Citation: | Ya Qin, Zuohai Feng, Jiaming Zhu, Yonggao Huang, Jie Wu, Yun Zhou, Yunfeng Xue, Chunzeng Wang. Southwest Boundary of Yangtze and Cathaysia Blocks: Constraints from the Luojiashan Gabbro in Yingyangguan Region, Northeastern Guangxi. Journal of Earth Science, 2024, 35(5): 1447-1463. doi: 10.1007/s12583-022-1754-6 |
The Luojiashan gabbro is a newly discovered mafic pluton emplaced in the Neoproterozoic Yingyangguan Formation in Yingyangguan region of northeastern Guangxi, South China. Comprehensive whole-rock geochemical and zircon geochronological and Hf isotopic analyses are performed on the gabbro and comparisons are made with the coeval mafic-ultramafic sills and dikes located in Longsheng region of northern Guangxi in order to understand the magmatic origin, evolution, and tectonic setting of the Luojiashan gabbro and to address the location of the suture zone of the Southwestern Jiangnan Orogen (SJO). LA-ICP-MS zircon U-Pb ages obtained from the Luojiashan gabbro show that it was emplaced at ~770 Ma. The gabbro contains abundant inherited zircons aged at 0.9–1.3 Ga, consistent with age spectrum of the Cathaysia Block. Chondrite-normalized REE pattern, primitive mantle-normalized trace element spider diagram, incompatible element ratios of Nb/Ta, Zr/Hf, La/Nb, Ba/Th, Th/La, and Ba/La, and Th/Yb-Ta/Yb discrimination diagram of the gabbro are indicative of OIB-like geochemical characteristics and of derivation from partially melted garnet peridotite of the asthenospheric mantle. Tectonic discrimination based on the trace and rare earth elements also indicate that the Luojiashan gabbro was emplaced in a within-plate extensional rift setting, probably as a result of Rodinia supercontinent dismantling, lithospheric thinning, and underplating and upwelling of the asthenospheric mantle. Based on zircon age, Hf isotopic data and comparison between northern and northeastern Guangxi, it is suggested that the Yingyangguan region was tectonically situated in a different tectonic locale from the Longsheng region of northern Guangxi at about 770 Ma during the post-orogenic mafic-ultramafic magmatic event, with the former within the Cathaysia Block and the latter along the southeast margin of Yangtze Block. The suture between the Yangtze and Cathaysia blocks must be located between Yingyangguan of northeastern Guangxi and Longsheng of northern Guangxi.
Bai, J. H., Ling, M. X., Yang, X. Y., et al., 2022. Yangshan A-Type Granites in the Lower Yangtze River Belt Formed by Ridge Subduction: Radiogenic Ca and Nd Isotopic Constraints. Journal of Earth Science, 33(3): 581–590. https://doi.org/10.1007/s12583-021-1588-7 |
Chen, L. Y., Zhang, Z. W., 2003. Discussion on the Boundary between Caledonian Yangtze Plate and Nanhua Active Belt in Guangxi. Southern Land and Resources, 18: 18–19 (in Chinese with English Abstract) |
Chen, M. H., Liang, J. C., Zhang, G. L., et al., 2006. Lithofacies Paleogeographic Constraints of Southwestern Boundary Between Yangtze and Cathaysian Plates in Caledonian. Geological Journal of China Universities, 12(1): 111–122 (in Chinese with English Abstract) doi: 10.3969/j.issn.1006-7493.2006.01.013 |
Chen, X., Wang, X. L., Wang, D., et al., 2018. Contrasting Mantle-Crust Melting Processes within Orogenic Belts: Implications from Two Episodes of Mafic Magmatism in the Western Segment of the Neoproterozoic Jiangnan Orogen in South China. Precambrian Research, 309: 123–137. https://doi.org/10.1016/j.precamres.2017.04.001 |
Cheng, Y. Q., 1994. Introduction to Regional Geology in China. Geological Publishing House, Beijing (in Chinese) |
Chung, S. L., Jahn, B. M., 1995. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian–Triassic Boundary. Geology, 23(10): 889. https://doi.org/10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 |
Condie, K. C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1–28. https://doi.org/10.1029/2002gc000333 |
Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4): 753–771 (in Chinese with English Abstract) |
Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112–118 (in Chinese with English Abstract) doi: 10.3321/j.issn:0563-5020.2001.01.013 |
Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2018. Zircon U-Pb Dating, Hf Isotopic and Geochemical Characteristics of Two Suites of Gabbros in the Beidashan Region, Western Alxa Block: Its Implications for Evolution of the Central Asian Orogenic Belt. Acta Geologica Sinica, 92(7): 1369–1388 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2018.07.003 |
Guo, L. Z., Lu, H. X., Shi, Y. S., et al., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1–13 (in Chinese with English Abstract) |
Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062 |
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0 |
Hong, D. W., Xie, X. L., Zhang, J. S., 2002. Geological Significance of the Hangzhou-Zhuguangshan-Huashan High εNd Granite Belt. Geological Bulletin of China, 21(6): 348–354 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2002.06.012 |
Huang, D. L., Wang, X. L., Xia, X. P., et al., 2019. Neoproterozoic Low-δ18O Zircons Revisited: Implications for Rodinia Configuration. Geophysical Research Letters, 46(2): 678–688. https://doi.org/10.1029/2018gl081117 |
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1 |
Kou, C. H., Liu, Y. X., Huang, H., et al., 2018. The Neoproterozoic Arc-Type and OIB-Type Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Implications for Tectonic Settings. Lithos, 312/313: 38–56. https://doi.org/10.1016/j.lithos.2018.05.004 |
Kou, C. H., Liu, Y. X., Li, T. D., et al., 2016. Geochronology and Geochemistry of Neoproterozoic Ultrabasic Rocks in the Western Segment of Jiangnan Orogenic Belt and Constraints on Their Sources. Acta Petrologica et Mineralogica, 35(6): 947–964 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-6524.2016.06.003 |
Lassiter, J., DePaolo, D., 2013. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. Geophysical Monograph, 100: 335–355. https://doi.org/10.1029/gm100p0335 |
Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1/2): 43–57. https://doi.org/10.1016/s0301-9268(99)00020-0 |
Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543–559 (in Chinese with English Abstract) doi: 10.3969/j.issn.1007-2802.2012.06.002 |
Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218 |
Liang, W. B., Guo, R. Q., Liu, G. P., et al., 2019. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Olivine Gabbro Dike in the Western Segment of Kuruktag, Xinjiang and Its Tectonic Significance. Geological Science and Technology Information, 38(1): 58–67 (in Chinese with English Abstract) |
Lin, M. S., Peng, S. B., Jiang, X. F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338–356. https://doi.org/10.1016/j.gr.2015.05.015 |
Liu, B. J., Xu, X. S., Pan, Y. N., et al., 1993. Sedimentary Crust Evolution and Mineralization of Ancient Continent in South China. Science Press, Beijing (in Chinese) |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. Z., Qin, Y., Feng, Z. H., et al., 2021. New Geochronological and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implications in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1–18. https://doi.org/10.1007/s12517-020-06360-0 |
Lu, Y. F., 2004. Geokit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33 (5): 459–464 doi: 10.3321/j.issn:0379-1726.2004.05.004 |
Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3.00, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, 4: 1–72 |
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-1bZr-1bY Diagram. Chemical Geology, 56(3/4): 207–218. https://doi.org/10.1016/0009-2541(86)90004-5 |
Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. https://doi.org/10.1016/0012-821x(73)90129-5 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 |
Piazolo, S., Belousova, E., la Fontaine, A., et al., 2017. Trace Element Homogeneity from Micron- to Atomic Scale: Implication for the Suitability of the Zircon GJ-1 as a Trace Element Reference Material. Chemical Geology, 456: 10–18. https://doi.org/10.1016/j.chemgeo.2017.03.001 |
