Citation: | Guodong Zheng, Giovanni Martinelli, Yanxin Wang, Shun Li, Xiangxian Ma. Notes for a History of Gas Geochemistry. Journal of Earth Science, 2022, 33(6): 1614-1623. doi: 10.1007/s12583-022-1758-2 |
During ancient times, human interest in naturally-occurring gases was religious, while it was scientific in the historical age and industrial in modern times. Gases were also utilized for practical purposes and more than 3 000 years before present day, Chinese populations made use of methane for salt extraction while in the 17th century it was observed that native Americans ignited methane seepages. The development of human thinking on gases followed the fundamental steps that characterized the natural sciences during the 18th century scientific revolution that was based on significant improvements in analytical methods. These improvements are still ongoing while present-day scientific publications evidence the spread of the field of interest and more cooperation with geophysical sciences to solve common interest problems. The existence of proper meetings and dedicated scientific journals confirms that gas geochemistry has ended this pioneering phase to enter a more mature condition.
Aggarwal, P. K., Fröhlich, K. O., Gat, J. R., et al., 2012. International Association of Hydrological Sciences, BM8. Wallingford, UK. ISBN 978-1-907161-29-2. 486 |
Agricola, G., 1556. De re Metallica. LibriXII, Basel |
Akono, A. T., Druhan, J. L., Dávila, G., et al., 2019. A Review of Geochemical-Mechanical Impacts in Geological Carbon Storage Reservoirs. Greenhouse Gases: Science and Technology, 9(3): 474–504. https://doi.org/10.1002/ghg.1870 |
Aldrich, L. T., Nier, A. O., 1948. Argon 40 in Potassium Minerals. Physical Review, 74(8): 876–877. https://doi.org/10.1103/physrev.74.876 |
Allen, E. T., 1922. Chemical Aspects of Volcanism with a Collection of the Analyses of Volcanic Gases. Journal of the Franklin Institute, 193(1): 29–80. https://doi.org/10.1016/S0016-0032(22)90431-4 |
Alvarez, L. W., Cornog, R., 1939. Helium and Hydrogen of Mass 3. Physical Review, 56(6): 613. https://doi.org/10.1103/physrev.56.613 |
Anderson, M. P., 2008. Groundwater, International Association of Hydrological Sciences. Benchmark Papers in Hydrology No. 3, Wallingford, UK. 626 |
Baciu, C., Frunzeti, N., Ionescu, A., et al., 2012. Geogenic Gas Emissions in Romania and Their Value for Tourism. 12th International Multidisciplinary Scientific GeoConference SGEM 2012. https://doi.org/10.1017/9781009157896 |
Baskaran, M., 2016. Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Springer International Publishing. 260 |
Brinkmann, R., Münnich, K. O., Vogel, J. C., 1959. C14-Altersbestimmung von Grundwasser. Naturwissenschaften, 46(1): 10–12. https://doi.org/10.1007/bf00621357 |
Brown, H., 1952. Rare Gases and the Formation of the Earth's Atmosphere. In: Kuiper, G. P., ed., The Atmospheres of the Earth and Planets, 2nd Ed. University of Chicago Press, Chicago. 258–266 |
Burnard, P. G., Hu, R., Turner, G., et al., 1999. Mantle, Crustal and Atmospheric Noble Gases in Ailaoshan Gold Deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595–1604. https://doi.org/10.1016/s0016-7037(99)00108-8 |
Burnard, P., Zimmermann, L., Sano, Y., 2013. The Noble Gases as Geochemical Tracers: History and Background. In: Burnard, P., ed., The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer-Verlag Berlin Heidelberg. 1–15 |
Butler, W. A., Jeffery, P. M., Reynolds, J. H., et al., 1963. Isotopic Variations in Terrestrial Xenon. Journal of Geophysical Research Atmospheres, 68(10): 3283–3291. https://doi.org/10.1029/jz068i010p03283 |
