Citation: | Xueyan Yan, Xianzhong Ke, Qinghua Li, Yiqun Gan, Xianjun Xie, Yamin Deng. Evolution of the Mangrove Wetland since the Holocene: Current Progress and Future Perspectives. Journal of Earth Science, 2024, 35(5): 1669-1678. doi: 10.1007/s12583-022-1756-4 |
Mangrove wetlands are among the four most productive tropical and subtropical ecosystems. They are also a core component of the coastal blue carbon ecosystem, which is of great ecological significance to human beings, plants, animals, and the global carbon balance. There has been a global decrease in the distribution of mangrove forests, and their ecological function has gradually degenerated since the Holocene. Sediment from coastal mangrove wetlands can provide records of climate change and human activities, and multiple proxies including palynology, leaf fossil, biomarkers, DNA, phytolith and stable isotopes, can be used to reconstruct the evolutionary stages of paleo-mangroves and to identify the effect of natural processes and human activities on the distribution and evolution of mangroves. This information can provide theoretical support for mangrove protection and for improving carbon sequestration capacity. This paper summarizes and compares the multiple proxies for mangrove reconstruction, reviews progress in the study of natural succession of global mangroves since the Holocene, expands on the influence mechanisms of human activities on mangrove growth and development and uses past information to lay a foundation for a model to predict future mangrove development.
Alongi, D. M., 2015. The Impact of Climate Change on Mangrove Forests. Current Climate Change Reports, 1(1): 30–39. https://doi.org/10.1007/s40641-015-0002-x |
Alongi, D. M., 2012. Carbon Sequestration in Mangrove Forests. Carbon Management, 3(3): 313–322. https://doi.org/10.4155/cmt.12.20 |
Angeli, J. L. F., Rubio, B., Kim, B. S. M., et al., 2019. Environmental Changes Reflected by Sedimentary Geochemistry for the Last One Hundred Years of a Tropical Estuary. Journal of Marine Systems, 189: 36–49. https://doi.org/10.1016/j.jmarsys.2018.09.004 |
Attenbrow, V., 2012. Holocene Vegetation History in the NSW Central Coast of Australia: Phytolith Analysis from Mussel Shelter, Upper Mangrove Creek. Quaternary International, 279/280: 27. https://doi.org/10.1016/j.quaint.2012.07.116 |
Bozi, B. S., Figueiredo, B. L., Rodrigues, E., et al., 2021. Impacts of Sea-Level Changes on Mangroves from Southeastern Brazil during the Holocene and Anthropocene Using a Multi-Proxy Approach. Geomorphology, 390: 107860. https://doi.org/10.1016/j.geomorph.2021.107860 |
Bremond, L., Favier, C., Ficetola, G. F., et al., 2017. Five Thousand Years of Tropical Lake Sediment DNA Records from Benin. Quaternary Science Reviews, 170: 203–211. https://doi.org/10.1016/j.quascirev.2017.06.025 |
Carreira, R. S., Cordeiro, L. G. M. S., Bernardes, M. C., et al., 2016. Distribution and Characterization of Organic Matter Using Lipid Biomarkers: A Case Study in a Pristine Tropical Bay in NE Brazil. Estuarine, Coastal and Shelf Science, 168: 1–9. https://doi.org/10.1016/j.ecss.2015.11.007 |
