Citation: | Yue Cen, Jiasheng Wang, Xuan Ding, Dorrik Stow, Zhou Wang, Can Chen, Xiaochen Ma. Tracing the Methane Events by Stable Carbon Isotopes of Benthic Foraminifera at Glacial Periods in the Andaman Sea. Journal of Earth Science, 2022, 33(6): 1571-1582. doi: 10.1007/s12583-022-1750-x |
Stable isotopes of carbon and oxygen variations in foraminiferal shells have been widely used in paleo-environment studies. However, studies about the shells of benthic foraminifera in methane-hydrate-bearing sediments as reliable geochemical proxies to reconstruct the potential methane release events in the geologic past are rare. In this study, we present the stable carbon and oxygen isotopes of fossil benthic foraminifera including one epifaunal species (
Bartels-Jónsdóttir, H. B., Knudsen, K., Schönfeld, J., et al., 2006. Recent Benthic Foraminifera from the Tagus Prodelta and Estuary, Portugal: Microhabitats, Assemblage Composition and Stable Isotopes. Zitteliana, A46: 91–104. https://doi.org/10.5282/ubm/epub.11963 |
Basak, C., Rathburn, A. E., Pérez, M. E., et al., 2009. Carbon and Oxygen Isotope Geochemistry of Live (Stained) Benthic Foraminifera from the Aleutian Margin and the Southern Australian Margin. Marine Micro-paleontology, 70(3/4): 89–101. https://doi.org/10.1016/j.marmicro. 2008.11.002 doi: 10.1016/j.marmicro.2008.11.002 |
Bhaumik, A. K., Gupta, A. K., 2007. Evidence of Methane Release from Blake Ridge ODP Hole 997A during the Plio-Pleistocene: Benthic Foraminifer Fauna and Total Organic Carbon. Current Science, 92(2): 192–199 |
Burkett, A. M., Rathburn, A. E., Elena Pérez, M., et al., 2016. Colonization of over a Thousand Cibicidoides wuellerstorfi (Foraminifera: Schwager, 1866) on Artificial Substrates in Seep and Adjacent Off-Seep Locations in Dysoxic, Deep-Sea Environments. Deep Sea Research Part I: Oceanographic Research Papers, 117: 39–50. https://doi.org/10.1016/j.dsr.2016.08.011 |
Burkett, A. M., Rathburn, A. E., Pérez, M. E., et al., 2018. Influences of Thermal and Fluid Characteristics of Methane and Hydrothermal Seeps on the Stable Oxygen Isotopes of Living Benthic Foraminifera. Marine and Petroleum Geology, 93: 344–355. https://doi.org/10.1016/j.marpetgeo.2018.02.037 |
Chen, J. J., Farrell, J. W., Murray, D. W., et al., 1995. Timescale and Paleoceanographic Implications of a 3.6 M. y. Oxygen Isotope Record from the Northeast Indian Ocean (Ocean Drilling Program Site 758). Paleoceanography, 10(1): 21–47. https://doi.org/10.1029/94pa02290 |
Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., 2016a. Expedition 353 Summary. In: Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., eds., Indian Monsoon Rainfall. Proceedings of the International Ocean Discovery Program, 353: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.353.101.2016 |
Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., 2016b. Site U1447. In: Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., eds., Indian Monsoon Rainfall. Proceedings of the International Ocean Discovery Program, 353: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.353.107.2016 |
Collett, T., Riedel, M., Cochran, J., et al., 2015. Indian National Gas Hydrate Program Expedition 01 Report: U. S. Geological Survey Scientific Inves-tigations Report 2012–5054. 1442. https://doi.org/10.3133/sir20125054 |
Corliss, B. H., 1985. Microhabitats of Benthic Foraminifera within Deep-Sea Sediments. Nature, 314(6010): 435–438. https://doi.org/10.1038/314435a0 |
Corliss, B. H., McCorkle, D. C., Higdon, D. M., 2002. A Time Series Study of the Carbon Isotopic Composition of Deep-Sea Benthic Foraminifera. Paleoceanography, 17(3): 1–27. https://doi.org/10.1029/2001pa000664 |
