Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Guang Yang, Yiming Zhang, Xianyu Huang. Fluctuations of Water Table Level in a Subtropical Peatland, Central China. Journal of Earth Science, 2025, 36(2): 441-449. doi: 10.1007/s12583-022-1752-8
Citation: Guang Yang, Yiming Zhang, Xianyu Huang. Fluctuations of Water Table Level in a Subtropical Peatland, Central China. Journal of Earth Science, 2025, 36(2): 441-449. doi: 10.1007/s12583-022-1752-8

Fluctuations of Water Table Level in a Subtropical Peatland, Central China

doi: 10.1007/s12583-022-1752-8
More Information
  • Corresponding author: Xianyu Huang, xyhuang@cug.edu.cn
  • Received Date: 14 Jun 2022
  • Accepted Date: 14 Sep 2022
  • Issue Publish Date: 30 Apr 2025
  • Water level is the overriding control on carbon cycles in peatlands, which are important for global carbon cycles and ecosystem services. To date, our knowledge of the pattern of water level fluctuations in peatlands and the influence of precipitation and air temperature on them in the subtropical remains poor. In this study, we conducted continuous high-resolution monitoring of water levels from 2014 to 2021 in the Dajiuhu peatland, a typically subtropical peatland in central China. Monitoring results showed that the water level had strong annual (370 days) and seasonal (130 days) oscillations in the Dajiuhu peatland. The annual oscillation is associated with both precipitation and temperature, while the seasonal oscillation is mainly controlled by precipitation. In addition, the depth of peat surface to the water table (DWT) has weak but significant correlations with precipitation and temperature on the daily and weekly scales (r = 0.1–0.21, p < 0.01). Once replacing DWT with water table fluctuation cumulation, the correlation coefficients increase apparently (r = 0.47–0.69, p < 0.01), especially on the monthly scale. These findings highlight a more important role of the fluctuation than the mean position of water level and have the potential to improve the interpretation of water-level related paleoenvironmental proxies and the understanding of the relationship between water level and biogeochemical processes.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ahmad, S., Liu, H. J., Alam, S., et al., 2021. Meteorological Controls on Water Table Dynamics in Fen Peatlands Depend on Management Regimes. Frontiers in Earth Science, 9: 630469. https://doi.org/10.3389/feart.2021.630469
    Bourgault, M. A., Larocque, M., Garneau, M., 2019. How do Hydrogeological Setting and Meteorological Conditions Influence Water Table Depth and Fluctuations in Ombrotrophic Peatlands? Journal of Hydrology X, 4: 100032. https://doi.org/10.1016/j.hydroa.2019.100032
    Butler Jr, J. J., Kluitenberg, G. J., Whittemore, D. O., et al., 2007. A Field Investigation of Phreatophyte-Induced Fluctuations in the Water Table. Water Resources Research, 43(2): W02404. https://doi.org/10.1029/2005wr004627
    Chen, J., Ge, J., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082–1092 (in Chinese with English Abstract)
    Ding, Y. H., Liu, Y. Y., Hu, Z. Z., 2021. The Record-Breaking Mei-Yu in 2020 and Associated Atmospheric Circulation and Tropical SST Anomalies. Advances in Atmospheric Sciences, 38(12): 1980–1993. https://doi.org/10.1007/s00376-021-0361-2
    Ding, Y. H., Sun, Y., Wang, Z. Y., et al., 2009. Inter-Decadal Variation of the Summer Precipitation in China and Its Association with Decreasing Asian Summer Monsoon Part Ⅱ: Possible Causes. International Journal of Climatology, 29(13): 1926–1944. https://doi.org/10.1002/joc.1759
    Dymond, S. F., D'Amato, A. W., Kolka, R. K., et al., 2019. Climatic Controls on Peatland Black Spruce Growth in Relation to Water Table Variation and Precipitation. Ecohydrology, 12(7): e2137. https://doi.org/10.1002/eco.2137
