Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Guodong Zheng, Giovanni Martinelli, Yanxin Wang, Shun Li, Xiangxian Ma. Notes for a History of Gas Geochemistry. Journal of Earth Science, 2022, 33(6): 1614-1623. doi: 10.1007/s12583-022-1758-2
Citation: Guodong Zheng, Giovanni Martinelli, Yanxin Wang, Shun Li, Xiangxian Ma. Notes for a History of Gas Geochemistry. Journal of Earth Science, 2022, 33(6): 1614-1623. doi: 10.1007/s12583-022-1758-2

Notes for a History of Gas Geochemistry

doi: 10.1007/s12583-022-1758-2
More Information
  • Corresponding author: Giovanni Martinelli, giovanni.martinelli15@gmail.com
  • Received Date: 25 Feb 2022
  • Accepted Date: 05 Oct 2022
  • Issue Publish Date: 30 Dec 2022
  • During ancient times, human interest in naturally-occurring gases was religious, while it was scientific in the historical age and industrial in modern times. Gases were also utilized for practical purposes and more than 3 000 years before present day, Chinese populations made use of methane for salt extraction while in the 17th century it was observed that native Americans ignited methane seepages. The development of human thinking on gases followed the fundamental steps that characterized the natural sciences during the 18th century scientific revolution that was based on significant improvements in analytical methods. These improvements are still ongoing while present-day scientific publications evidence the spread of the field of interest and more cooperation with geophysical sciences to solve common interest problems. The existence of proper meetings and dedicated scientific journals confirms that gas geochemistry has ended this pioneering phase to enter a more mature condition.

     

  • loading
  • Aggarwal, P. K., Fröhlich, K. O., Gat, J. R., et al., 2012. International Association of Hydrological Sciences, BM8. Wallingford, UK. ISBN 978-1-907161-29-2. 486
    Agricola, G., 1556. De re Metallica. LibriXII, Basel
    Akono, A. T., Druhan, J. L., Dávila, G., et al., 2019. A Review of Geochemical-Mechanical Impacts in Geological Carbon Storage Reservoirs. Greenhouse Gases: Science and Technology, 9(3): 474–504. https://doi.org/10.1002/ghg.1870
    Aldrich, L. T., Nier, A. O., 1948. Argon 40 in Potassium Minerals. Physical Review, 74(8): 876–877. https://doi.org/10.1103/physrev.74.876
    Allen, E. T., 1922. Chemical Aspects of Volcanism with a Collection of the Analyses of Volcanic Gases. Journal of the Franklin Institute, 193(1): 29–80. https://doi.org/10.1016/S0016-0032(22)90431-4
    Alvarez, L. W., Cornog, R., 1939. Helium and Hydrogen of Mass 3. Physical Review, 56(6): 613. https://doi.org/10.1103/physrev.56.613
    Anderson, M. P., 2008. Groundwater, International Association of Hydrological Sciences. Benchmark Papers in Hydrology No. 3, Wallingford, UK. 626
    Baciu, C., Frunzeti, N., Ionescu, A., et al., 2012. Geogenic Gas Emissions in Romania and Their Value for Tourism. 12th International Multidisciplinary Scientific GeoConference SGEM 2012. https://doi.org/10.1017/9781009157896
    Baskaran, M., 2016. Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Springer International Publishing. 260
    Brinkmann, R., Münnich, K. O., Vogel, J. C., 1959. C14-Altersbestimmung von Grundwasser. Naturwissenschaften, 46(1): 10–12. https://doi.org/10.1007/bf00621357
    Brown, H., 1952. Rare Gases and the Formation of the Earth's Atmosphere. In: Kuiper, G. P., ed., The Atmospheres of the Earth and Planets, 2nd Ed. University of Chicago Press, Chicago. 258–266
    Burnard, P. G., Hu, R., Turner, G., et al., 1999. Mantle, Crustal and Atmospheric Noble Gases in Ailaoshan Gold Deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595–1604. https://doi.org/10.1016/s0016-7037(99)00108-8
