Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Yue Cen, Jiasheng Wang, Xuan Ding, Dorrik Stow, Zhou Wang, Can Chen, Xiaochen Ma. Tracing the Methane Events by Stable Carbon Isotopes of Benthic Foraminifera at Glacial Periods in the Andaman Sea. Journal of Earth Science, 2022, 33(6): 1571-1582. doi: 10.1007/s12583-022-1750-x
Citation: Yue Cen, Jiasheng Wang, Xuan Ding, Dorrik Stow, Zhou Wang, Can Chen, Xiaochen Ma. Tracing the Methane Events by Stable Carbon Isotopes of Benthic Foraminifera at Glacial Periods in the Andaman Sea. Journal of Earth Science, 2022, 33(6): 1571-1582. doi: 10.1007/s12583-022-1750-x

Tracing the Methane Events by Stable Carbon Isotopes of Benthic Foraminifera at Glacial Periods in the Andaman Sea

doi: 10.1007/s12583-022-1750-x
More Information
  • Corresponding author: Jiasheng Wang, js-wang@cug.edu.cn
  • Received Date: 27 Jun 2022
  • Accepted Date: 19 Sep 2022
  • Issue Publish Date: 30 Dec 2022
  • Stable isotopes of carbon and oxygen variations in foraminiferal shells have been widely used in paleo-environment studies. However, studies about the shells of benthic foraminifera in methane-hydrate-bearing sediments as reliable geochemical proxies to reconstruct the potential methane release events in the geologic past are rare. In this study, we present the stable carbon and oxygen isotopes of fossil benthic foraminifera including one epifaunal species (Cibicidoides wuellerstorfi) and two infaunal species (Bulimina mexicana and Uvigerina peregrina) from the Site U1447 of IODP 353 Expedition to trace methane events in the Andaman Sea, where one of the thickest and deepest gas hydrate stability zones was discovered. The δ13C values of benthic foraminifera show that there are eight distinct intervals with negative values in the last ~10 Myr, interpreted as a record of long-term fluctuations in methane emission. Six of these methane events occurred during the glacial sea-level lowstands in the last ~1.1 Myr. We, therefore, infer that the trigger mechanism for these events might be the hydrate destabilization caused by sea level fall. The methane events that occurred at ~2.11 and ~5.93 Ma are more likely related to the sudden changes in sedimentation, either slide events or marked variations in sedimentation rate.

     

  • loading
  • Bartels-Jónsdóttir, H. B., Knudsen, K., Schönfeld, J., et al., 2006. Recent Benthic Foraminifera from the Tagus Prodelta and Estuary, Portugal: Microhabitats, Assemblage Composition and Stable Isotopes. Zitteliana, A46: 91–104. https://doi.org/10.5282/ubm/epub.11963
    Basak, C., Rathburn, A. E., Pérez, M. E., et al., 2009. Carbon and Oxygen Isotope Geochemistry of Live (Stained) Benthic Foraminifera from the Aleutian Margin and the Southern Australian Margin. Marine Micro-paleontology, 70(3/4): 89–101. https://doi.org/10.1016/j.marmicro. 2008.11.002 doi: 10.1016/j.marmicro.2008.11.002
    Bhaumik, A. K., Gupta, A. K., 2007. Evidence of Methane Release from Blake Ridge ODP Hole 997A during the Plio-Pleistocene: Benthic Foraminifer Fauna and Total Organic Carbon. Current Science, 92(2): 192–199
    Burkett, A. M., Rathburn, A. E., Elena Pérez, M., et al., 2016. Colonization of over a Thousand Cibicidoides wuellerstorfi (Foraminifera: Schwager, 1866) on Artificial Substrates in Seep and Adjacent Off-Seep Locations in Dysoxic, Deep-Sea Environments. Deep Sea Research Part I: Oceanographic Research Papers, 117: 39–50. https://doi.org/10.1016/j.dsr.2016.08.011
    Burkett, A. M., Rathburn, A. E., Pérez, M. E., et al., 2018. Influences of Thermal and Fluid Characteristics of Methane and Hydrothermal Seeps on the Stable Oxygen Isotopes of Living Benthic Foraminifera. Marine and Petroleum Geology, 93: 344–355. https://doi.org/10.1016/j.marpetgeo.2018.02.037