    Evans, C., Morrison, R., Burden, A., et al., 2016. Final Report on Project SP1210: Lowland Peatland Systems in England and Wales―Evaluating Greenhouse Gas Fluxes and Carbon Balances. Centre for Ecology and Hydrology. 170 http://oro.open.ac.uk/50635/
    Freeman, C., Ostle, N., Kang, H., 2001. An Enzymic 'Latch' on a Global Carbon Store. Nature, 409(6817): 149. https://doi.org/10.1038/35051650
    Gogo, S., Paroissien, J. B., Laggoun-Défarge, F., et al., 2021. The Information System of the French Peatland Observation Service: Service National d'Observation Tourbières―A Valuable Tool to Assess the Impact of Global Changes on the Hydrology and Biogeochemistry of Temperate Peatlands through Long Term Monitoring. Hydrological Processes, 35(6): e14244. https://doi.org/10.1002/hyp.14244
    Gribovszki, Z., Szilágyi, J., Kalicz, P., 2010. Diurnal Fluctuations in Shallow Groundwater Levels and Streamflow Rates and Their Interpretation―A Review. Journal of Hydrology, 385(1/2/3/4): 371–383. https://doi.org/10.1016/j.jhydrol.2010.02.001
    Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026–1038 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706012.htm
    Imran, Y., Melling, L., Wong, G. X., et al., 2022. Long Term Dynamics of Surface Fluctuation in a Peat Swamp Forest in Sarawak, Malaysia. Environmental Research Communications, 4(4): 041001. https://doi.org/10.1088/2515-7620/ac6295
    Ingram, H. A. P., 1978. Soil Layers in Mires: Function and Terminology. Journal of Soil Science, 29(2): 224–227. https://doi.org/10.1111/j.1365-2389.1978.tb02053.x
    Kim, J., Rochefort, L., Hogue-Hugron, S., et al., 2021. Water Table Fluctuation in Peatlands Facilitates Fungal Proliferation, Impedes Sphagnum Growth and Accelerates Decomposition. Frontiers in Earth Science, 8: 579329. https://doi.org/10.3389/feart.2020.579329
    Lai, D. Y. F., 2009. Methane Dynamics in Northern Peatlands: A Review. Pedosphere, 19(4): 409–421. https://doi.org/10.1016/s1002-0160(09)00003-4
    Lau, K. M., Peng, L., 1987. Origin of Low-Frequency (Intraseasonal) Oscillations in the Tropical Atmosphere. Part Ⅰ: Basic Theory. Journal of the Atmospheric Sciences, 44(6): 950–972. https://doi.org/10.1175/1520-0469(1987)0440950:oolfoi>2.0.co;2 doi: 10.1175/1520-0469(1987)0440950:oolfoi>2.0.co;2
    Li, M. S., Hinnov, L., Kump, L., 2019. Acycle: Time-Series Analysis Software for Paleoclimate Research and Education. Computers & Geosciences, 127: 12–22. https://doi.org/10.1016/j.cageo.2019.02.011
    Li, Y., Ge, J., Peng, F., et al., 2017. Characteristics of Methane Flux and Their Effect Factors on Dajiuhu Peatland of Shennongjia. Earth Science, 42(5): 832–842 (in Chinese with English Abstract)
    Li, Y., Ge, J., Weng, W., et al., 2019. Stoichiometry Ratio of CO2 and CH4 Emissions in Dajiuhu Peat Wetland of Shennongjia. Safety and Environmental Engineering, 26: 21–28 (in Chinese with English Abstract)
    Li, Z. W., Gao, P., 2020. Characterizing Spatially Variable Water Table Depths in a Disturbed Zoige Peatland Watershed. Journal of Hydro-Environment Research, 29: 70–79. https://doi.org/10.1016/j.jher.2020.01.004
    Liang, Y., Du, Y., 2022. Oceanic Impacts on 50–80-Day Intraseasonal Oscillation in the Eastern Tropical Indian Ocean. Climate Dynamics, 59(5/6): 1283–1296. https://doi.org/10.1007/s00382-021-06041-y
    Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications―A Synthesis. Biogeosciences, 5(5): 1475–1491. https://doi.org/10.5194/bg-5-1475-2008
    Luo, T., Lun, Z., Gu, Y., 2015. Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shennongjia Area. Wetland Science, 13(2): 153–160 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXSD201502003.htm
