Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Quan Ou, Jing-Yi Liu, Feng Zi, Bruna B. Carvalho, Xiaoping Long, Jian-Qing Lai, Kun Wang, Zi-Qi Jiang, Yi-Zhi Liu, Zheng-Lin Li, Hong-Yun Wang. Late Mesozoic Wangxiang Composite Granitic Pluton, South China Block: Implications to Magma Emplacement and Evolution from Geochemical Proxies. Journal of Earth Science, 2025, 36(2): 485-507. doi: 10.1007/s12583-022-1760-8
Citation: Quan Ou, Jing-Yi Liu, Feng Zi, Bruna B. Carvalho, Xiaoping Long, Jian-Qing Lai, Kun Wang, Zi-Qi Jiang, Yi-Zhi Liu, Zheng-Lin Li, Hong-Yun Wang. Late Mesozoic Wangxiang Composite Granitic Pluton, South China Block: Implications to Magma Emplacement and Evolution from Geochemical Proxies. Journal of Earth Science, 2025, 36(2): 485-507. doi: 10.1007/s12583-022-1760-8

Late Mesozoic Wangxiang Composite Granitic Pluton, South China Block: Implications to Magma Emplacement and Evolution from Geochemical Proxies

doi: 10.1007/s12583-022-1760-8
More Information
  • Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution. Here, we present zircon U-Pb ages and Hf isotope, whole-rock major and trace element compositions and Nd-Pb isotopes of the Wangxiang composite pluton, South China. New ages obtained show that these rocks were generated in Late Jurassic (ca. 156–158 Ma). The rocks are divided into low silica (SiO2 < 67 wt.%, biotite granodiorites and their dioritic enclaves) and high silica ones (SiO2 > 71 wt.%, two-mica granites, garnet-bearing muscovite granites and muscovite granites). The high silica rocks are enriched in light rare earth elements (LREEs) relative to heavy REEs (HREEs) ((La/Yb)N = 15.6–41.9, while the low silica rocks are not (0.7–76.6). All rocks show various negative Ti, Sr, Eu and strong positive Pb anomalies. The low silica rocks have less negative values of εNd(t) (-8.79 to -6.99), similar values of (206Pb/204Pb)i (18.155–18.346) and εHf(t) (-9.51 to -3.47, except one -12.84), compared to the high silica rocks (εNd(t) = -11.14 to -10.26; (206Pb/204Pb)i = 17.935–19.093; εHf(t) = -12.03 to -7.15, except one -2.41). Data suggest that the parental magma of the studied rocks (represented by enclaves) was produced by partial melting of a garnet-free crustal source. Subsequently those crustal magmas formed the more evolved units through assimilation and fractional crystallization processes, and fluid enrichment during the final magmatic activity. Combining our results with previous multidisciplinary studies, we propose that the key factor to control the evolution of Wangxiang composite pluton is discrete emplacement of crustal magmas by dyking.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1760-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Altherr, R., Siebel, W., 2002. Ⅰ-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397–415. https://doi.org/10.1007/s00410-002-0352-y
    Alves, A., de Assis Janasi, V., Simonetti, A., et al., 2010. Microgranitic Enclaves as Products of Self-Mixing Events: A Study of Open-System Processes in the Mauá Granite, São Paulo, Brazil, Based on in situ Isotopic and Trace Elements in Plagioclase. Journal of Petrology, 50(12): 2221–2247. https://doi.org/10.1093/petrology/egp074
    Alves, A., de Souza Pereira, G., de Assis Janasi, V., et al., 2015. The Origin of Felsic Microgranitoid Enclaves: Insights from Plagioclase Crystal Size Distributions and Thermodynamic Models. Lithos, 239: 33–44. https://doi.org/10.1016/j.lithos.2015.09.027