Catling, D. C., 2014. The Great Oxidation Event Transition. Treatise on Geochemistry, 6: 177–195. https://doi.org/10.1016/b978-0-08-095975-7.01307-3 |
Chen, Z., Li, Y., Martinelli, G., et al., 2020. Spatial and Temporal Variations of CO2 Emissions from the Active Fault Zones in the Capital Area of China. Applied Geochemistry, 112: 104489. https://doi.org/10.1016/j.apgeochem.2019.104489 |
Ciardi, M., 1998. Chemistry of Atmosphere, in Science of the Earth, an Encyclopedia of Events, People and Phenomena. Garland Publishing Inc., New York. 39–43 |
Clarke, F. W., 1916. Data of Geochemistry, 3rd ed. U. S. Geol. Survey Bull. 616 |
Clarke, W. B., Beg, M. A., Craig, H., 1969. Excess 3He in the Sea: Evidence for Terrestrial Primodal Helium. Earth and Planetary Science Letters, 6(3): 213–220. https://doi.org/10.1016/0012-821x(69)90093-4 |
Colombo, U., Gazzarrini, F., Sironi, G., et al., 1965. Carbon Isotope Composition of Individual Hydrocarbons from Italian Natural Gases. Nature, 205(4978): 1303–1304. https://doi.org/10.1038/2051303b0 |
D'Amore, F., 1977. Study of the Applicability of the Geochemistry of Gases in Geothermal Prospection. In: Seminar on Geothermal Energy, Dec. 1–8, 1977. Commission of the European Communities, Bruxelles, Vol. 2: 441–453 |
D'Amore, F., Nuti, S., 1977. Notes on the Chemistry of Geothermal Gases. Geothermics, 6(1/2): 39–45. https://doi.org/10.1016/0375-6505(77)90041-4 |
De Paolo, D. J., Cole, D. R., Navrotskya, A., et al., 2013. Geochemistry of Geologic CO2 Sequestration. The Mineralogical Society of America, Chantilly, Virginia, USA. 539 |
Eguchi, J., Seales, J., Dasgupta, R., 2020. Great Oxidation and Lomagundi Events Linked by Deep Cycling and Enhanced Degassing of Carbon. Nature Geoscience, 13(1): 71–76. https://doi.org/10.1038/s41561-019-0492-6 |
Ekholm, N., 1901. On the Variations of the Climate of the Geological and Historical Past and Their Causes. Quarterly Journal of the Royal Meteorological Society, 27(117): 1–62. https://doi.org/10.1002/qj.49702711702 |
Ellis, A. J., 1957. Chemical Equilibrium in Magmatic Gases. American Journal of Science, 255(6): 416–431. https://doi.org/10.2475/ajs. 255.6.416 doi: 10.2475/ajs.255.6.416 |
Erfurt, P., 2021. The Geoheritage of Hot Springs. Springer, Cham. 383 |
Erfurt-Cooper, P., 2011. Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage, 3(3): 187–193. https://doi.org/10.1007/s12371-010-0025-6 |
Etiope, G., Schwietzke, S., 2019. Global Geological Methane Emissions: An Update of Top-down and Bottom-up Estimates. Elementa: Science of the Anthropocene, 7: 47. https://doi.org/10.1525/elementa.383 |
Fischer, T. P., Arellano, S., Carn, S., et al., 2019. The Emissions of CO2 and other Volatiles from the World's Subaerial Volcanoes. Scientific Reports, 9: 18716. https://doi.org/10.1038/s41598-019-54682-1 |
Fouquè, F. A., 1865. Sur le Phenomeneseruptifsde l'Italiemeridionale. Comte Rendude l'Academiede Seances Paris, 61: 564–569 |
Fuex, A. N., 1977. The Use of Stable Carbon Isotopes in Hydrocarbon Exploration. Journal of Geochemical Exploration, 7: 155–188. https://doi.org/10.1016/0375-6742(77)90080-2 |
Galimov, E. M., 1973. Carbon Isotopes in Oil and Gas Geology. Nedra Press, Moscow; NASA Translation, F-682, Washington, D. C., 1975. 385 |
Giggenbach, W. F., 1980. Geothermal Gas Equilibria. Geochimica et Cosmochimica Acta, 44(12): 2021–2032. https://doi.org/10.1016/0016-7037(80)90200-8 |
Giggenbach, W. F., 1996. Chemical Composition of Volcanic Gases. In: Scarpa, R., Tilling, R. I., eds., Monitoring and Mitigation of Volcano Hazards. Springer-Verlag, Berlin. 221–256 |
Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887–1898. https://doi.org/10.1016/j.apgeochem.2012.07.006 |