    Chen, J. J., Farrell, J. W., Murray, D. W., et al., 1995. Timescale and Paleoceanographic Implications of a 3.6 M. y. Oxygen Isotope Record from the Northeast Indian Ocean (Ocean Drilling Program Site 758). Paleoceanography, 10(1): 21–47. https://doi.org/10.1029/94pa02290
    Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., 2016a. Expedition 353 Summary. In: Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., eds., Indian Monsoon Rainfall. Proceedings of the International Ocean Discovery Program, 353: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.353.101.2016
    Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., 2016b. Site U1447. In: Clemens, S. C., Kuhnt, W., LeVay, L. J., et al., eds., Indian Monsoon Rainfall. Proceedings of the International Ocean Discovery Program, 353: College Station, TX (International Ocean Discovery Program). https://doi.org/10.14379/iodp.proc.353.107.2016
    Collett, T., Riedel, M., Cochran, J., et al., 2015. Indian National Gas Hydrate Program Expedition 01 Report: U. S. Geological Survey Scientific Inves-tigations Report 2012–5054. 1442. https://doi.org/10.3133/sir20125054
    Corliss, B. H., 1985. Microhabitats of Benthic Foraminifera within Deep-Sea Sediments. Nature, 314(6010): 435–438. https://doi.org/10.1038/314435a0
    Corliss, B. H., McCorkle, D. C., Higdon, D. M., 2002. A Time Series Study of the Carbon Isotopic Composition of Deep-Sea Benthic Foraminifera. Paleoceanography, 17(3): 1–27. https://doi.org/10.1029/2001pa000664
    Curray, J. R., 2005. Tectonics and History of the Andaman Sea Region. Journal of Asian Earth Sciences, 25(1): 187–232. https://doi.org/10.1016/j.jseaes.2004.09.001
    de Garidel-Thoron, T., Beaufort, L., Bassinot, F., et al., 2004. Evidence for Large Methane Releases to the Atmosphere from Deep-Sea Gas-Hydrate Dissociation during the last Glacial Episode. Proceedings of the National Academy of Sciences of the United States of America, 101(25): 9187–9192. https://doi.org/10.1073/pnas.0402909101
    Dickens, G. R., Owen, R. M., 1999. The Latest Miocene-Early Pliocene Biogenic Bloom: A Revised Indian Ocean Perspective. Marine Geology, 161(1): 75–91. https://doi.org/10.1016/s0025-3227(99)00057-2
    Drury, A. J., John, C. M., Shevenell, A. E., 2016. Evaluating Climatic Response to External Radiative Forcing during the Late Miocene to Early Pliocene: New Perspectives from Eastern Equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) Locations. Paleoceanography, 31(1): 167–184. https://doi.org/10.1002/2015pa002881
    Du, J. L., Tian, J., Ma, W. T., 2022. The Late Miocene Carbon Isotope Shift Driven by Synergetic Terrestrial Processes: A Box-Model Study. Earth and Planetary Science Letters, 584: 117457. https://doi.org/10.1016/j.epsl.2022.117457
    Erbacher, J., Nelskamp, S., 2006. Comparison of Benthic Foraminifera Inside and Outside a Sulphur-Oxidizing Bacterial Mat from the Present Oxygen-Minimum Zone off Pakistan (NE Arabian Sea). Deep Sea Research Part I: Oceanographic Research Papers, 53(5): 751–775. https://doi.org/10.1016/j.dsr.2006.02.003
    Erez, J., 1978. Vital Effect on Stable-Isotope Composition Seen in Foraminifera and Coral Skeletons. Nature, 273(5659): 199–202. https://doi.org/10.1038/273199a0
    Ezard, T. H. G., Edgar, K. M., Hull, P. M., 2015. Environmental and Biological Controls on Size-Specific δ13C and δ18O in Recent Planktonic Foraminifera. Paleoceanography, 30(3): 151–173. https://doi.org/10.1002/2014pa002735
    Fontanier, C., Koho, K. A., Goñi-Urriza, M. S., et al., 2014. Benthic Foraminifera from the Deep-Water Niger Delta (Gulf of Guinea): Assessing Present-Day and Past Activity of Hydrate Pockmarks. Deep Sea Research Part I: Oceanographic Research Papers, 94: 87–106. https://doi.org/10.1016/j.dsr.2014.08.011
    Fontanier, C., Sakai, S., Toyofuku, T., et al., 2017. Stable Isotopes in Deep-Sea Living (Stained) Foraminifera from the Mozambique Channel (Eastern Africa): Multispecies Signatures and Paleoenvironmental Application. Journal of Oceanography, 73(2): 259–275. https://doi.org/10.1007/s10872-016-0401-1