Curray, J. R., 2005. Tectonics and History of the Andaman Sea Region. Journal of Asian Earth Sciences, 25(1): 187–232. https://doi.org/10.1016/j.jseaes.2004.09.001 |
de Garidel-Thoron, T., Beaufort, L., Bassinot, F., et al., 2004. Evidence for Large Methane Releases to the Atmosphere from Deep-Sea Gas-Hydrate Dissociation during the last Glacial Episode. Proceedings of the National Academy of Sciences of the United States of America, 101(25): 9187–9192. https://doi.org/10.1073/pnas.0402909101 |
Dickens, G. R., Owen, R. M., 1999. The Latest Miocene-Early Pliocene Biogenic Bloom: A Revised Indian Ocean Perspective. Marine Geology, 161(1): 75–91. https://doi.org/10.1016/s0025-3227(99)00057-2 |
Drury, A. J., John, C. M., Shevenell, A. E., 2016. Evaluating Climatic Response to External Radiative Forcing during the Late Miocene to Early Pliocene: New Perspectives from Eastern Equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) Locations. Paleoceanography, 31(1): 167–184. https://doi.org/10.1002/2015pa002881 |
Du, J. L., Tian, J., Ma, W. T., 2022. The Late Miocene Carbon Isotope Shift Driven by Synergetic Terrestrial Processes: A Box-Model Study. Earth and Planetary Science Letters, 584: 117457. https://doi.org/10.1016/j.epsl.2022.117457 |
Erbacher, J., Nelskamp, S., 2006. Comparison of Benthic Foraminifera Inside and Outside a Sulphur-Oxidizing Bacterial Mat from the Present Oxygen-Minimum Zone off Pakistan (NE Arabian Sea). Deep Sea Research Part I: Oceanographic Research Papers, 53(5): 751–775. https://doi.org/10.1016/j.dsr.2006.02.003 |
Erez, J., 1978. Vital Effect on Stable-Isotope Composition Seen in Foraminifera and Coral Skeletons. Nature, 273(5659): 199–202. https://doi.org/10.1038/273199a0 |
Ezard, T. H. G., Edgar, K. M., Hull, P. M., 2015. Environmental and Biological Controls on Size-Specific δ13C and δ18O in Recent Planktonic Foraminifera. Paleoceanography, 30(3): 151–173. https://doi.org/10.1002/2014pa002735 |
Fontanier, C., Koho, K. A., Goñi-Urriza, M. S., et al., 2014. Benthic Foraminifera from the Deep-Water Niger Delta (Gulf of Guinea): Assessing Present-Day and Past Activity of Hydrate Pockmarks. Deep Sea Research Part I: Oceanographic Research Papers, 94: 87–106. https://doi.org/10.1016/j.dsr.2014.08.011 |
Fontanier, C., Sakai, S., Toyofuku, T., et al., 2017. Stable Isotopes in Deep-Sea Living (Stained) Foraminifera from the Mozambique Channel (Eastern Africa): Multispecies Signatures and Paleoenvironmental Application. Journal of Oceanography, 73(2): 259–275. https://doi.org/10.1007/s10872-016-0401-1 |
Frerichs, W. E., 1971. Planktonic Foraminifera in the Sediments of the Andaman Sea. Journal of Foraminiferal Research, 1(1): 1–14. https://doi.org/10.2113/gsjfr.1.1.1 |
Gieskes, J., Rathburn, A. E., Martin, J. B., et al., 2011. Cold Seeps in Monterey Bay, California: Geochemistry of Pore Waters and Relationship to Benthic Foraminiferal Calcite. Applied Geochemistry, 26(5): 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032 |
Gupta, B. K. S., Aharon, P., 1994. Benthic Foraminifera of Bathyal Hydrocarbon Vents of the Gulf of Mexico: Initial Report on Communities and Stable Isotopes. Geo-Marine Letters, 14(2): 88–96. https://doi.org/10.1007/bf01203719 |
Gupta, B. K. S., Platon, E., Bernhard, J. M., et al., 1997. Foraminiferal Colonization of Hydrocarbon-Seep Bacterial Mats and Underlying Sediment, Gulf of Mexico Slope. Journal of Foraminiferal Research, 27(4): 292–300. https://doi.org/10.2113/gsjfr.27.4.292 |