    Burnard, P., Zimmermann, L., Sano, Y., 2013. The Noble Gases as Geochemical Tracers: History and Background. In: Burnard, P., ed., The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer-Verlag Berlin Heidelberg. 1–15
    Butler, W. A., Jeffery, P. M., Reynolds, J. H., et al., 1963. Isotopic Variations in Terrestrial Xenon. Journal of Geophysical Research Atmospheres, 68(10): 3283–3291. https://doi.org/10.1029/jz068i010p03283
    Catling, D. C., 2014. The Great Oxidation Event Transition. Treatise on Geochemistry, 6: 177–195. https://doi.org/10.1016/b978-0-08-095975-7.01307-3
    Chen, Z., Li, Y., Martinelli, G., et al., 2020. Spatial and Temporal Variations of CO2 Emissions from the Active Fault Zones in the Capital Area of China. Applied Geochemistry, 112: 104489. https://doi.org/10.1016/j.apgeochem.2019.104489
    Ciardi, M., 1998. Chemistry of Atmosphere, in Science of the Earth, an Encyclopedia of Events, People and Phenomena. Garland Publishing Inc., New York. 39–43
    Clarke, F. W., 1916. Data of Geochemistry, 3rd ed. U. S. Geol. Survey Bull. 616
    Clarke, W. B., Beg, M. A., Craig, H., 1969. Excess 3He in the Sea: Evidence for Terrestrial Primodal Helium. Earth and Planetary Science Letters, 6(3): 213–220. https://doi.org/10.1016/0012-821x(69)90093-4
    Colombo, U., Gazzarrini, F., Sironi, G., et al., 1965. Carbon Isotope Composition of Individual Hydrocarbons from Italian Natural Gases. Nature, 205(4978): 1303–1304. https://doi.org/10.1038/2051303b0
    D'Amore, F., 1977. Study of the Applicability of the Geochemistry of Gases in Geothermal Prospection. In: Seminar on Geothermal Energy, Dec. 1–8, 1977. Commission of the European Communities, Bruxelles, Vol. 2: 441–453
    D'Amore, F., Nuti, S., 1977. Notes on the Chemistry of Geothermal Gases. Geothermics, 6(1/2): 39–45. https://doi.org/10.1016/0375-6505(77)90041-4
    De Paolo, D. J., Cole, D. R., Navrotskya, A., et al., 2013. Geochemistry of Geologic CO2 Sequestration. The Mineralogical Society of America, Chantilly, Virginia, USA. 539
    Eguchi, J., Seales, J., Dasgupta, R., 2020. Great Oxidation and Lomagundi Events Linked by Deep Cycling and Enhanced Degassing of Carbon. Nature Geoscience, 13(1): 71–76. https://doi.org/10.1038/s41561-019-0492-6
    Ekholm, N., 1901. On the Variations of the Climate of the Geological and Historical Past and Their Causes. Quarterly Journal of the Royal Meteorological Society, 27(117): 1–62. https://doi.org/10.1002/qj.49702711702
    Ellis, A. J., 1957. Chemical Equilibrium in Magmatic Gases. American Journal of Science, 255(6): 416–431. https://doi.org/10.2475/ajs. 255.6.416 doi: 10.2475/ajs.255.6.416
    Erfurt, P., 2021. The Geoheritage of Hot Springs. Springer, Cham. 383
    Erfurt-Cooper, P., 2011. Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage, 3(3): 187–193. https://doi.org/10.1007/s12371-010-0025-6
    Etiope, G., Schwietzke, S., 2019. Global Geological Methane Emissions: An Update of Top-down and Bottom-up Estimates. Elementa: Science of the Anthropocene, 7: 47. https://doi.org/10.1525/elementa.383
    Fischer, T. P., Arellano, S., Carn, S., et al., 2019. The Emissions of CO2 and other Volatiles from the World's Subaerial Volcanoes. Scientific Reports, 9: 18716. https://doi.org/10.1038/s41598-019-54682-1
    Fouquè, F. A., 1865. Sur le Phenomeneseruptifsde l'Italiemeridionale. Comte Rendude l'Academiede Seances Paris, 61: 564–569
    Fuex, A. N., 1977. The Use of Stable Carbon Isotopes in Hydrocarbon Exploration. Journal of Geochemical Exploration, 7: 155–188. https://doi.org/10.1016/0375-6742(77)90080-2
    Galimov, E. M., 1973. Carbon Isotopes in Oil and Gas Geology. Nedra Press, Moscow; NASA Translation, F-682, Washington, D. C., 1975. 385
    Giggenbach, W. F., 1980. Geothermal Gas Equilibria. Geochimica et Cosmochimica Acta, 44(12): 2021–2032. https://doi.org/10.1016/0016-7037(80)90200-8