    Frerichs, W. E., 1971. Planktonic Foraminifera in the Sediments of the Andaman Sea. Journal of Foraminiferal Research, 1(1): 1–14. https://doi.org/10.2113/gsjfr.1.1.1
    Gieskes, J., Rathburn, A. E., Martin, J. B., et al., 2011. Cold Seeps in Monterey Bay, California: Geochemistry of Pore Waters and Relationship to Benthic Foraminiferal Calcite. Applied Geochemistry, 26(5): 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032
    Gupta, B. K. S., Aharon, P., 1994. Benthic Foraminifera of Bathyal Hydrocarbon Vents of the Gulf of Mexico: Initial Report on Communities and Stable Isotopes. Geo-Marine Letters, 14(2): 88–96. https://doi.org/10.1007/bf01203719
    Gupta, B. K. S., Platon, E., Bernhard, J. M., et al., 1997. Foraminiferal Colonization of Hydrocarbon-Seep Bacterial Mats and Underlying Sediment, Gulf of Mexico Slope. Journal of Foraminiferal Research, 27(4): 292–300. https://doi.org/10.2113/gsjfr.27.4.292
    Hautala, S. L., Solomon, E. A., Johnson, H. P., et al., 2014. Dissociation of Cascadia Margin Gas Hydrates in Response to Contemporary Ocean Warming. Geophysical Research Letters, 41(23): 8486–8494. https://doi.org/10.1002/2014gl061606
    He, J. X., Ning, Z. J., Zhao, B., et al., 2022. Preliminary Analysis and Prediction of Strategic Replacement Area for Gas Hydrate Exploration in South China Sea. Earth Science, 47(5): 1549–1568. https://doi.org/10.3799/dqkx.2021.119 (in Chinese with English Abstract)
    Heinz, P., Sommer, S., Pfannkuche, O., et al., 2005. Living Benthic Foraminifera in Sediments Influenced by Gas Hydrates at the Cascadia Convergent Margin, NE Pacific. Marine Ecology Progress Series, 304(1): 77–89. https://doi.org/10.3354/meps304077
    Herguera, J. C., Paull, C. K., Perez, E., et al., 2014. Limits to the Sensitivity of Living Benthic Foraminifera to Pore Water Carbon Isotope Anomalies in Methane Vent Environments. Paleoceanography, 29(3): 273–289. https://doi.org/10.1002/2013pa002457
    Hill, T. M., Kennett, J. P., Spero, H. J., 2003. Foraminifera as Indicators of Methane-Rich Environments: A Study of Modern Methane Seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1/2): 123–138. https://doi.org/10.1016/s0377-8398(03)00032-x
    Hill, T. M., Kennett, J. P., Valentine, D. L., 2004. Isotopic Evidence for the Incorporation of Methane-Derived Carbon into Foraminifera from Modern Methane Seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22): 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012
    Hodell, D. A., Curtis, J. H., Sierro, F. J., et al., 2001. Correlation of Late Miocene to Early Pliocene Sequences between the Mediterranean and North Atlantic. Paleoceanography, 16(2): 164–178. https://doi.org/10.1029/1999pa000487
    Ishimura, T., Tsunogai, U., Hasegawa, S., et al., 2012. Variation in Stable Carbon and Oxygen Isotopes of Individual Benthic Foraminifera: Tracers for Quantifying the Magnitude of Isotopic Disequilibrium. Biogeosciences, 9(11): 4353–4367. https://doi.org/10.5194/bg-9-4353-2012
    Jorissen, F. J., Fontanier, C., Thomas, E., 2007. Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. Developments in Marine Geology. Elsevier, Amsterdam. 263–325. https://doi.org/10.1016/s1572-5480(07)01012-3
    Jorissen, F. J., de Stigter, H. C., Widmark, J. G. V., 1995. A Conceptual Model Explaining Benthic Foraminiferal Microhabitats. Marine Micropaleontology, 26(1/2/3/4): 3–15. https://doi.org/10.1016/0377-8398(95)00047-x
    Joshi, R. K., Mazumdar, A., Peketi, A., et al., 2014. Gas Hydrate Destabilization and Methane Release Events in the Krishna-Godavari Basin, Bay of Bengal. Marine and Petroleum Geology, 58: 476–489. https://doi.org/10.1016/j.marpetgeo.2014.08.013
    Karstens, J., Haflidason, H., Becker, L. W. M., et al., 2018. Glacigenic Sedimentation Pulses Triggered Post-Glacial Gas Hydrate Dissociation. Nature Communications, 9: 635. https://doi.org/10.1038/s41467-018-03043-z