Castañeda-Posadas, C., Correa-Metrio, A., Escobar, J., et al., 2022. Mid to Late Holocene Sea-level Rise and Precipitation Variability Recorded in the Fringe Mangroves of the Caribbean Coast of Panama. Palaeogeography, Palaeoclimatology, Palaeoecology, 592: 110918. https://doi: 10.1016/j.palaeo.2022.110918 |
Chu, M. F., Sachs, J. P., Zhang, H. L., et al., 2020. Spatiotemporal Variations of Organic Matter Sources in Two Mangrove-Fringed Estuaries in Hainan, China. Organic Geochemistry, 147: 104066. https://doi.org/10.1016/j.orggeochem.2020.104066 |
Clarke, C. L., Alsos, I. G., Edwards, M. E., et al., 2020. A 24000-Year Ancient DNA and Pollen Record from the Polar Urals Reveals Temporal Dynamics of Arctic and Boreal Plant Communities. Quaternary Science Reviews, 247: 106564. https://doi.org/10.1016/j.quascirev.2020.106564 |
Cohen, M. C. L., Figueiredo, B. L., Oliveira, N. N., et al., 2020. Impacts of Holocene and Modern Sea-Level Changes on Estuarine Mangroves from Northeastern Brazil. Earth Surface Processes and Landforms, 45(2): 375–392. https://doi.org/10.1002/esp.4737 |
Cohen, M. C. L., Guimarães, J. T. F., França, M., et al., 2009. Tannin as an Indicator of Paleomangrove in Sediment Cores from Amapá, Northern Brazil. Wetlands Ecology and Management, 17(2): 145–155. https://doi.org/10.1007/s11273-008-9100-z |
Collins, D. S., Nguyen, V. L., Ta, T. K. O., et al., 2021. Sedimentary Evolution of a Delta-Margin Mangrove in Can Gio, Northeastern Mekong River Delta, Vietnam. Marine Geology, 433: 106417. https://doi.org/10.1016/j.margeo.2020.106417 |
Cordero-Oviedo, C., Correa-Metrio, A., Urrego, L. E., et al., 2019. Holocene Establishment of Mangrove Forests in the Western Coast of the Gulf of Mexico. CATENA, 180: 212–223. https://doi.org/10.1016/j.catena.2019.04.025 |
Crutzen, P. J., 2021. Geology of Mankind (2002). In: Benner, S., Lax, G., Crutzen, P. J., et al., eds., Paul J. Crutzen and the Anthropocene: A New Epoch in Earth's History. Springer International Publishing, Cham, 23–25. |
Das, S., Ghosh, R., Paruya, D. K., et al., 2014. Phytolith Spectra in Respiratory Aerial Roots of some Mangrove Plants of the Indian Sunderbans and Its Efficacy in Ancient Deltaic Environment Reconstruction. Quaternary International, 325: 179–196. https://doi.org/10.1016/j.quaint.2013.11.025 |
de Moraes, C. A., da Costa, M. L., Guida Navarro, A., et al., 2021. Holocene Coastal Environmental Changes Inferred by Multi-Proxy Analysis from Lago Formoso Sediments in Maranhão State, Northeastern Brazil. Quaternary Science Reviews, 273: 107234. https://doi.org/10.1016/j.quascirev.2021.107234 |
Decker, V., Falkenroth, M., Lindauer, S., et al., 2021. Collapse of Holocene Mangrove Ecosystems along the Coastline of Oman. Quaternary Research, 100: 52–76. https://doi.org/10.1017/qua.2020.96 |
Dittmar, T., Hertkorn, N., Kattner, G., et al., 2006. Mangroves, a Major Source of Dissolved Organic Carbon to the Oceans. Global Biogeochemical Cycles, 20(1): GB1012. https://doi.org/10.1029/2005gb002570 |
Duke, N. C., Meynecke, J. O., Dittmann, S., et al., 2007. A World without Mangroves? Science, 317(5834): 41–42. https://doi.org/10.1126/science.317.5834.41b |
Ellison, J. C., 2008. Long-Term Retrospection on Mangrove Development Using Sediment Cores and Pollen Analysis: A Review. Aquatic Botany, 89(2): 93–104. https://doi.org/10.1016/j.aquabot.2008.02.007 |