    Giggenbach, W. F., 1996. Chemical Composition of Volcanic Gases. In: Scarpa, R., Tilling, R. I., eds., Monitoring and Mitigation of Volcano Hazards. Springer-Verlag, Berlin. 221–256
    Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887–1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
    Heinicke, J., Martinelli, G., 2005. Preface: An Historical Overview. Annals of Geophysics, 48: V–VIII
    Hilton, D. R., Fischer, T. P., Kulongoski, J. T., 2013. Introduction to the Special Issue on 'Frontiers in Gas Geochemistry'. Chemical Geology, 339: 1–3. https://doi.org/10.1016/j.chemgeo.2012.10.038
    Hoggard, M. J., Czarnota, K., Richards, F. D., et al., 2020. Global Distribution of Sediment-Hosted Metals Controlled by Craton Edge Stability. Nature Geoscience, 13(7): 504–510. https://doi.org/10.1038/s41561-020-0593-2
    Horvitz, L., 1985. Geochemical Exploration for Petroleum. Science, 229(4716): 821–827. https://doi.org/10.1126/science.229.4716.821
    Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018
    Humboldt, A., 1845. Kosmos-Entwurfeiner Weltbeschreibung. Bd. 1–4, J. G. Cottascher Verlag Stuttgart und Augsburg
    Irwin, W. P., Barnes, I., 1980. Tectonic Relations of Carbon Dioxide Discharges and Earthquakes. Journal of Geophysical Research Atmospheres, 85(B6): 3115–3121. https://doi.org/10.1029/jb085ib06p03115
    Jaggar, T. A., 1940. Magmatic Gases. American Journal of Science, 238(5): 313–353. https://doi.org/10.2475/ajs.238.5.313
    Jones, V. T., Droxd, R. J., 1983. Predictions of Oil or Gas Potential by Near-Surface Geochemistry. AAPG Bulletin, 67: 932–952
    Keller, S., König, V., Mösges, R., 2014. Thermal Water Applications in the Treatment of Upper Respiratory Tract Diseases: A Systematic Review and Meta-Analysis. Journal of Allergy, 2014: 943824. https://doi.org/10.1155/2014/943824
    King, C. Y., 1986. Gas Geochemistry Applied to Earthquake Prediction: An Overview. Journal of Geophysical Research: Solid Earth, 91(B12): 12269–12281. https://doi.org/10.1029/jb091ib12p12269
    Lamb, W. F., Wiedmann, T., Pongratz, J., et al., 2021. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environmental Research Letters, 16(7): 073005. https://doi.org/10.1088/1748-9326/abee4e
    Laughrey, C. D., Baldassare, F. J., 2003. Some Applications of Isotope Geochemistry for Determining Sources of Stray Carbon Dioxide Gas. Environmental Geosciences, 10(3): 107–122. https://doi.org/10.1306/eg100303003
    Laubmeyer, G., 1933. A New Geophysical Prospecting Method. Z. Petrol., 29: 1–4
    Lebedev, V. S., 1964. Isotope Composition of Oil and Gas. Geokhimiya, 11: 1128–1137
    Lovell, J. S., Hale, M., Webb, J. S., 1983. Soil Air Carbon Dioxide and Oxygen Measurements as a Guide to Concealed Mineralization in Semi-Arid and Arid Regions. Journal of Geochemical Exploration, 19(1/2/3): 305–317. https://doi.org/10.1016/0375-6742(83)90023-7
    Mamyrin, B. A., Tolstikhin, I. N., 1984. Helium Isotopes in Nature, Developments in Geochemistry. Elsevier, Amsterdam, Oxford, New York, Tokyo. 273
    Marchetti, C., 1977. On Geoengineering and the CO2 Problem. Climatic Change, 1(1): 59–68. https://doi.org/10.1007/bf00162777
    Marini, L., 2007. Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modelling. Elsevier, Amsterdam. 453. https://doi.org/10.1016/s0921-3198(06)x8011-0
    Martinelli, G., 2020. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences, 10(5): 189. https://doi.org/10.3390/geosciences10050189
    Masson-Delmotte, V., Zhai, P., Pirani, A., et al., 2021. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York. 2391. _aaaaaa_paichu__
    May, F., Freund, W., Müller, P., 1968. Modellversucheu¨ber Isotopenfraktionerung von Erdgaskomponentenwa¨hrend der Migration. Zeitschriftfür Angewandte Geologie, 14: 376