    Katz, M. E., Cramer, B. S., Franzese, A., et al., 2010. Traditional and Emerging Geochemical Proxies in Foraminifera. Journal of Foraminiferal Research, 40(2): 165–192. https://doi.org/10.2113/gsjfr.40.2.165
    Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union, Washington, D. C. 513–516. https://doi.org/10.1029/054sp
    Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463): 128–133. https://doi.org/10.1126/science.288.5463.128
    Kuhnt, T., Schmiedl, G., Ehrmann, W., et al., 2008. Stable Isotopic Composition of Holocene Benthic Foraminifers from the Eastern Mediterranean Sea: Past Changes in Productivity and Deep Water Oxygenation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(1/2): 106–115. https://doi.org/10.1016/j.palaeo.2008.07.010
    Li, Q., Wang, J., Chen, J., et al., 2010. Stable Carbon Isotopes of Benthic Foraminifers from Iodp Expedition 311 as Possible Indicators of Episodic Methane Seep Events in a Gas Hydrate Geosystem. PALAIOS, 25(10): 671–681. https://doi.org/10.2110/palo.2010.p10-011r
    Lin, Q., Wang, J. S., Taladay, K., et al., 2016. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate-Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547–556. https://doi.org/10.1016/j.jseaes.2015.11.001
    Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): PA 1003. https://doi.org/10.1029/2004pa001071
    Liu, N., Wu, K. Q., Liu, L., et al., 2020. Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin. Earth Science, 45(10): 3746–3758. https://doi.org/10.3799/dqkx.2020.079 (in Chinese with English Abstract)
    Lorenson, T. D., Collett, T. S., 2018. National Gas Hydrate Program Expedition 01 Offshore India: Gas Hydrate Systems as Revealed by Hydrocarbon Gas Geochemistry. Marine and Petroleum Geology, 92: 477–492. https://doi.org/10.1016/j.marpetgeo.2017.11.011
    Mackensen, A., 2012. Strong Thermodynamic Imprint on Recent Bottom-Water and Epibenthic δ13C in the Weddell Sea Revealed: Implications for Glacial Southern Ocean Ventilation. Earth and Planetary Science Letters, 317/318: 20–26. https://doi.org/10.1016/j.epsl.2011.11.030
    Mackensen, A., 2013. High Epibenthic Foraminiferal δ13C in the Recent Deep Arctic Ocean: Implications for Ventilation and Brine Release during Stadials. Paleoceanography, 28(3): 574–584. https://doi.org/10.1002/palo.20058
    Mackensen, A., Licari, L., 2004. Carbon Isotopes of Live Benthic Foraminifera from the South Atlantic: Sensitivity to Bottom Water Carbonate Saturation State and Organic Matter Rain Rates. In: Wefer, G., Mulitza, S., Ratmeyer, V., eds., The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg, New York. 623–644. https://doi.org/10.1007/978-3-642-18917-3_27
    Mackensen, A., Schmiedl, G., Thiele, J., et al., 2017. Microhabitat Preferences of Live Benthic Foraminifera and Stable Carbon Isotopes off SW Svalbard in the Presence of Widespread Methane Seepage. Marine Micropaleontology, 132: 1–17. https://doi.org/10.1016/j.marmicro.2017.04.004
    Mackensen, A., Wollenburg, J., Licari, L., 2006. Low δ13C in Tests of Live Epibenthic and Endobenthic Foraminifera at a Site of Active Methane Seepage. Paleoceanography, 21(2): PA2022. https://doi.org/10.1029/2005pa001196
    Martin, J. B., Day, S. A., Rathburn, A. E., et al., 2004. Relationships between the Stable Isotopic Signatures of Living and Fossil Foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4): Q04004. https://doi.org/10.1029/2003gc000629
    Martin, R. A., Nesbitt, E. A., Campbell, K. A., 2007. Carbon Stable Isotopic Composition of Benthic Foraminifera from Pliocene Cold Methane Seeps, Cascadia Accretionary Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2/3/4): 260–277. https://doi.org/10.1016/j.palaeo.2006.10.002
