. Z., Santosh, M., et al., 2015. Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65: 612–625. https://doi.org/10.1016/j.oregeorev.2014.06.019
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publication, 42(1): 313–345 doi: 10.1144/GSL.SP.1989.042.01.19
    Tropper, P., Manning, C. E., 2005. Very Low Solubility of Rutile in H2O at High Pressure and Temperature, and Its Implications for Ti Mobility in Subduction Zones. American Mineralogist, 90(2/3): 502–505. https://doi.org/10.2138/am.2005.1806
    Ulrich, M., Hémond, C., Nonnotte, P., et al., 2012. OIB/Seamount Recycling as a Possible Process for E-MORB Genesis. Geochemistry, Geophysics, Geosystems, 13(6): Q0AC19. https://doi.org/10.1029/2012gc004078
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5
    Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491–504. https://doi.org/10.1016/0012-821X(93)90078-N
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Wu, F., Yang, J., Xu, Y., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173–195 doi: 10.1146/annurev-earth-053018-060342
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/BF03184122
    Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007
    Xiao, W. J., Windley, B., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477–507. https://doi.org/10.1146/annurev-earth-060614-105254
    Xie, G. Z., Zhang, L. P., Li, J., et al., 2022. Genesis of High Ba-Sr Yashan Intrusion from the Jiaodong Peninsula, Eastern China: Implications for the Destruction of the North China Craton. Journal of Earth Science, 33(3): 567–580. https://doi.org/10.1007/s12583-021-1587-8
    Xu, Z., Zheng, Y. F., Zhao, Z. F., 2018. Zircon Evidence for Incorporation of Terrigenous Sediments into the Magma Source of Continental Basalts. Scientific Reports, 8: 1–10. https://doi.org/10.1038/s41598-017-18549-7
    Xue, D. S., Wang, H. Y., Liu, Y. H., et al., 2017. An Improved Procedure for the Determination of Ferrous Iron Mass Fraction in Silicate Rocks Using a Schlenk Line-Based Digestion Apparatus to Exclude Oxygen. Geostandards and Geoanalytical Research, 41(3): 411–425. https://doi.org/10.1111/ggr.12164
    Yang, J. H., Chung, S. L., Zhai, M. G., et al., 2004. Geochemical and Sr-Nd-Pb Isotopic Compositions of Mafic Dikes from the Jiaodong Peninsula, China: Evidence for Vein-Plus-Peridotite Melting in the Lithospheric Mantle. Lithos, 73(3/4): 145–160. https://doi.org/10.1016/j.lithos.2003.12.003
    Yang, J. H., O'Reilly, S., Walker, R. J., et al., 2010. Diachronous Decratonization of the Sino-Korean Craton: Geochemistry of Mantle Xenoliths from North Korea. Geology, 38(9): 799–802 doi: 10.1130/G30944.1
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In situ U–Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190. https://doi.org/10.1007/s00410-006-0139-7
    Zhang, H. F., Deloule, E., Tang, Y. J., et al., 2010. Melt/Rock Interaction in Remains of Refertilized Archean Lithospheric Mantle in Jiaodong Peninsula, North China Craton: Li Isotopic Evidence. Contributions to Mineralogy and Petrology, 160(2): 261–277. https://doi.org/10.1007/s00410-009-0476-4
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47. https://doi.org/10.1016/j.precamres.2006.09.002
    Zhu, G., Wang, Y. S., Liu, G. S., et al., 2005. 40Ar/39Ar Dating of Strike-Slip Motion on the Tan-Lu Fault Zone, East China. Journal of Structural Geology, 27(8): 1379–1398. https://doi.org/10.1016/j.jsg.2005.04.007
    Zhu, R. X., Yang, J. H., Wu, F. Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149: 51–60. https://doi.org/10.1016/j.lithos.2012.05.013
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(87) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return