Hautala, S. L., Solomon, E. A., Johnson, H. P., et al., 2014. Dissociation of Cascadia Margin Gas Hydrates in Response to Contemporary Ocean Warming. Geophysical Research Letters, 41(23): 8486–8494. https://doi.org/10.1002/2014gl061606 |
He, J. X., Ning, Z. J., Zhao, B., et al., 2022. Preliminary Analysis and Prediction of Strategic Replacement Area for Gas Hydrate Exploration in South China Sea. Earth Science, 47(5): 1549–1568. https://doi.org/10.3799/dqkx.2021.119 (in Chinese with English Abstract) |
Heinz, P., Sommer, S., Pfannkuche, O., et al., 2005. Living Benthic Foraminifera in Sediments Influenced by Gas Hydrates at the Cascadia Convergent Margin, NE Pacific. Marine Ecology Progress Series, 304(1): 77–89. https://doi.org/10.3354/meps304077 |
Herguera, J. C., Paull, C. K., Perez, E., et al., 2014. Limits to the Sensitivity of Living Benthic Foraminifera to Pore Water Carbon Isotope Anomalies in Methane Vent Environments. Paleoceanography, 29(3): 273–289. https://doi.org/10.1002/2013pa002457 |
Hill, T. M., Kennett, J. P., Spero, H. J., 2003. Foraminifera as Indicators of Methane-Rich Environments: A Study of Modern Methane Seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1/2): 123–138. https://doi.org/10.1016/s0377-8398(03)00032-x |
Hill, T. M., Kennett, J. P., Valentine, D. L., 2004. Isotopic Evidence for the Incorporation of Methane-Derived Carbon into Foraminifera from Modern Methane Seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22): 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012 |
Hodell, D. A., Curtis, J. H., Sierro, F. J., et al., 2001. Correlation of Late Miocene to Early Pliocene Sequences between the Mediterranean and North Atlantic. Paleoceanography, 16(2): 164–178. https://doi.org/10.1029/1999pa000487 |
Ishimura, T., Tsunogai, U., Hasegawa, S., et al., 2012. Variation in Stable Carbon and Oxygen Isotopes of Individual Benthic Foraminifera: Tracers for Quantifying the Magnitude of Isotopic Disequilibrium. Biogeosciences, 9(11): 4353–4367. https://doi.org/10.5194/bg-9-4353-2012 |
Jorissen, F. J., Fontanier, C., Thomas, E., 2007. Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. Developments in Marine Geology. Elsevier, Amsterdam. 263–325. https://doi.org/10.1016/s1572-5480(07)01012-3 |
Jorissen, F. J., de Stigter, H. C., Widmark, J. G. V., 1995. A Conceptual Model Explaining Benthic Foraminiferal Microhabitats. Marine Micropaleontology, 26(1/2/3/4): 3–15. https://doi.org/10.1016/0377-8398(95)00047-x |
Joshi, R. K., Mazumdar, A., Peketi, A., et al., 2014. Gas Hydrate Destabilization and Methane Release Events in the Krishna-Godavari Basin, Bay of Bengal. Marine and Petroleum Geology, 58: 476–489. https://doi.org/10.1016/j.marpetgeo.2014.08.013 |
Karstens, J., Haflidason, H., Becker, L. W. M., et al., 2018. Glacigenic Sedimentation Pulses Triggered Post-Glacial Gas Hydrate Dissociation. Nature Communications, 9: 635. https://doi.org/10.1038/s41467-018-03043-z |
Katz, M. E., Cramer, B. S., Franzese, A., et al., 2010. Traditional and Emerging Geochemical Proxies in Foraminifera. Journal of Foraminiferal Research, 40(2): 165–192. https://doi.org/10.2113/gsjfr.40.2.165 |
Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union, Washington, D. C. 513–516. https://doi.org/10.1029/054sp |
Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463): 128–133. https://doi.org/10.1126/science.288.5463.128 |
Kuhnt, T., Schmiedl, G., Ehrmann, W., et al., 2008. Stable Isotopic Composition of Holocene Benthic Foraminifers from the Eastern Mediterranean Sea: Past Changes in Productivity and Deep Water Oxygenation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(1/2): 106–115. https://doi.org/10.1016/j.palaeo.2008.07.010 |