    Martin, R. A., Nesbitt, E. A., Campbell, K. A., 2010. The Effects of Anaerobic Methane Oxidation on Benthic Foraminiferal Assemblages and Stable Isotopes on the Hikurangi Margin of Eastern New Zealand. Marine Geology, 272(1/2/3/4): 270–284. https://doi.org/10.1016/j.margeo.2009.03.024
    Melaniuk, K., Sztybor, K., Treude, T., et al., 2022. Influence of Methane Seepage on Isotopic Signatures in Living Deep-Sea Benthic Foraminifera, 79°N. Scientific Reports, 12(1): 1169. https://doi.org/10.1038/s41598-022-05175-1
    Mestdagh, T., Poort, J., de Batist, M., 2017. The Sensitivity of Gas Hydrate Reservoirs to Climate Change: Perspectives from a New Combined Model for Permafrost-Related and Marine Settings. Earth-Science Reviews, 169: 104–131. https://doi.org/10.1016/j.earscirev.2017.04.013
    Ohkushi, K., Ahagon, N., Uchida, M., et al., 2005. Foraminiferal Isotope Anomalies from Northwestern Pacific Marginal Sediments. Geochemistry, Geophysics, Geosystems, 6(4): Q04005. https://doi.org/10.1029/2004gc000787
    Panieri, G., Camerlenghi, A., Cacho, I., et al., 2012. Tracing Seafloor Methane Emissions with Benthic Foraminifera: Results from the Ana Submarine Landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291/292/293/294: 97–112. https://doi.org/10.1016/j.margeo.2011.11.005
    Panieri, G., Graves, C. A., James, R. H., 2016. Paleo-Methane Emissions Recorded in Foraminifera near the Landward Limit of the Gas Hydrate Stability Zone Offshore Western Svalbard. Geochemistry, Geophysics, Geosystems, 17(2): 521–537. https://doi.org/10.1002/2015gc006153
    Panieri, G., James, R. H., Camerlenghi, A., et al., 2014. Record of Methane Emissions from the West Svalbard Continental Margin during the last 23.500 yrs Revealed by δ13C of Benthic Foraminifera. Global and Planetary Change, 122: 151–160.https://doi.org/10.1016/j.gloplacha. 2014.08.014 doi: 10.1016/j.gloplacha.2014.08.014
    Prakash, A., Samanta, B. G., Singh, N. P., 2013. Evidence of Gas Hydrate Accumulation and Its Resource Estimation in Andaman Deep Water Basin from Seismic and Well Log Data. Marine Geophysical Research, 34(1): 1–16. https://doi.org/10.1007/s11001-012-9163-3
    Rathburn, A. E., Levin, L. A., Held, Z., et al., 2000. Benthic Foraminifera Associated with Cold Methane Seeps on the Northern California Margin: Ecology and Stable Isotopic Composition. Marine Micropaleontology, 38(3/4): 247–266. https://doi.org/10.1016/s0377-8398(00)00005-0
    Rathburn, A. E., Pérez, M. E., Martin, J. B., et al., 2003. Relationships between the Distribution and Stable Isotopic Composition of Living Benthic Foraminifera and Cold Methane Seep Biogeochemistry in Mon-terey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12): 1106. https://doi.org/10.1029/2003gc000595
    Ravelo, A. C., Hillaire-Marcel, C., 2007. Chapter Eighteen the Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography. In: Hillaire-Marcel, C., De Vernal, A., eds., Developments in Marine Geology. Elsevier, Amsterdam. 735–764. https://doi.org/10.1016/s1572-5480(07)01023-8
    Rose, K. K., Johnson, J. E., Torres, M. E., et al., 2014. Anomalous Porosity Preservation and Preferential Accumulation of Gas Hydrate in the Andaman Accretionary Wedge, NGHP-01 Site 17A. Marine and Petroleum Geology, 58: 99–116. https://doi.org/10.1016/j.marpetgeo.2014.04.009
    Sain, K., Rajesh, V., Satyavani, N., et al., 2011. Gas-Hydrate Stability Thickness Map along the Indian Continental Margin. Marine and Petroleum Geology, 28(10): 1779–1786. https://doi.org/10.1016/j.marpetgeo.2011.03.008
    Schilman, B., Almogi-Labin, A., Bar-Matthews, M., et al., 2001. Long- and Short-Term Carbon Fluctuations in the Eastern Mediterranean during the Late Holocene. Geology, 29(12): 1099–1102.https://doi.org/10.1130/0091-7613(2001)0291099:lastcf>2.0.co;2 doi: 10.1130/0091-7613(2001)0291099:lastcf>2.0.co;2
    Schmiedl, G., Mackensen, A., 2006. Multispecies Stable Isotopes of Benthic Foraminifers Reveal Past Changes of Organic Matter Decomposition and Deepwater Oxygenation in the Arabian Sea. Paleoceanography, 21(4): PA4213. https://doi.org/10.1029/2006pa001284