    Mazor, E., 1972. Paleotemperatures and other Hydrological Parameters Deduced from Noble Gases Dissolved in Groundwaters; Jordan Rift Valley, Israel. Geochimica et Cosmochimica Acta, 36(12): 1321–1336. https://doi.org/10.1016/0016-7037(72)90065-8
    Motojima, K., 1975. Geochemical Prospecting for Petroleum and Natural Gas Deposits. Reg. Min. Res. Dev. Cent., Advis. Text No 9
    Mukhopadhyay, S., Parai R., 2019. Noble Gases: A Record of Earth's Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 47: 389–419. https://doi.org/10.1146/annurev-earth-053018-060238
    Nakai, N., 1960. Carbon Isotope Fractionation of Natural Gas in Japan. The Journal of Earth Sciences, Nagoya University, 8: 174–180
    Needham, J., 1986. Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 1: Paper and Printing. Caves Books, Ltd., Taipei. 504
    Niewöhner, P., Dikilitaş, G., Erkul, E., et al., 2013. Bronze Age Höyüks, Iron Age Hilltop Forts, Roman Poleis and Byzantine Pilgrimage in Germia and Its Vicinity. 'Connectivity' and a Lack of 'Definite Places' on the Central Anatolian High Plateau. Anatolian Studies, 63: 97–136. https://doi.org/10.1017/s0066154613000069
    Olmez, I., Finnegan, D. L., Zoller, W. H., 1986. Iridium Emissions from Kilauea Volcano. Journal of Geophysical Research: Atmospheres, 91(B1): 653–663. https://doi.org/10.1029/jb091ib01p00653
    Ozima, M., Podosek, F. A., 2002. Noble Gas Geochemistry. Cambridge University Press, Cambridge. 286
    Paoloni, C., 1976. Storia del Metano. Sapil, Milano. 340
    Pfanz, H., Vodnik, D., Wittmann, C., et al., 2004. Plants and Geothermal CO2 Exhalations—Survival in and Adaptation to a High CO2 Environment. Progress in Botany, 65: 499–538. https://doi.org/10.1007/978-3-642-18819-0_20
    Pfanz, H., Yüce, G., D'Andria, F., et al., 2014. The Ancient Gates to Hell and Their Relevance to Geogenic CO2. History of Toxicology and Environmental Health, 1: 92–117
    Philp, R. P., Crisp, P. T., 1982. Surface Geochemical Methods Used for Oil and Gas Prospecting—A Review. Journal of Geochemical Exploration, 17(1): 1–34. https://doi.org/10.1016/0375-6742(82)90017-6
    Piccardi, L., Monti, C., Vaselli, O., et al., 2008. Scent of a Myth: Tectonics, Geochemistry and Geomythology at Delphi (Greece). Journal of the Geological Society, 165(1): 5–18. https://doi.org/10.1144/0016-76492007-055
    Pik, R., Marty, B., Hilton, D. R., 2006. How many Mantle Plumes in Africa? the Geochemical Point of View. Chemical Geology, 226(3/4): 100–114. https://doi.org/10.1016/j.chemgeo.2005.09.016
    Pinti, D. L., van Drom, E., 1998. PALEOTEMP: A Mathematica® Program for Evaluating Paleotemperatures from the Concentration of Atmosphere-Derived Noble Gases in Ground Water. Computers & Geosciences, 24(1): 33–41. https://doi.org/10.1016/s0098-3004(97)00126-x
    Pinti, D., 2005. The Origin and Evolution of the Oceans. In: Gargaud, M., Barbier, B., Martin, H., et al., eds., Lectures in Astrobiology, Vol. 1. Springer, Berlin. 83–112
    Polyak, B. G., Tolstikhin, I. N., Khutorskoi, M. D., 2020. Ascending Heat and Mass Flow in Continental Crust: On the Problem of Driving Forces of Tectogenesis. Izvestiya, Physics of the Solid Earth, 56(4): 490–510. https://doi.org/10.1134/s1069351320030088
    Reynolds, J. H., 1956. High Sensitivity Mass Spectrometer for Noble Gas Analysis. Review of Scientific Instruments, 27(11): 928–934. https://doi.org/10.1063/1.1715415
    Romanak, K., Dixon, T., 2022. CO2 Storage Guidelines and the Science of Monitoring: Achieving Project Success under the California Low Carbon Fuel Standard CCS Protocol and other Global Regulations. International Journal of Greenhouse Gas Control, 113: 103523. https://doi.org/10.1016/j.ijggc.2021.103523