Li, Q., Wang, J., Chen, J., et al., 2010. Stable Carbon Isotopes of Benthic Foraminifers from Iodp Expedition 311 as Possible Indicators of Episodic Methane Seep Events in a Gas Hydrate Geosystem. PALAIOS, 25(10): 671–681. https://doi.org/10.2110/palo.2010.p10-011r |
Lin, Q., Wang, J. S., Taladay, K., et al., 2016. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate-Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547–556. https://doi.org/10.1016/j.jseaes.2015.11.001 |
Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): PA 1003. https://doi.org/10.1029/2004pa001071 |
Liu, N., Wu, K. Q., Liu, L., et al., 2020. Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin. Earth Science, 45(10): 3746–3758. https://doi.org/10.3799/dqkx.2020.079 (in Chinese with English Abstract) |
Lorenson, T. D., Collett, T. S., 2018. National Gas Hydrate Program Expedition 01 Offshore India: Gas Hydrate Systems as Revealed by Hydrocarbon Gas Geochemistry. Marine and Petroleum Geology, 92: 477–492. https://doi.org/10.1016/j.marpetgeo.2017.11.011 |
Mackensen, A., 2012. Strong Thermodynamic Imprint on Recent Bottom-Water and Epibenthic δ13C in the Weddell Sea Revealed: Implications for Glacial Southern Ocean Ventilation. Earth and Planetary Science Letters, 317/318: 20–26. https://doi.org/10.1016/j.epsl.2011.11.030 |
Mackensen, A., 2013. High Epibenthic Foraminiferal δ13C in the Recent Deep Arctic Ocean: Implications for Ventilation and Brine Release during Stadials. Paleoceanography, 28(3): 574–584. https://doi.org/10.1002/palo.20058 |
Mackensen, A., Licari, L., 2004. Carbon Isotopes of Live Benthic Foraminifera from the South Atlantic: Sensitivity to Bottom Water Carbonate Saturation State and Organic Matter Rain Rates. In: Wefer, G., Mulitza, S., Ratmeyer, V., eds., The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg, New York. 623–644. https://doi.org/10.1007/978-3-642-18917-3_27 |
Mackensen, A., Schmiedl, G., Thiele, J., et al., 2017. Microhabitat Preferences of Live Benthic Foraminifera and Stable Carbon Isotopes off SW Svalbard in the Presence of Widespread Methane Seepage. Marine Micropaleontology, 132: 1–17. https://doi.org/10.1016/j.marmicro.2017.04.004 |
Mackensen, A., Wollenburg, J., Licari, L., 2006. Low δ13C in Tests of Live Epibenthic and Endobenthic Foraminifera at a Site of Active Methane Seepage. Paleoceanography, 21(2): PA2022. https://doi.org/10.1029/2005pa001196 |
Martin, J. B., Day, S. A., Rathburn, A. E., et al., 2004. Relationships between the Stable Isotopic Signatures of Living and Fossil Foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4): Q04004. https://doi.org/10.1029/2003gc000629 |
Martin, R. A., Nesbitt, E. A., Campbell, K. A., 2007. Carbon Stable Isotopic Composition of Benthic Foraminifera from Pliocene Cold Methane Seeps, Cascadia Accretionary Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2/3/4): 260–277. https://doi.org/10.1016/j.palaeo.2006.10.002 |
Martin, R. A., Nesbitt, E. A., Campbell, K. A., 2010. The Effects of Anaerobic Methane Oxidation on Benthic Foraminiferal Assemblages and Stable Isotopes on the Hikurangi Margin of Eastern New Zealand. Marine Geology, 272(1/2/3/4): 270–284. https://doi.org/10.1016/j.margeo.2009.03.024 |
Melaniuk, K., Sztybor, K., Treude, T., et al., 2022. Influence of Methane Seepage on Isotopic Signatures in Living Deep-Sea Benthic Foraminifera, 79°N. Scientific Reports, 12(1): 1169. https://doi.org/10.1038/s41598-022-05175-1 |