Englong, A., Punwong, P., Selby, K., et al., 2019. Mangrove Dynamics and Environmental Changes on Koh Chang, Thailand during the Last Millennium. Quaternary International, 500: 128–138. https://doi.org/10.1016/j.quaint.2019.05.011 |
Etemadi, H., Smoak, J. M., Abbasi, E., 2021. Spatiotemporal Pattern of Degradation in Arid Mangrove Forests of the Northern Persian Gulf. Oceanologia, 63(1): 99–114. https://doi.org/10.1016/j.oceano.2020.10.003 |
Fan, H. Q., Lu, L., Yan, B., 2018. Evolution History and Research Processes of Guangxi Mangroves. Guangxi Sciences, 25(4): 343–351, 449 (in Chinese with English Abstract) |
Feng, X. J., Wang, Y. Y., Liu, T., et al., 2020. Biomarkers and Their Applications in Ecosystem Research. Chinese Journal of Plant Ecology, 44: 384–394 (in Chinese with English Abstract) doi: 10.17521/cjpe.2019.0139 |
Figueiredo, B. L., Alves, I. C. C., Cohen, M. C. L., et al., 2021. Climate, Sea-Level, and Anthropogenic Influences on Coastal Vegetation of the Southern Bahia, Northeastern Brazil, during the Mid-Late Holocene. Geomorphology, 394: 107967. https://doi.org/10.1016/j.geomorph.2021.107967 |
França, M. C., Alves, I. C. C., Castro, D. F., et al., 2015. A Multi-Proxy Evidence for the Transition from Estuarine Mangroves to Deltaic Freshwater Marshes, Southeastern Brazil, Due to Climatic and Sea-Level Changes during the Late Holocene. CATENA, 128: 155–166. https://doi.org/10.1016/j.catena.2015.02.005 |
França, M. C., Cohen, M. C. L., Pessenda, L. C. R., et al., 2013. Mangrove Vegetation Changes on Holocene Terraces of the Doce River, Southeastern Brazil. CATENA, 110: 59–69. https://doi.org/10.1016/j.catena.2013.06.011 |
França, M. C., Cohen, M. C., Pessenda, L. C., et al., 2019. Tannin as a New Indicator of Paleomangrove Occurrence within an Amazonian Coastal Region. Journal of Coastal Research, 35(1): 82. https://doi.org/10.2112/jcoastres-d-17-00023.1 |
Friess, D. A., Rogers, K., Lovelock, C. E., et al., 2019. The State of the World's Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44: 89–115. https://doi.org/10.1146/annurev-environ-101718-033302 |
Gao, Y., Yu, G. R., Yang, T. T., et al., 2016. New Insight into Global Blue Carbon Estimation under Human Activity in Land-Sea Interaction Area: A Case Study of China. Earth-Science Reviews, 159: 36–46. https://doi.org/10.1016/j.earscirev.2016.05.003 |
Giri, C., 2021. Recent Advancement in Mangrove Forests Mapping and Monitoring of the World Using Earth Observation Satellite Data. Remote Sensing, 13(4): 563. https://doi.org/10.3390/rs13040563 |
González-Farias, F., Mee, L. D., 1988. Effect of Mangrove Humic-Like Substances on Biodegradation Rate of Detritus. Journal of Experimental Marine Biology and Ecology, 119(1): 1–13. https://doi.org/10.1016/0022-0981(88)90148-7 |
Gugerli, F., Parducci, L., Petit, R. J., 2005. Ancient Plant DNA: Review and Prospects. New Phytol, 166(2): 409–418. https://doi.org/10.1111/j.1469-8137.2005.01360.x |
Guo, Y., Liao, J., Shen, G., 2021. Mapping Large-Scale Mangroves along the Maritime Silk Road from 1990 to 2015 Using a Novel Deep Learning Model and Landsat Data. Remote Sensing, 13(2): 245. https://www.mdpi.com/2072-4292/13/2/245 doi: 10.3390/rs13020245 |