    Ross, B., Amter, S., 1989. Subsurface Transport in Water and Gas. Engineering Geology, 26(4): 373–403. https://doi.org/10.1016/0013-7952(89)90023-9
    Rubey, W. W., 1951. Geologic History of Sea Water. Geological Society of America Bulletin, 62(9): 1111–1158. https://doi.org/10.1130/0016-7606(1951)62[1111:ghosw]2.0.co;2
    Sainte-Claire Deville, C., 1856. Memoire sur les Emanations Volcaniques. Bulletin de la Société Géologique de France, 14: 254–279
    Sano, Y., Marty, B., 1995. Origin of Carbon in Fumarolic Gas from Island Arcs. Chemical Geology, 119(1/2/3/4): 265–274. https://doi.org/10.1016/0009-2541(94)00097-r
    Sano, Y., Wakita, H., 1985. Geographical Distribution of 3He/4He Ratios in Japan: Implications for Arc Tectonics and Incipient Magmatism. Journal of Geophysical Research: Solid Earth, 90(B10): 8729–8741. https://doi.org/10.1029/jb090ib10p08729
    Simmons, S. F., Sawkins, F. J., Schlutter, D. J., 1987. Mantle-Derived Helium in Two Peruvian Hydrothermal Ore Deposits. Nature, 329(6138): 429–432. https://doi.org/10.1038/329429a0
    Sisto, M., di Lisio, A., Russo, F., 2020. The Mefite in the Ansanto Valley (Southern Italy): A Geoarchaeosite to Promote the Geotourism and Geoconservation of the Irpinian Cultural Landscape. Geoheritage, 12(1): 1–18. https://doi.org/10.1007/s12371-020-00450-x
    Soentgen, J., 2010. On the History and Prehistory of CO2. Foundations of Chemistry, 12(2): 137–148. https://doi.org/10.1007/s10698-009-9081-x
    Sokolov, V. A., 1933. New Methods of Prospecting for Oil and Gas Deposits. Trudy Neftyanoi, 27: 28
    Sun, L. L., Dou, H. E., Li, Z. P., et al., 2018. Assessment of CO2 Storage Potential and Carbon Capture, Utilization and Storage Prospect in China. Journal of the Energy Institute, 91(6): 970–977. https://doi.org/10.1016/j.joei.2017.08.002
    Tchindjang, M., 2018. Lake Nyos, a Multirisk and Vulnerability Appraisal. Geosciences, 8(9): 312. https://doi.org/10.3390/geosciences8090312
    The Group of Hydro-Chemistry, the Seismological Brigade of Hebei Province, 1975. Studies on Forecasting Earthquakes in Light of the Abnormal Variations of Rn Concentration in Groundwater. Acta Geophysica Sinica, 18(4): 279–283 (in Chinese with English Abstract)
    Treibs, A., 1936. Chlorophyll-Und Häminderivate in Organischen Mineralstoffen. Angewandte Chemie, 49(38): 682–686. https://doi.org/10.1002/ange.19360493803
    Toutain, J. P., Baubron, J. C., 1999. Gas Geochemistry and Seismotectonics: A Review. Tectonophysics, 304(1/2): 1–27. https://doi.org/10.1016/S0040-1951(98)00295-9
    Turner, G., Burnard, P., Ford, J. W., et al., 1993. Tracing Fluid Sources and Interactions. Philosophical Transactions of the Royal Society of London, 344: 127–140 doi: 10.1098/rsta.1993.0081
    Vernadsky, W., 1924. La Géochimie. Librarie Felix Alcan, Paris. 404
    von Buttlar, H., Wendt, I., 1958. Ground-Water Studies in New Mexico Using Tritium as a Tracer. Transactions, American Geophysical Union, 39(4): 660–668. https://doi.org/10.1029/tr039i004p00660 doi: 10.1029/TR039i004p00660
    Vyshemirskii, V. S., 1977. Investigations in Gas and Oil Geochemistry. Geol. Geofiz., 12: 81–87 (in Russian)
    UNSCEAR (United Nations Scientific Committee on the effects of Atomic Radiation), 2008. Sources and Effects of Ionizing Radiation. Report to General Assembly, Annex B, United Nations, New York
    Ulomov, V. I., Mavashev, B. Z., 1971. Forerunners of the Tashkent Earthquakes. Izv. Akad. Nauk Uzb. SSR, 3: 188–200
    Wakita, H., Nakamura, Y., Sano, Y., 1988. Short-Term and Intermediate-Term Geochemical Precursors. Pure and Applied Geophysics, 126(2/3/4): 267–278. https://doi.org/10.1007/bf00878999
    Wang, S., Kuang, J., Huang, X. L., et al., 2022. Upwelling of Mantle-Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica—English Edition, 96(1): 100–110. https://doi.org/10.1111/1755-6724.14686