    Mao, J. Y., Chan, J. C. L., 2005. Intraseasonal Variability of the South China Sea Summer Monsoon. Journal of Climate, 18(13): 2388–2402. https://doi.org/10.1175/jcli3395.1
    Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41: 35–57. https://doi.org/10.1146/annurev-environ-110615-085520
    Rossita, A., Witono, A., Darusman, T., et al., 2018. Water Table Depth Fluctuations during ENSO Phenomenon on Different Tropical Peat Swamp Forest Land Covers in Katingan, Indonesia. IOP Conference Series: Earth and Environmental Science, 129: 012001. https://doi.org/10.1088/1755-1315/129/1/012001
    Rühle, F. A., von Netzer, F., Lueders, T., et al., 2015. Response of Transport Parameters and Sediment Microbiota to Water Table Fluctuations in Laboratory Columns. Vadose Zone Journal, 14(5): 1–12. https://doi.org/10.2136/vzj2014.09.0116
    Salimi, S., Almuktar, S. A. A. A. N., Scholz, M., 2021. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environmental Management, 286: 112160. https://doi.org/10.1016/j.jenvman.2021.112160
    Smiljanić, M., Seo, J. W., Läänelaid, A., et al., 2014. Peatland Pines as a Proxy for Water Table Fluctuations: Disentangling Tree Growth, Hydrology and Possible Human Influence. Science of the Total Environment, 500/501: 52–63. https://doi.org/10.1016/j.scitotenv.2014.08.056
    Tong, M. J., Zheng, Z. H., Fu, Q., 2021. Characteristics of Meiyu Seen from Multiple Observational Analyses and Reanalyses. Earth and Space Science, 8(4): e2021EA001647. https://doi.org/10.1029/2021ea001647
    Wang, X., 2020. Wetland Resource and Environment Management in Dajiuhu, Shennongjia. Hubei Science and Technology Press, Wuhan (in Chinese)
    Wilmoth, J. L., Schaefer, J. K., Schlesinger, D. R., et al., 2021. The Role of Oxygen in Stimulating Methane Production in Wetlands. Global Change Biology, 27(22): 5831–5847. https://doi.org/10.1111/gcb.15831
    Xu, J. R., Morris, P. J., Liu, J. G., et al., 2018. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA, 160: 134–140. https://doi.org/10.1016/j.catena.2017.09.010
    Yan, C. Y., Zhang, Y. M., Zhang, Y. Z., et al., 2020. Habitat Influence on the Molecular, Carbon and Hydrogen Isotope Compositions of Leaf Wax N-Alkanes in a Subalpine Basin, Central China. Journal of Earth Science, 31(4): 845–852. https://doi.org/10.1007/s12583-020-1322-x
    Yu, Z. C., 2011. Holocene Carbon Flux Histories of the World's Peatlands. The Holocene, 21(5): 761–774. https://doi.org/10.1177/0959683610386982
    Zhang, C., Wang, Z. Y., Zhou, B. T., et al., 2019. Trends in Autumn Rain of West China from 1961 to 2014. Theoretical and Applied Climatology, 135(1/2): 533–544. https://doi.org/10.1007/s00704-017-2361-9
    Zhang, M., Huang, X., Chen, X., 2021. Distribution Patterns and Controlling Factors of Peatlands in Subtropical Mountainous Areas of China. Wetland Science, 19(6): 753–761 (in Chinese with English Abstract)
    Zhang, Y. M., Huang, X. Y., Zhang, Z. Q., et al., 2022. Spatiotemporal Dynamics of Dissolved Organic Carbon in a Subtropical Wetland and Their Implications for Methane Emissions. Geoderma, 419: 115876. https://doi.org/10.1016/j.geoderma.2022.115876
    Zhao, B. Y., Zhang, Y. M., Huang, X. Y., et al., 2018. Comparison of N-Alkane Molecular, Carbon and Hydrogen Isotope Compositions of Different Types of Plants in the Dajiuhu Peatland, Central China. Organic Geochemistry, 124: 1–11. https://doi.org/10.1016/j.orggeochem.2018.07.008
    Zhao, K., Sun, G., Yang, Y., et al., 1999. Mires in China. Science Press, Beijing. 559–562 (in Chinese)
    Zhong, Y. H., Jiang, M., Middleton, B. A., 2020. Effects of Water Level Alteration on Carbon Cycling in Peatlands. Ecosystem Health and Sustainability, 6(1): 1806113. https://doi.org/10.1080/20964129.2020.1806113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(11) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return