Heinicke, J., Martinelli, G., 2005. Preface: An Historical Overview. Annals of Geophysics, 48: V–VIII |
Hilton, D. R., Fischer, T. P., Kulongoski, J. T., 2013. Introduction to the Special Issue on 'Frontiers in Gas Geochemistry'. Chemical Geology, 339: 1–3. https://doi.org/10.1016/j.chemgeo.2012.10.038 |
Hoggard, M. J., Czarnota, K., Richards, F. D., et al., 2020. Global Distribution of Sediment-Hosted Metals Controlled by Craton Edge Stability. Nature Geoscience, 13(7): 504–510. https://doi.org/10.1038/s41561-020-0593-2 |
Horvitz, L., 1985. Geochemical Exploration for Petroleum. Science, 229(4716): 821–827. https://doi.org/10.1126/science.229.4716.821 |
Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018 |
Humboldt, A., 1845. Kosmos-Entwurfeiner Weltbeschreibung. Bd. 1–4, J. G. Cottascher Verlag Stuttgart und Augsburg |
Irwin, W. P., Barnes, I., 1980. Tectonic Relations of Carbon Dioxide Discharges and Earthquakes. Journal of Geophysical Research Atmospheres, 85(B6): 3115–3121. https://doi.org/10.1029/jb085ib06p03115 |
Jaggar, T. A., 1940. Magmatic Gases. American Journal of Science, 238(5): 313–353. https://doi.org/10.2475/ajs.238.5.313 |
Jones, V. T., Droxd, R. J., 1983. Predictions of Oil or Gas Potential by Near-Surface Geochemistry. AAPG Bulletin, 67: 932–952 |
Keller, S., König, V., Mösges, R., 2014. Thermal Water Applications in the Treatment of Upper Respiratory Tract Diseases: A Systematic Review and Meta-Analysis. Journal of Allergy, 2014: 943824. https://doi.org/10.1155/2014/943824 |
King, C. Y., 1986. Gas Geochemistry Applied to Earthquake Prediction: An Overview. Journal of Geophysical Research: Solid Earth, 91(B12): 12269–12281. https://doi.org/10.1029/jb091ib12p12269 |
Lamb, W. F., Wiedmann, T., Pongratz, J., et al., 2021. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environmental Research Letters, 16(7): 073005. https://doi.org/10.1088/1748-9326/abee4e |
Laughrey, C. D., Baldassare, F. J., 2003. Some Applications of Isotope Geochemistry for Determining Sources of Stray Carbon Dioxide Gas. Environmental Geosciences, 10(3): 107–122. https://doi.org/10.1306/eg100303003 |
Laubmeyer, G., 1933. A New Geophysical Prospecting Method. Z. Petrol., 29: 1–4 |
Lebedev, V. S., 1964. Isotope Composition of Oil and Gas. Geokhimiya, 11: 1128–1137 |
Lovell, J. S., Hale, M., Webb, J. S., 1983. Soil Air Carbon Dioxide and Oxygen Measurements as a Guide to Concealed Mineralization in Semi-Arid and Arid Regions. Journal of Geochemical Exploration, 19(1/2/3): 305–317. https://doi.org/10.1016/0375-6742(83)90023-7 |
Mamyrin, B. A., Tolstikhin, I. N., 1984. Helium Isotopes in Nature, Developments in Geochemistry. Elsevier, Amsterdam, Oxford, New York, Tokyo. 273 |
Marchetti, C., 1977. On Geoengineering and the CO2 Problem. Climatic Change, 1(1): 59–68. https://doi.org/10.1007/bf00162777 |
Marini, L., 2007. Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modelling. Elsevier, Amsterdam. 453. https://doi.org/10.1016/s0921-3198(06)x8011-0 |
Martinelli, G., 2020. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences, 10(5): 189. https://doi.org/10.3390/geosciences10050189 |
Masson-Delmotte, V., Zhai, P., Pirani, A., et al., 2021. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York. 2391. _aaaaaa_paichu__ |
May, F., Freund, W., Müller, P., 1968. Modellversucheu¨ber Isotopenfraktionerung von Erdgaskomponentenwa¨hrend der Migration. Zeitschriftfür Angewandte Geologie, 14: 376 |
Mazor, E., 1972. Paleotemperatures and other Hydrological Parameters Deduced from Noble Gases Dissolved in Groundwaters; Jordan Rift Valley, Israel. Geochimica et Cosmochimica Acta, 36(12): 1321–1336. https://doi.org/10.1016/0016-7037(72)90065-8 |