Qi, L., Xu, Y. J., Cawood, P. A., et al., 2021. Implications for Supercontinent Reconstructions of Mid-Late Neoproterozoic Volcanic-Sedimentary Rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056. https://doi.org/10.1016/j.precamres.2020.106056 |
Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283–292 (in Chinese with English Abstract) |
Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significance. Earth Science, 46(11): 4017–4032 (in Chinese with English Abstract) |
Qin, Y., Yang, J. R., Feng, Z. H., et al., 2022. Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance. Earth Science, 49(3): 803–821 (in Chinese with English Abstract) |
Ren, J. S., Jiang, C. F., Zhang, Z. K., et al., 1980. Geotectonic Evolution of China. Science Press, Beijing (in Chinese) |
Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035–1053 doi: 10.3969/j.issn.1671-2552.2012.07.003 |
Sobolev, A. V., Nikogosian, I. K., 1994. Petrology of Long-Lived Mantle Plume Magmatism: Hawaii, Pacific and Reunion Island, Indian Ocean. Petrology, 2(2): 111–144 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London |
Tian, Y., Wang, W., Wang, L. Z., et al., 2020. Age and Petrogenesis of the Yingyangguan Volcanic Rocks: Implications on Constraining the Boundary between Yangtze and Cathaysia Blocks, South China. Lithos, 376/377: 105775. https://doi.org/10.1016/j.lithos.2020.105775 |
Wang, H. Z., Yang, W. R., Liu, B. P., 1986. Tectonic History of the Ancient Continental Margins of South China. Wuhan Institute of Geology Press, Wuhan (in Chinese) |
Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Journal of Mineralogy and Petrology, 21(3): 135–145 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-6872.2001.03.021 |
Wang, L. J., Yu, J. H., O'Reilly, S. Y., et al., 2008. There May be Grenville Orogeny in Southern China: Zircon U-Pb Dating and Lu-Hf Isotopic Information from Basement Metamorphic Rocks. China Science Bulletin, 53(14): 1680–1692 (in Chinese) doi: 10.1360/csb2008-53-14-1680 |
Wang, L. Z., Tian, Y., Li, X., et al., 2020. Composition and Deformation of the Yingyangguan Tectonic Melange in Eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340–356 (in Chinese with English Abstract) |
Wang, L. Z., Tu, B., Tian, Y., et al., 2019. New Progress in 1 : 50 000 Regional Geological and Mineral Survey in Yingyangguan Area, Eastern Guangxi. Geology and Mineral Resources of South China, 35(3): 283–292 (in Chinese with English Abstract) doi: 10.3969/j.issn.1007-3701.2019.03.001 |
Wang, P. M., Yu, J. H., Sun, T., et al., 2013. Composition Variations of the Sinian–Cambrian Sedimentary Rocks in Hunan and Guangxi Provinces and Their Tectonic Significance. Science China Earth Sciences, 56(11): 1899–1917. https://doi.org/10.1007/s11430-013-4634-1 |
Wang, X. C., Li, X. H., Li, W. X., et al., 2009. Variable Involvements of Mantle Plumes in the Genesis of Mid-Neoproterozoic Basaltic Rocks in South China: A Review. Gondwana Research, 15(3/4): 381–395. https://doi.org/10.1016/j.gr.2008.08.003 |
Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca. 800–760 Ma Volcanic Rocks. Precambrian Research, 222/223: 404–423. https://doi.org/10.1016/j.precamres.2011.07.003 |
Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154–171. https://doi.org/10.1016/j.precamres.2013.12.023 |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1/2): 79–103. https://doi.org/10.1016/j.precamres.2004.07.006 |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2008. Geochronology and Geochemistry of Neoproterozoic Mafic Rocks from Western Hunan, South China: Implications for Petrogenesis and Post-Orogenic Extension. Geological Magazine, 145(2): 215–233. https://doi.org/10.1017/s0016756807004025 |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2003. Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenetic Significances. Acta Petrologica Sinica, 19(1): 49–60 (in Chinese with English Abstract) |
Wang, Y. D., Yu, J. H., Li, X. L., et al., 2021. Western Boundary Between the Yangtze and Cathaysia Blocks Constrained by Neoproterozoic to Cambrian Sedimentary Rocks in the Northern and Eastern Guangxi Province, South China. Acta Geologica Sinica, 95(6): 1712–1726 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2021.06.004 |
Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381–397. https://doi.org/10.1016/0012-821x(91)90217-6 |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Wood, D. A., 1980. The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821x(80)90116-8 |
Woodhead, J. D., Hergt, J. M., 2005. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in situ Hf Isotope Determination. Geostandards and Geoanalytical Research, 29(2): 183–195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x |
Wu, G. Y., 2000. Grenville Orogens in South China and Their Collapse: Implications for Evolution of the Supercontinent Rodinia. Geotectonica et Metallogenia, 24(2): 112–123 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-1552.2000.02.003 |
Xu, X. S., Liu, W., Men, Y. P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890–1904 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2012.12.003 |
Yang, C., Li, X. H., Wang, X. C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited: Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266: 165–178. https://doi.org/10.1016/j.precamres.2015.05.016 |
Yin, F. G., Wan, F., Chen, M., 2003. The Multi-Arc Basin System on the South-Eastern Margin of the Pan-Cathaysian Continental Group. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 126–131 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-9727.2003.02.003 |
Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1–12 (in Chinese with English Abstract) |
Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1/2/3/4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016 |
Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2007. Discovery of Ancient Materials in Cathaysian Massif and Formation of Precambrian Crust. China Science Bulletin, 52 (1): 11–18 (in Chinese) doi: 10.1360/csb2007-52-1-11 |
Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2007. Finding of Ancient Materials in Cathaysia and Implication for the Formation of Precambrian Crust. Science Bulletin, 52(1): 13–22. https://doi.org/10.1007/s11434-007-0008-4 |
Zhang, C. J., Wang, Y. L., Hou, Z. Q., 1999. Th, Ta and Hf Characteristics and the Tectonic Setting of Magmatic Source Region of Emeishan Basalts. Geological Review, 45(Supp.): 858–860 (in Chinese with English Abstract) |
Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 43(10): 1553–1582 (in Chinese with English Abstract) |
Zhang, S. B., Zheng, Y. F., 2013. Time and Space of Neoproterozoic Low δ18O Magmatic Rocks in South China. China Science Bulletin, 58(23): 2344–2350 (in Chinese with English Abstract) doi: 10.1360/972013-655 |
Zhang, Z. C., Kang, J. L., Kusky, T., et al., 2012. Geochronology, Geochemistry and Petrogenesis of the Onset of Rodinia Supercontinent Breakup. Precambrian Research, 220–221: 158–176 |
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299–302. https://doi.org/10.1130/g31701.1 |
Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(Supp.): 22–25 (in Chinese with English Abstract) |
Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Age and Origin of Middle Neoproterozoic Mafic Magmatism in Southern Yangtze Block and Relevance to the Break-up of Rodinia. Gondwana Research, 12(1/2): 184–197. https://doi.org/10.1016/j.gr.2006.10.011 |
Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2003. Lithogeochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrological Sinica, 19(1): 9–18 (in Chinese with English Abstract) |
Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2): 286–300. https://doi.org/10.1016/j.epsl.2006.05.032 |
Zhou, X. J., Yang, F., 2007. Tectonic Evolution and Prototypes Analysis from Neoproterozoic to Early Paleozoic in South China. Petroleum Geology & Experiment, 29 (5): 446–451 (in Chinese with English Abstract) |
Zhou, X. Y., 2018. Compositions of the Neoproterozoic to Early Paleozoic Basement Rocks and Its Tectonic Significance: [Dissertation]. Nanjing University, Nanjing (in Chinese) |