Hamilton, S., 2013. Assessing the Role of Commercial Aquaculture in Displacing Mangrove Forest. Bulletin of Marine Science, 89(2): 585–601. https://doi.org/10.5343/bms.2012.1069 |
He, D., Simoneit, B. R. T., Cloutier, J. B., et al., 2018. Early Diagenesis of Triterpenoids Derived from Mangroves in a Subtropical Estuary. Organic Geochemistry, 125: 196–211. https://doi.org/10.1016/j.orggeochem.2018.09.005 |
Herbeck, L. S., Krumme, U., Andersen, T. J., et al., 2020. Decadal Trends in Mangrove and Pond Aquaculture Cover on Hainan (China) since 1966: Mangrove Loss, Fragmentation and Associated Biogeochemical Changes. Estuarine, Coastal and Shelf Science, 233: 106531. https://doi.org/10.1016/j.ecss.2019.106531 |
Hernes, P. J., Benner, R., Cowie, G. L., et al., 2001. Tannin Diagenesis in Mangrove Leaves from a Tropical Estuary: A Novel Molecular Approach. Geochimica et Cosmochimica Acta, 65(18): 3109–3122. https://doi.org/10.1016/s0016-7037(01)00641-x |
Horton, B. P., Gibbard, P. L., Mine, G. M., et al., 2005. Holocene Sea Levels and Palaeoenvironments, Malay-Thai Peninsula, Southeast Asia. The Holocene, 15(8): 1199–1213. https://doi.org/10.1191/0959683605hl891rp |
Hou, W. H., Dong, H. L., Jiang, H. C., et al., 2017. Applications of Ancient DNA Preserved in Sediment in Paleo-Ecology, Paleo-Environment and Paleo-Climate Studies. Earth Science Frontiers, 24(2): 286–291 (in Chinese with English Abstract) |
Jones, M. C., Wingard, G. L., Stackhouse, B., et al., 2019. Rapid Inundation of Southern Florida Coastline Despite Low Relative Sea-Level Rise Rates during the Late-Holocene. Nature Communications, 10: 3231. https://doi.org/10.1038/s41467-019-11138-4 |
Karkanas, P., 2010. Preservation of Anthropogenic Materials under Different Geochemical Processes: A Mineralogical Approach. Quaternary International, 214(1–2): 63–69. https://doi.10.1016/j.quaint.2009.10.017 doi: 10.1016/j.quaint.2009.10.017 |
Koch, B. P., Souza Filho, P. W. M., Behling, H., et al., 2011. Triterpenols in Mangrove Sediments as a Proxy for Organic Matter Derived from the Red Mangrove (Rhizophora Mangle). Organic Geochemistry, 42(1): 62–73. https://doi.org/10.1016/j.orggeochem.2010.10.007 |
Krauss, K. W., Lovelock, C. E., McKee, K. L., et al., 2008. Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquatic Botany, 89(2): 105–127. https://doi.org/10.1016/j.aquabot.2007.12.014 |
Kristensen, E., Bouillon, S., Dittmar, T., et al., 2008. Organic Carbon Dynamics in Mangrove Ecosystems: A Review. Aquatic Botany, 89(2): 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005 |
Lamb, A. L., Wilson, G. P., Leng, M. J., 2006. A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using δ13C and C/N Ratios in Organic Material. Earth-Science Reviews, 75(1/2/3/4): 29–57. https://doi.org/10.1016/j.earscirev.2005.10.003 |
Li, Z., Saito, Y., Mao, L. M., et al., 2012. Mid-Holocene Mangrove Succession and Its Response to Sea-Level Change in the Upper Mekong River Delta, Cambodia. Quaternary Research, 78(2): 386–399. https://doi.org/10.1016/j.yqres.2012.07.001 |