    Weber, U. W., Kipfer, R., Horstmann, E., et al., 2021. Noble Gas Tracers in Gas Streams at Norwegian CO2 Capture Plants. International Journal of Greenhouse Gas Control, 106: 103238. https://doi.org/10.1016/j.ijggc.2020.103238
    Wei, Y. M., Kang, J. N., Liu, L. C., et al., 2021. A Proposed Global Layout of Carbon Capture and Storage in Line with a 2 ℃ Climate Target. Nature Climate Change, 11(2): 112–118. https://doi.org/10.1038/s41558-020-00960-0
    West, J. B., 2015. Joseph Black, Carbon Dioxide, Latent Heat, and the Beginnings of the Discovery of the Respiratory Gases. Essays on the History of Respiratory Physiology, 306: L1057–L1063. https://doi.org/10.1007/978-1-4939-2362-5_9
    Williams-Jones, G., Rymer, H., 2000. Hazards of Volcanic Gases. In: Sigurdsson, H., ed., Encyclopedia of Volcanoes. Elsevier, New York. 997–1004
    Xie, G. Q., Mao, J. W., Li, W., et al., 2016. Different Proportion of Mantle-Derived Noble Gases in the Cu-Fe and Fe Skarn Deposits: He-Ar Isotopic Constraint in the Edong District, Eastern China. Ore Geology Reviews, 72: 343–354. https://doi.org/10.1016/j.oregeorev.2015.08.004
    Xu, C., Wang, Y. P., Li, L. L., 2020. Study on Spatiotemporal Distribution of the Tropospheric NO2 Column Concentration in China and Its Relationship to Energy Consumption Based on the Time-Series Data from 2005 to 2013. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(17): 2130–2144. https://doi.org/10.1080/15567036.2019.1607931
    Xu, S., Zheng, G. D., Zheng, J. J., et al., 2017. Mantle-Derived Helium in Foreland Basins in Xinjiang, Northwest China. Tectonophysics, 694: 319–331. https://doi.org/10.1016/j.tecto.2016.11.015
    Xu, Y. C., 1976. Application of the Noble Gases and Their Isotopes in Petroleum Geology. Translated Papers on Petroleum Geology (3). Science Press, Beijing. 299–308 (in Chinese)
    Yergey, A. L., Yergey, A. K., 2020. Preparative Scale Mass Spectrometry: A Brief History of the Calutron. Journal of Mass Spectrometry, 55(8): e4509. https://doi.org/10.1002/jms.4509
    Zartman, R. E., Wasserburg, G. J., Reynolds, J. H., 1961. Helium, Argon, and Carbon in some Natural Gases. Journal of Geophysical Research Atmospheres, 66(1): 277–306. https://doi.org/10.1029/jz066i001p00277
    Zhang, M., Niu, Y., Hu, P., 2009. Volatiles in the Mantle Lithosphere: Modes of Occurrence and Chemical Compositions. In: Anderson, J. E., Coates, R. W., eds., The Lithosphere: Geochemistry, Geology and Geophysics. Nova Science Publishers Inc., New York. 171–212
    Zhang, M. L., Liu, W. J., Guan, L. F., et al., 2022. First Estimates of Hydrothermal Helium Fluxes in Continental Collision Settings: Insights from the Southeast Tibetan Plateau Margin. Geophysical Research Letters, 49(11). https://doi.org/10.1029/2022gl098228
    Zhang, M. L., Xu, S., Zhou, X. C., et al., 2021. Deciphering a Mantle Degassing Transect Related with India-Asia Continental Convergence from the Perspective of Volatile Origin and Outgassing. Geochimica et Cosmochimica Acta, 310: 61–78. https://doi.org/10.1016/j.gca. 2021.07.010 doi: 10.1016/j.gca.2021.07.010
    Zheng, G. D., Zhao, W. B., Chen, Z., et al., 2021. Brief Introduction of 10-Year's Investigation and Study on Geological Greenhouse Gas Emission in China. Bulletin of Mineralogy, Petrology, and Geochemistry, 40(6): 1250–1271 (in Chinese with English Abstract)
    Zhou, X. C., Du, J. G., Chen, Z., et al., 2010. Geochemistry of Soil Gas in the Seismic Fault Zone Produced by the Wenchuan Ms 8.0 Earthquake, Southwestern China. Geochemical Transactions, 11: 5. https://doi.org/10.1186/1467-4866-11-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views(240) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return