Mestdagh, T., Poort, J., de Batist, M., 2017. The Sensitivity of Gas Hydrate Reservoirs to Climate Change: Perspectives from a New Combined Model for Permafrost-Related and Marine Settings. Earth-Science Reviews, 169: 104–131. https://doi.org/10.1016/j.earscirev.2017.04.013 |
Ohkushi, K., Ahagon, N., Uchida, M., et al., 2005. Foraminiferal Isotope Anomalies from Northwestern Pacific Marginal Sediments. Geochemistry, Geophysics, Geosystems, 6(4): Q04005. https://doi.org/10.1029/2004gc000787 |
Panieri, G., Camerlenghi, A., Cacho, I., et al., 2012. Tracing Seafloor Methane Emissions with Benthic Foraminifera: Results from the Ana Submarine Landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291/292/293/294: 97–112. https://doi.org/10.1016/j.margeo.2011.11.005 |
Panieri, G., Graves, C. A., James, R. H., 2016. Paleo-Methane Emissions Recorded in Foraminifera near the Landward Limit of the Gas Hydrate Stability Zone Offshore Western Svalbard. Geochemistry, Geophysics, Geosystems, 17(2): 521–537. https://doi.org/10.1002/2015gc006153 |
Panieri, G., James, R. H., Camerlenghi, A., et al., 2014. Record of Methane Emissions from the West Svalbard Continental Margin during the last 23.500 yrs Revealed by δ13C of Benthic Foraminifera. Global and Planetary Change, 122: 151–160.https://doi.org/10.1016/j.gloplacha. 2014.08.014 doi: 10.1016/j.gloplacha.2014.08.014 |
Prakash, A., Samanta, B. G., Singh, N. P., 2013. Evidence of Gas Hydrate Accumulation and Its Resource Estimation in Andaman Deep Water Basin from Seismic and Well Log Data. Marine Geophysical Research, 34(1): 1–16. https://doi.org/10.1007/s11001-012-9163-3 |
Rathburn, A. E., Levin, L. A., Held, Z., et al., 2000. Benthic Foraminifera Associated with Cold Methane Seeps on the Northern California Margin: Ecology and Stable Isotopic Composition. Marine Micropaleontology, 38(3/4): 247–266. https://doi.org/10.1016/s0377-8398(00)00005-0 |
Rathburn, A. E., Pérez, M. E., Martin, J. B., et al., 2003. Relationships between the Distribution and Stable Isotopic Composition of Living Benthic Foraminifera and Cold Methane Seep Biogeochemistry in Mon-terey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12): 1106. https://doi.org/10.1029/2003gc000595 |
Ravelo, A. C., Hillaire-Marcel, C., 2007. Chapter Eighteen the Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography. In: Hillaire-Marcel, C., De Vernal, A., eds., Developments in Marine Geology. Elsevier, Amsterdam. 735–764. https://doi.org/10.1016/s1572-5480(07)01023-8 |
Rose, K. K., Johnson, J. E., Torres, M. E., et al., 2014. Anomalous Porosity Preservation and Preferential Accumulation of Gas Hydrate in the Andaman Accretionary Wedge, NGHP-01 Site 17A. Marine and Petroleum Geology, 58: 99–116. https://doi.org/10.1016/j.marpetgeo.2014.04.009 |
Sain, K., Rajesh, V., Satyavani, N., et al., 2011. Gas-Hydrate Stability Thickness Map along the Indian Continental Margin. Marine and Petroleum Geology, 28(10): 1779–1786. https://doi.org/10.1016/j.marpetgeo.2011.03.008 |
Schilman, B., Almogi-Labin, A., Bar-Matthews, M., et al., 2001. Long- and Short-Term Carbon Fluctuations in the Eastern Mediterranean during the Late Holocene. Geology, 29(12): 1099–1102.https://doi.org/10.1130/0091-7613(2001)0291099:lastcf>2.0.co;2 doi: 10.1130/0091-7613(2001)0291099:lastcf>2.0.co;2 |
Schmiedl, G., Mackensen, A., 2006. Multispecies Stable Isotopes of Benthic Foraminifers Reveal Past Changes of Organic Matter Decomposition and Deepwater Oxygenation in the Arabian Sea. Paleoceanography, 21(4): PA4213. https://doi.org/10.1029/2006pa001284 |