Li, Z., Zhang, Z. Y., Li, J., et al., 2008. Pollen Distribution in Surface Sediments of a Mangrove System, Yingluo Bay, Guangxi, China. Review of Palaeobotany and Palynology, 152(1/2): 21–31. https://doi.org/10.1016/j.revpalbo.2008.04.001 |
Lovelock, C. E., Cahoon, D. R., Friess, D. A., et al., 2015. The Vulnerability of Indo-Pacific Mangrove Forests to Sea-Level Rise. Nature, 526(7574): 559–563. https://doi.org/10.1038/nature15538 |
Lu, H. Y., Wu, N. Q., Liu, K. B., et al., 2007. Phytoliths as Quantitative Indicators for the Reconstruction of Past Environmental Conditions in China Ⅱ: Palaeoenvironmental Reconstruction in the Loess Plateau. Quaternary Science Reviews, 26(5/6): 759–772. https://doi.org/10.1016/j.quascirev.2006.10.006 |
Ma, R., Chen, J. H., Liu, J. B., et al., 2021. Progress in the Application of Lake Sediment DNA in Climate and Environmental Change and Ecosystem Response. Journal of Lake Sciences, 33(3): 653–666 (in Chinese with English Abstract) doi: 10.18307/2021.0303 |
Ma, R. F., Zhang, W., Liu, L., et al., 2019. Application of Sedimentary Plant Ancient DNA (aDNA) Technology in Paleovegetation Reconstruction. Acta Sedimentologica Sinica, 38(6): 1179–1191 (in Chinese with English Abstract) |
Macintyre, I. G., Toscano, M. A., Bond, G. B., 2004. Holocene History of the Mangrove Islands of Twin Cays, Belize, Central America. Atoll Research Bulletin, 510: 1–16. https://doi.org/10.5479/si.00775630.510.1 |
Macreadie, P. I., Costa, M. D. P., Atwood, T., et al., 2021. Blue Carbon as a Natural Climate Solution. Nature Reviews Earth & Environment, 2(12): 826–839. https://doi.org/10.1038/s43017-021-00224-1 |
Meng, X. W., Xia, P., Li, Z., et al., 2017. Mangrove Development and Its Response to Asian Monsoon in the Yingluo Bay (SW China) over the Last 2000 Years. Estuaries and Coasts, 40(2): 540–552. https://doi.org/10.1007/s12237-016-0156-3 |
Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 14(3/4): 289–302. https://doi.org/10.1016/0009-2541(94)90059-0 |
Naskar, M., Blinnikov, M., Ghosh, R., et al., 2021. A Diagnostic Phytolith Morphotype Found in Porteresia Coarctata (Roxb.) Tateoka Indicates Coastal Swampy Mangrove Environments: A Case Study from the Indian East Coast. Flora, 282: 151884. https://doi.org/10.1016/j.flora.2021.151884 |
Nguyen, A. T. Q., Nguyen, A. M., Nguyen, L. N., et al., 2021. Effects of CO2 and Temperature on Phytolith Dissolution. Science of the Total Environment, 772: 145469. https://doi.org/10.1016/j.scitotenv.2021.145469 |
O'Donnell, S., Nguyen, T. M. H., Stimpson, C., et al., 2020. Holocene Development and Human Use of Mangroves and Limestone Forest at an Ancient Hong Lagoon in the TRÀNG an Karst, Ninh Binh, Vietnam. Quaternary Science Reviews, 242: 106416. https://doi.org/10.1016/j.quascirev.2020.106416 |
Osland, M. J., Feher, L. C., Griffith, K. T., et al., 2017. Climatic Controls on the Global Distribution, Abundance, and Species Richness of Mangrove Forests. Ecological Monographs, 87(2): 341–359. https://doi.org/10.1002/ecm.1248 |
Ottinger, M., Clauss, K., Kuenzer, C., 2016. Aquaculture: Relevance, Distribution, Impacts and Spatial Assessments―A Review. Ocean & Coastal Management, 119: 244–266. https://doi.org/10.1016/j.ocecoaman.2015.10.015 |