Motojima, K., 1975. Geochemical Prospecting for Petroleum and Natural Gas Deposits. Reg. Min. Res. Dev. Cent., Advis. Text No 9 |
Mukhopadhyay, S., Parai R., 2019. Noble Gases: A Record of Earth's Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 47: 389–419. https://doi.org/10.1146/annurev-earth-053018-060238 |
Nakai, N., 1960. Carbon Isotope Fractionation of Natural Gas in Japan. The Journal of Earth Sciences, Nagoya University, 8: 174–180 |
Needham, J., 1986. Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 1: Paper and Printing. Caves Books, Ltd., Taipei. 504 |
Niewöhner, P., Dikilitaş, G., Erkul, E., et al., 2013. Bronze Age Höyüks, Iron Age Hilltop Forts, Roman Poleis and Byzantine Pilgrimage in Germia and Its Vicinity. 'Connectivity' and a Lack of 'Definite Places' on the Central Anatolian High Plateau. Anatolian Studies, 63: 97–136. https://doi.org/10.1017/s0066154613000069 |
Olmez, I., Finnegan, D. L., Zoller, W. H., 1986. Iridium Emissions from Kilauea Volcano. Journal of Geophysical Research: Atmospheres, 91(B1): 653–663. https://doi.org/10.1029/jb091ib01p00653 |
Ozima, M., Podosek, F. A., 2002. Noble Gas Geochemistry. Cambridge University Press, Cambridge. 286 |
Paoloni, C., 1976. Storia del Metano. Sapil, Milano. 340 |
Pfanz, H., Vodnik, D., Wittmann, C., et al., 2004. Plants and Geothermal CO2 Exhalations—Survival in and Adaptation to a High CO2 Environment. Progress in Botany, 65: 499–538. https://doi.org/10.1007/978-3-642-18819-0_20 |
Pfanz, H., Yüce, G., D'Andria, F., et al., 2014. The Ancient Gates to Hell and Their Relevance to Geogenic CO2. History of Toxicology and Environmental Health, 1: 92–117 |
Philp, R. P., Crisp, P. T., 1982. Surface Geochemical Methods Used for Oil and Gas Prospecting—A Review. Journal of Geochemical Exploration, 17(1): 1–34. https://doi.org/10.1016/0375-6742(82)90017-6 |
Piccardi, L., Monti, C., Vaselli, O., et al., 2008. Scent of a Myth: Tectonics, Geochemistry and Geomythology at Delphi (Greece). Journal of the Geological Society, 165(1): 5–18. https://doi.org/10.1144/0016-76492007-055 |
Pik, R., Marty, B., Hilton, D. R., 2006. How many Mantle Plumes in Africa? the Geochemical Point of View. Chemical Geology, 226(3/4): 100–114. https://doi.org/10.1016/j.chemgeo.2005.09.016 |
Pinti, D. L., van Drom, E., 1998. PALEOTEMP: A Mathematica® Program for Evaluating Paleotemperatures from the Concentration of Atmosphere-Derived Noble Gases in Ground Water. Computers & Geosciences, 24(1): 33–41. https://doi.org/10.1016/s0098-3004(97)00126-x |
Pinti, D., 2005. The Origin and Evolution of the Oceans. In: Gargaud, M., Barbier, B., Martin, H., et al., eds., Lectures in Astrobiology, Vol. 1. Springer, Berlin. 83–112 |
Polyak, B. G., Tolstikhin, I. N., Khutorskoi, M. D., 2020. Ascending Heat and Mass Flow in Continental Crust: On the Problem of Driving Forces of Tectogenesis. Izvestiya, Physics of the Solid Earth, 56(4): 490–510. https://doi.org/10.1134/s1069351320030088 |
Reynolds, J. H., 1956. High Sensitivity Mass Spectrometer for Noble Gas Analysis. Review of Scientific Instruments, 27(11): 928–934. https://doi.org/10.1063/1.1715415 |
Romanak, K., Dixon, T., 2022. CO2 Storage Guidelines and the Science of Monitoring: Achieving Project Success under the California Low Carbon Fuel Standard CCS Protocol and other Global Regulations. International Journal of Greenhouse Gas Control, 113: 103523. https://doi.org/10.1016/j.ijggc.2021.103523 |
Ross, B., Amter, S., 1989. Subsurface Transport in Water and Gas. Engineering Geology, 26(4): 373–403. https://doi.org/10.1016/0013-7952(89)90023-9 |