Schmiedl, G., Pfeilsticker, M., Hemleben, C., et al., 2004. Environmental and Biological Effects on the Stable Isotope Composition of Recent Deep-Sea Benthic Foraminifera from the Western Mediterranean Sea. Marine Micropaleontology, 51(1/2): 129–152. https://doi.org/10.1016/j.marmicro.2003.10.001 |
Schumacher, S., Jorissen, F. J., Mackensen, A., et al., 2010. Ontogenetic Effects on Stable Carbon and Oxygen Isotopes in Tests of Live (Rose Bengal Stained) Benthic Foraminifera from the Pakistan Continental Margin. Marine Micropaleontology, 76(3/4): 92–103. https://doi.org/10.1016/j.marmicro.2010.06.002 |
Schwing, P. T., Machain-Castillo, M. L., Brooks, G. R., et al., 2021. Multi-Proxy Assessment of Recent Regional-Scale Events Recorded in Southern Gulf of Mexico Sediments. Marine Geology, 434: 106434. https://doi.org/10.1016/j.margeo.2021.106434 |
Scourse, J. D., Kennedy, H., Scott, G. A., et al., 2004. Stable Isotopic Analyses of Modern Benthic Foraminifera from Seasonally Stratified Shelf Seas: Disequilibria and the 'Seasonal Effect'. The Holocene, 14(5): 747–758. https://doi.org/10.1191/0959683604hl753rp |
Shankar, U., Riedel, M., 2013. Heat Flow and Gas Hydrate Saturation Estimates from Andaman Sea, India. Marine and Petroleum Geology, 43: 434–449. https://doi.org/10.1016/j.marpetgeo.2012.12.004 |
Shankar, U., Sain, K., Riedel, M., 2014. Assessment of Gas Hydrate Stability Zone and Geothermal Modeling of BSR in the Andaman Sea. Journal of Asian Earth Sciences, 79: 358–365. https://doi.org/10.1016/j.jseaes.2013.10.021 |
Smith, L. M., Sachs, J. P., Jennings, A. E., et al., 2001. Light δ13C Events during Deglaciation of the East Greenland Continental Shelf Attributed to Methane Release from Gas Hydrates. Geophysical Research Letters, 28(11): 2217–2220. https://doi.org/10.1029/2000gl012627 |
Takata, H., Khim, B. K., Asahi, H., et al., 2021. Ecological Characteristics and Stable Isotope Compositions of Elphidium Batialis Saidova off Hidaka (Northern Japan) in the Northwestern Pacific Continental Margin. Marine Micropaleontology, 165: 101978. https://doi.org/10.1016/j.marmicro.2021.101978 |
Tetard, M., Beaufort, L., Licari, L., 2017. A New Optical Method for Automated Pore Analysis on Benthic Foraminifera. Marine Micropaleontology, 136: 30–36. https://doi.org/10.1016/j.marmicro.2017.08.005 |
Theodor, M., Schmiedl, G., Mackensen, A., 2016. Stable Isotope Composition of Deep-Sea Benthic Foraminifera under Contrasting Trophic Conditions in the Western Mediterranean Sea. Marine Micropaleontology, 124: 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001 |
Tian, J., Ma, X. L., Zhou, J. H., et al., 2017. Subsidence of the Northern South China Sea and Formation of the Bashi Strait in the Latest Miocene: Paleoceanographic Evidences from 9-Myr High Resolution Benthic Foraminiferal δ18O and δ13C Records. Palaeogeography, Palaeo-climatology, Palaeoecology, 466: 382–391. https://doi.org/10.1016/j.palaeo.2016.11.041 |
Torres, M. E., Mix, A. C., Kinports, K., et al., 2003. Is Methane Venting at the Seafloor Recorded by δ13C of Benthic Foraminifera Shells? Paleoceanography, 18(3): 1062. https://doi.org/10.1029/2002pa000824 |
Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038–1057. https://doi.org/10.3799/dqkx.2020.321 (in Chinese with English Abstract) |
Wu, Y. F., Guan, H. X., Xu, L. F., et al., 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005–3015. https://doi.org/10.3799/dqkx.2021.202 (in Chinese with English Abstract) |
Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. A Record of Miocene Carbon Excursions in the South China Sea. Science in China Series D: Earth Sciences, 44(10): 943–951. https://doi.org/10.1007/bf02907087 |