Pearsall, D. M., Duncan, N. A., Jones, J. G., et al., 2016. Human-Environment Interactions during the Early Mid-Holocene in Coastal Ecuador as Revealed by Mangrove Coring in Santa Elena Province. The Holocene, 26(8): 1262–1289. https://doi.org/10.1177/0959683616638421 |
Pérez, A., Machado, W., Sanders, C. J., 2021. Anthropogenic and Environmental Influences on Nutrient Accumulation in Mangrove Sediments. Marine Pollution Bulletin, 165: 112174. https://doi.org/10.1016/j.marpolbul.2021.112174 |
Punwong, P., Marchant, R., Selby, K., 2013a. Holocene Mangrove Dynamics from Unguja Ukuu, Zanzibar. Quaternary International, 298: 4–19. https://doi.org/10.1016/j.quaint.2013.02.007 |
Punwong, P., Marchant, R., Selby, K., 2013b. Holocene Mangrove Dynamics in Makoba Bay, Zanzibar. Palaeogeography, Palaeoclimatology, Palaeoecology, 379/380: 54–67. https://doi.org/10.1016/j.palaeo.2013.04.004 |
Qiang, W., Haoliang, L., Jingyan, C., et al., 2020. Interactions of Soil Metals with Glomalin-Related Soil Protein as Soil Pollution Bioindicators in Mangrove Wetland Ecosystems. Science of the Total Environment, 709: 136051. https://doi.org/10.1016/j.scitotenv.2019.136051 |
Rodrigues, E., Cohen, M. C. L., Liu, K. B., et al., 2021. The Effect of Global Warming on the Establishment of Mangroves in Coastal Louisiana during the Holocene. Geomorphology, 381: 107648. https://doi.org/10.1016/j.geomorph.2021.107648 |
Schulte, L., Bernhardt, N., Stoof-Leichsenring, K., et al., 2021. Hybridization Capture of Larch (Larix Mill.) Chloroplast Genomes from Sedimentary Ancient DNA Reveals Past Changes of Siberian Forest. Molecular Ecology Resources, 21(3): 801–815. https://doi.org/10.1111/1755-0998.13311 |
Setyaningsih, C. A., Biagioni, S., Saad, A., et al., 2019. Response of Mangroves to Late Holocene Sea-Level Change: Palaeoecological Evidence from Sumatra, Indonesia. Wetlands, 39(5): 1103–1118. https://doi.org/10.1007/s13157-019-01142-1 |
Sippo, J. Z., Lovelock, C. E., Santos, I. R., et al., 2018. Mangrove Mortality in a Changing Climate: An Overview. Estuarine, Coastal and Shelf Science, 215: 241–249. https://doi.org/10.1016/j.ecss.2018.10.0 |
1Souza, J. R. B. D., Costa, A. B., Azevedo, A. E. G. D., et al., 2013. Carbon and Nitrogen Stable Isotope Compositions of Organic Matter in Marine Sediment Cores from the Abrolhos Region: Indicators of Sources and Preservation. Geochimica Brasiliensis, 27(1): 13–23. https://doi.org/10.5327/z0102-9800201300010002 |
Srivastava, J., Prasad, V., 2019. Evolution and Paleobiogeography of Mangroves. Marine Ecology, 40(6): e12571. https://doi.org/10.1111/maec.12571 |
Sun, X. S., Fan, D. J., Liao, H. J., et al., 2020. Fate of Organic Carbon Burial in Modern Sediment within Yangtze River Estuary. Journal of Geophysical Research: Biogeosciences, 125(2): e2019JG005379. https://doi.org/10.1029/2019jg005379 |
Tamura, T., Saito, Y., Sieng, S., et al., 2009. Initiation of the Mekong River delta at 8 ka: Evidence from the Sedimentary Succession in the Cambodian Lowland. Quaternary Science Reviews, 28(3–4): 327–344. https://doi.org/10.1016/j.quascirev.2008.10.010 |
Tian, Y., Lu, H. L., Hong, H. L., et al., 2021. Potential and Mechanism of Glomalin-Related Soil Protein on Metal Sequestration in Mangrove Wetlands Affected by Aquaculture Effluents. Journal of Hazardous Materials, 420: 126517. https://doi.org/10.1016/j.jhazmat.2021.126517 |