Rubey, W. W., 1951. Geologic History of Sea Water. Geological Society of America Bulletin, 62(9): 1111–1158. https://doi.org/10.1130/0016-7606(1951)62[1111:ghosw]2.0.co;2 |
Sainte-Claire Deville, C., 1856. Memoire sur les Emanations Volcaniques. Bulletin de la Société Géologique de France, 14: 254–279 |
Sano, Y., Marty, B., 1995. Origin of Carbon in Fumarolic Gas from Island Arcs. Chemical Geology, 119(1/2/3/4): 265–274. https://doi.org/10.1016/0009-2541(94)00097-r |
Sano, Y., Wakita, H., 1985. Geographical Distribution of 3He/4He Ratios in Japan: Implications for Arc Tectonics and Incipient Magmatism. Journal of Geophysical Research: Solid Earth, 90(B10): 8729–8741. https://doi.org/10.1029/jb090ib10p08729 |
Simmons, S. F., Sawkins, F. J., Schlutter, D. J., 1987. Mantle-Derived Helium in Two Peruvian Hydrothermal Ore Deposits. Nature, 329(6138): 429–432. https://doi.org/10.1038/329429a0 |
Sisto, M., di Lisio, A., Russo, F., 2020. The Mefite in the Ansanto Valley (Southern Italy): A Geoarchaeosite to Promote the Geotourism and Geoconservation of the Irpinian Cultural Landscape. Geoheritage, 12(1): 1–18. https://doi.org/10.1007/s12371-020-00450-x |
Soentgen, J., 2010. On the History and Prehistory of CO2. Foundations of Chemistry, 12(2): 137–148. https://doi.org/10.1007/s10698-009-9081-x |
Sokolov, V. A., 1933. New Methods of Prospecting for Oil and Gas Deposits. Trudy Neftyanoi, 27: 28 |
Sun, L. L., Dou, H. E., Li, Z. P., et al., 2018. Assessment of CO2 Storage Potential and Carbon Capture, Utilization and Storage Prospect in China. Journal of the Energy Institute, 91(6): 970–977. https://doi.org/10.1016/j.joei.2017.08.002 |
Tchindjang, M., 2018. Lake Nyos, a Multirisk and Vulnerability Appraisal. Geosciences, 8(9): 312. https://doi.org/10.3390/geosciences8090312 |
The Group of Hydro-Chemistry, the Seismological Brigade of Hebei Province, 1975. Studies on Forecasting Earthquakes in Light of the Abnormal Variations of Rn Concentration in Groundwater. Acta Geophysica Sinica, 18(4): 279–283 (in Chinese with English Abstract) |
Treibs, A., 1936. Chlorophyll-Und Häminderivate in Organischen Mineralstoffen. Angewandte Chemie, 49(38): 682–686. https://doi.org/10.1002/ange.19360493803 |
Toutain, J. P., Baubron, J. C., 1999. Gas Geochemistry and Seismotectonics: A Review. Tectonophysics, 304(1/2): 1–27. https://doi.org/10.1016/S0040-1951(98)00295-9 |
Turner, G., Burnard, P., Ford, J. W., et al., 1993. Tracing Fluid Sources and Interactions. Philosophical Transactions of the Royal Society of London, 344: 127–140 doi: 10.1098/rsta.1993.0081 |
Vernadsky, W., 1924. La Géochimie. Librarie Felix Alcan, Paris. 404 |
von Buttlar, H., Wendt, I., 1958. Ground-Water Studies in New Mexico Using Tritium as a Tracer. Transactions, American Geophysical Union, 39(4): 660–668. https://doi.org/10.1029/tr039i004p00660 doi: 10.1029/TR039i004p00660 |
Vyshemirskii, V. S., 1977. Investigations in Gas and Oil Geochemistry. Geol. Geofiz., 12: 81–87 (in Russian) |
UNSCEAR (United Nations Scientific Committee on the effects of Atomic Radiation), 2008. Sources and Effects of Ionizing Radiation. Report to General Assembly, Annex B, United Nations, New York |
Ulomov, V. I., Mavashev, B. Z., 1971. Forerunners of the Tashkent Earthquakes. Izv. Akad. Nauk Uzb. SSR, 3: 188–200 |
Wakita, H., Nakamura, Y., Sano, Y., 1988. Short-Term and Intermediate-Term Geochemical Precursors. Pure and Applied Geophysics, 126(2/3/4): 267–278. https://doi.org/10.1007/bf00878999 |
Wang, S., Kuang, J., Huang, X. L., et al., 2022. Upwelling of Mantle-Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica—English Edition, 96(1): 100–110. https://doi.org/10.1111/1755-6724.14686 |