    Schmiedl, G., Pfeilsticker, M., Hemleben, C., et al., 2004. Environmental and Biological Effects on the Stable Isotope Composition of Recent Deep-Sea Benthic Foraminifera from the Western Mediterranean Sea. Marine Micropaleontology, 51(1/2): 129–152. https://doi.org/10.1016/j.marmicro.2003.10.001
    Schumacher, S., Jorissen, F. J., Mackensen, A., et al., 2010. Ontogenetic Effects on Stable Carbon and Oxygen Isotopes in Tests of Live (Rose Bengal Stained) Benthic Foraminifera from the Pakistan Continental Margin. Marine Micropaleontology, 76(3/4): 92–103. https://doi.org/10.1016/j.marmicro.2010.06.002
    Schwing, P. T., Machain-Castillo, M. L., Brooks, G. R., et al., 2021. Multi-Proxy Assessment of Recent Regional-Scale Events Recorded in Southern Gulf of Mexico Sediments. Marine Geology, 434: 106434. https://doi.org/10.1016/j.margeo.2021.106434
    Scourse, J. D., Kennedy, H., Scott, G. A., et al., 2004. Stable Isotopic Analyses of Modern Benthic Foraminifera from Seasonally Stratified Shelf Seas: Disequilibria and the 'Seasonal Effect'. The Holocene, 14(5): 747–758. https://doi.org/10.1191/0959683604hl753rp
    Shankar, U., Riedel, M., 2013. Heat Flow and Gas Hydrate Saturation Estimates from Andaman Sea, India. Marine and Petroleum Geology, 43: 434–449. https://doi.org/10.1016/j.marpetgeo.2012.12.004
    Shankar, U., Sain, K., Riedel, M., 2014. Assessment of Gas Hydrate Stability Zone and Geothermal Modeling of BSR in the Andaman Sea. Journal of Asian Earth Sciences, 79: 358–365. https://doi.org/10.1016/j.jseaes.2013.10.021
    Smith, L. M., Sachs, J. P., Jennings, A. E., et al., 2001. Light δ13C Events during Deglaciation of the East Greenland Continental Shelf Attributed to Methane Release from Gas Hydrates. Geophysical Research Letters, 28(11): 2217–2220. https://doi.org/10.1029/2000gl012627
    Takata, H., Khim, B. K., Asahi, H., et al., 2021. Ecological Characteristics and Stable Isotope Compositions of Elphidium Batialis Saidova off Hidaka (Northern Japan) in the Northwestern Pacific Continental Margin. Marine Micropaleontology, 165: 101978. https://doi.org/10.1016/j.marmicro.2021.101978
    Tetard, M., Beaufort, L., Licari, L., 2017. A New Optical Method for Automated Pore Analysis on Benthic Foraminifera. Marine Micropaleontology, 136: 30–36. https://doi.org/10.1016/j.marmicro.2017.08.005
    Theodor, M., Schmiedl, G., Mackensen, A., 2016. Stable Isotope Composition of Deep-Sea Benthic Foraminifera under Contrasting Trophic Conditions in the Western Mediterranean Sea. Marine Micropaleontology, 124: 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001
    Tian, J., Ma, X. L., Zhou, J. H., et al., 2017. Subsidence of the Northern South China Sea and Formation of the Bashi Strait in the Latest Miocene: Paleoceanographic Evidences from 9-Myr High Resolution Benthic Foraminiferal δ18O and δ13C Records. Palaeogeography, Palaeo-climatology, Palaeoecology, 466: 382–391. https://doi.org/10.1016/j.palaeo.2016.11.041
    Torres, M. E., Mix, A. C., Kinports, K., et al., 2003. Is Methane Venting at the Seafloor Recorded by δ13C of Benthic Foraminifera Shells? Paleoceanography, 18(3): 1062. https://doi.org/10.1029/2002pa000824
    Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038–1057. https://doi.org/10.3799/dqkx.2020.321 (in Chinese with English Abstract)
    Wu, Y. F., Guan, H. X., Xu, L. F., et al., 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005–3015. https://doi.org/10.3799/dqkx.2021.202 (in Chinese with English Abstract)
    Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. A Record of Miocene Carbon Excursions in the South China Sea. Science in China Series D: Earth Sciences, 44(10): 943–951. https://doi.org/10.1007/bf02907087
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(202) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return