Versteegh, G. J. M., Schefuß, E., Dupont, L., et al., 2004. Taraxerol and Rhizophora Pollen as Proxies for Tracking Past Mangrove Ecosystems. Geochimica et Cosmochimica Acta, 68(3): 411–422. https://doi.org/10.1016/s0016-7037(03)00456-3 |
Wang, W. Z., Meng, X. W., Wang, X. Q., et al., 2019. The Sub-Fossils of Leaf Fragments in Sediments as an Indicator of Mangrove Development in the Yingluo Bay, Guangxi, Southwest China over the Last 130 Years. Acta Oceanologica Sinica, 38(8): 27–34. https://doi.org/10.1007/s13131-018-1221-5 |
Woodroffe, C. D., 1993. Late Quaternary Evolution of Coastal and Lowland Riverine Plains of Southeast Asia and Northern Australia: An Overview. Sedimentary Geology, 83(3/4): 163–175. https://doi.org/10.1016/0037-0738(93)90010-3 |
Woodroffe, C. D., Rogers, K., McKee, K. L., et al., 2016. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 8: 243–266. https://doi.org/10.1146/annurev-marine-122414-034025 |
Wooller, M. J., Behling, H., Smallwood, B. J., et al., 2004. Mangrove Ecosystem Dynamics and Elemental Cycling at Twin Cays, Belize, during the Holocene. Journal of Quaternary Science, 19(7): 703–711. https://doi.org/10.1002/jqs.877 |
Wooller, M. J., Morgan, R., Fowell, S., et al., 2007. A Multiproxy Peat Record of Holocene Mangrove Palaeoecology from Twin Cays, Belize. The Holocene, 17(8): 1129–1139. https://doi.org/10.1177/0959683607082553 |
Wooller, M., Smallwood, B., Scharler, U., et al., 2003. A Taphonomic Study of δ13C and δ15N Values in Rhizophora Mangle Leaves for a Multi-Proxy Approach to Mangrove Palaeoecology. Organic Geochemistry, 34(9): 1259–1275. https://doi.org/10.1016/s0146-6380(03)00116-5 |
Xia, P., Meng, X. W., Li, Z., et al., 2015. Mangrove Development and Its Response to Environmental Change in Yingluo Bay (SW China) during the Last 150 Years: Stable Carbon Isotopes and Mangrove Pollen. Organic Geochemistry, 85: 32–41. https://doi.org/10.1016/j.orggeochem.2015.04.003 |
Xia, P., Meng, X. W., Li, Z., et al., 2017. Organic Carbon Isotope and Pollen Evidence for Mangrove Development and Response to Human Activity in Guangxi (Southwest China) over the Last 140 Years. Acta Oceanologica Sinica, 36(2): 11–21. https://doi.org/10.1007/s13131-016-0849-2 |
Xia, P., Meng, X. W., Li, Z., et al., 2019. Late Holocene Mangrove Development and Response to Sea Level Change in the Northwestern South China Sea. Acta Oceanologica Sinica, 38(11): 111–120. https://doi.org/10.1007/s13131-019-1359-9 |
Xie, S. H., Liang, B., Guo, J. Q., et al., 2003. Biomarkers and the Related Global Change. Quaternary Sciences, 23(5): 521–528 (in Chinese with English Abstract) doi: 10.3321/j.issn:1001-7410.2003.05.007 |
Zhang, Y. L., Feng, W. Q., Wang, K. F., et al., 2000. The Evolution of Mangrove Forest on the Basis of Palynological Study of Holocene in Hainan Island. Acta Oceanologica Sinica, 22(3): 117–122 (in Chinese with English Abstract) |
Zhang, Y. L., Wang, K. F., Zhang, W. D., et al., 1999. Evolution of Mangrove Forests in Northeastern Hainan Island since Mid-Holocene. Marine Science Bulletin, 18(2): 52–57 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-6392.1999.02.007 |