Weber, U. W., Kipfer, R., Horstmann, E., et al., 2021. Noble Gas Tracers in Gas Streams at Norwegian CO2 Capture Plants. International Journal of Greenhouse Gas Control, 106: 103238. https://doi.org/10.1016/j.ijggc.2020.103238 |
Wei, Y. M., Kang, J. N., Liu, L. C., et al., 2021. A Proposed Global Layout of Carbon Capture and Storage in Line with a 2 ℃ Climate Target. Nature Climate Change, 11(2): 112–118. https://doi.org/10.1038/s41558-020-00960-0 |
West, J. B., 2015. Joseph Black, Carbon Dioxide, Latent Heat, and the Beginnings of the Discovery of the Respiratory Gases. Essays on the History of Respiratory Physiology, 306: L1057–L1063. https://doi.org/10.1007/978-1-4939-2362-5_9 |
Williams-Jones, G., Rymer, H., 2000. Hazards of Volcanic Gases. In: Sigurdsson, H., ed., Encyclopedia of Volcanoes. Elsevier, New York. 997–1004 |
Xie, G. Q., Mao, J. W., Li, W., et al., 2016. Different Proportion of Mantle-Derived Noble Gases in the Cu-Fe and Fe Skarn Deposits: He-Ar Isotopic Constraint in the Edong District, Eastern China. Ore Geology Reviews, 72: 343–354. https://doi.org/10.1016/j.oregeorev.2015.08.004 |
Xu, C., Wang, Y. P., Li, L. L., 2020. Study on Spatiotemporal Distribution of the Tropospheric NO2 Column Concentration in China and Its Relationship to Energy Consumption Based on the Time-Series Data from 2005 to 2013. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(17): 2130–2144. https://doi.org/10.1080/15567036.2019.1607931 |
Xu, S., Zheng, G. D., Zheng, J. J., et al., 2017. Mantle-Derived Helium in Foreland Basins in Xinjiang, Northwest China. Tectonophysics, 694: 319–331. https://doi.org/10.1016/j.tecto.2016.11.015 |
Xu, Y. C., 1976. Application of the Noble Gases and Their Isotopes in Petroleum Geology. Translated Papers on Petroleum Geology (3). Science Press, Beijing. 299–308 (in Chinese) |
Yergey, A. L., Yergey, A. K., 2020. Preparative Scale Mass Spectrometry: A Brief History of the Calutron. Journal of Mass Spectrometry, 55(8): e4509. https://doi.org/10.1002/jms.4509 |
Zartman, R. E., Wasserburg, G. J., Reynolds, J. H., 1961. Helium, Argon, and Carbon in some Natural Gases. Journal of Geophysical Research Atmospheres, 66(1): 277–306. https://doi.org/10.1029/jz066i001p00277 |
Zhang, M., Niu, Y., Hu, P., 2009. Volatiles in the Mantle Lithosphere: Modes of Occurrence and Chemical Compositions. In: Anderson, J. E., Coates, R. W., eds., The Lithosphere: Geochemistry, Geology and Geophysics. Nova Science Publishers Inc., New York. 171–212 |
Zhang, M. L., Liu, W. J., Guan, L. F., et al., 2022. First Estimates of Hydrothermal Helium Fluxes in Continental Collision Settings: Insights from the Southeast Tibetan Plateau Margin. Geophysical Research Letters, 49(11). https://doi.org/10.1029/2022gl098228 |
Zhang, M. L., Xu, S., Zhou, X. C., et al., 2021. Deciphering a Mantle Degassing Transect Related with India-Asia Continental Convergence from the Perspective of Volatile Origin and Outgassing. Geochimica et Cosmochimica Acta, 310: 61–78. https://doi.org/10.1016/j.gca. 2021.07.010 doi: 10.1016/j.gca.2021.07.010 |
Zheng, G. D., Zhao, W. B., Chen, Z., et al., 2021. Brief Introduction of 10-Year's Investigation and Study on Geological Greenhouse Gas Emission in China. Bulletin of Mineralogy, Petrology, and Geochemistry, 40(6): 1250–1271 (in Chinese with English Abstract) |
Zhou, X. C., Du, J. G., Chen, Z., et al., 2010. Geochemistry of Soil Gas in the Seismic Fault Zone Produced by the Wenchuan Ms 8.0 Earthquake, Southwestern China. Geochemical Transactions, 11: 5. https://doi.org/10.1186/1467-4866-11-5 |