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Anderson, A. T. Jr, Newman, S., Williams, S. N., et al., 1989. H2O, CO2, CI, and Gas in Plinian and Ash-Flow Bishop Rhyolite. Geology, 17(3): 221. https://doi.org/10.1130/0091-7613(1989)0170221:hoccag>2.3.co;2 doi: 10.1130/0091-7613(1989)0170221:hoccag>2.3.co;2
    Andrews, B. J., Manga, M., 2014. Thermal and Rheological Controls on the Formation of Mafic Enclaves or Banded Pumice. Contributions to Mineralogy and Petrology, 167(1): 1–16. https://doi.org/10.1007/s00410-013-0961-7
    Annen, C., Scaillet, B., Sparks, R. S. J., 2006. Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex: The Manaslu Leucogranite, Nepal Himalaya. Journal of Petrology, 47(1): 71–95. https://doi.org/10.1093/petrology/egi068
    Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5
    Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4): 155–177. https://doi.org/10.1016/j.lithos.2004.05.010
    Bartoli, O., 2021. Granite Geochemistry is not Diagnostic of the Role of Water in the Source. Earth and Planetary Science Letters, 564: 116927. https://doi.org/10.1016/j.epsl.2021.116927
    Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. https://doi.org/10.1007/s004100050159
    Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1/2): 63–74. https://doi.org/10.1007/s007100200032
    Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 Kb. Journal of Petrology, 32(2): 365–401. https://doi.org/10.1093/petrology/32.2.365
    Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
    BGMRHN (Bureau of Geology and Mineral Resources of Hunan Province), 1988. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Blevin, P. L., Chappell, B. W., 1992. The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 305–316. https://doi.org/10.1017/s0263593300007987
    Blundy, J., Cashman, K., 2001. Ascent-Driven Crystallisation of Dacite Magmas at Mount St Helens, 1980–1986. Contributions to Mineralogy and Petrology, 140(6): 631–650. https://doi.org/10.1007/s004100000219
    Bouchez, J. L., 1997. Granite is Never Isotropic: An Introduction to AMS Studies of Granitic Rocks, In: Bouchez, J. L., Hutton, D. H. W., Stephens, W. E., eds., Granite: From Segregation of Melt to Emplacement Fabrics, Kluwer Academic Publishers, Dordrecht
    Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton
    Buick, I. S., Clark, C., Rubatto, D., et al., 2010. Constraints on the Proterozoic Evolution of the Aravalli-Delhi Orogenic Belt (NW India) from Monazite Geochronology and Mineral Trace Element Geochemistry. Lithos, 120(3/4): 511–528. https://doi.org/10.1016/j.lithos.2010.09.011
    Burton-Johnson, A., MacPherson, C. G., Hall, R., 2017. Internal Structure and Emplacement Mechanism of Composite Plutons: Evidence from Mt Kinabalu, Borneo. Journal of the Geological Society, 174(1): 180–191. https://doi.org/10.1144/jgs2016-041
    Byerly, A., Tikoff, B., Kahn, M., et al., 2017. Internal Fabrics of the Idaho Batholith, USA. Lithosphere, 9(2): 283–298. https://doi.org/10.1130/l551.1
    Carvalho, B. B., Bartoli, O., Ferri, F., et al., 2019. Anatexis and Fluid Regime of the Deep Continental Crust: New Clues from Melt and Fluid Inclusions in Metapelitic Migmatites from Ivrea Zone (NW Italy). Journal of Metamorphic Geology, 37(7): 951–975. https://doi.org/10.1111/jmg.12463
    Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111–1138. https://doi.org/10.1093/petrology/28.6.1111
    Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1–26. https://doi.org/10.1017/s0263593300007720
    Charvet, J., 2013. The Neoproterozoic–Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198–209. https://doi.org/10.1016/j.jseaes.2013.02.015
    Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301–314. https://doi.org/10.1016/j.jseaes.2014.07.022
    Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101–133. https://doi.org/10.1016/s0040-1951(97)00186-8
    Clemens, J. D., Buick, I. S., Kisters, A. F. M., 2017. The Donkerhuk Batholith, Namibia: A Giant S-Type Granite Emplaced in the Mid Crust, in a Fore-Arc Setting. Journal of the Geological Society, 174(1): 157–169. https://doi.org/10.1144/jgs2016-028
    Clemens, J. D., Mawer, C. K., 1992. Granitic Magma Transport by Fracture Propagation. Tectonophysics, 204(3/4): 339–360. https://doi.org/10.1016/0040-1951(92)90316-x
    Coleman, D. S., Gray, W., Glazner, A. F., 2004. Rethinking the Emplacement and Evolution of Zoned Plutons: Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5): 433. https://doi.org/10.1130/g20220.1
    Cruden, A. R., 1988. Deformation around a Rising Diapir Modeled by Creeping Flow Past a Sphere. Tectonics, 7(5): 1091–1101. https://doi.org/10.1029/tc007i005p01091
    Cruden, A. R., 1998. On the Emplacement of Tabular Granites. Journal of the Geological Society, 155(5): 853–862. https://doi.org/10.1144/gsjgs.155.5.0853
    de Saint Blanquat, M., Horsman, E., Habert, G., et al., 2011. Multiscale Magmatic Cyclicity, Duration of Pluton Construction, and the Paradoxical Relationship between Tectonism and Plutonism in Continental Arcs. Tectonophysics, 500(1/2/3/4): 20–33. https://doi.org/10.1016/j.tecto.2009.12.009
    del Potro, R., Díez, M., Blundy, J., et al., 2013. Diapiric Ascent of Silicic Magma beneath the Bolivian Altiplano. Geophysical Research Letters, 40(10): 2044–2048. https://doi.org/10.1002/grl.50493
    Deng, T., Xu, D. R., Chi, G. X., et al., 2019. Revisiting the ca. 845–820-Ma S-Type Granitic Magmatism in the Jiangnan Orogen: New Insights on the Neoproterozoic Tectono-Magmatic Evolution of South China. International Geology Review, 61(4): 383–403. https://doi.org/10.1080/00206814.2018.1426054
    Ding, X., Sun, W. D., Chen, W. F., et al., 2015. Multiple Mesozoic Magma Processes Formed the 240–185 Ma Composite Weishan Pluton, South China: Evidence from Geochronology, Geochemistry, and Sr-Nd Isotopes. International Geology Review, 57(9/10): 1189–1217. https://doi.org/10.1080/00206814.2014.905997
    Dingwell, D. B., Knoche, R., Webb, S. L., 1993. The Effect of P2O5 on the Viscosity of Haplogranitic Liquid. European Journal of Mineralogy, 5(1): 133–140. https://doi.org/10.1127/ejm/5/1/0133
    Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247–265. https://doi.org/10.1007/s00410-005-0652-0
    Dyck, B., Holness, M., 2022. Microstructural Evidence for Convection in High-Silica Granite. Geology, 50(3): 295–299. https://doi.org/10.1130/g49431.1
    Eichelberger, J. C., 1980. Vesiculation of Mafic Magma during Replenishment of Silicic Magma Reservoirs. Nature, 288(5790): 446–450. https://doi.org/10.1038/288446a0
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071–2088. https://doi.org/10.1016/s0016-7037(99)00153-2
    Geng, J. Z., Li, H. K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508–1513 (in Chineses with English Abstract)
    Glazner, A. F., Bartley, J. M., Coleman, D. S., et al., 2020. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology, 175(4): 1–17. https://doi.org/10.1007/s00410-020-01677-1
    Guan, Y. L., Yuan, C., Sun, M., et al., 2014. Ⅰ-Type Granitoids in the Eastern Yangtze Block: Implications for the Early Paleozoic Intracontinental Orogeny in South China. Lithos, 206/207: 34–51. https://doi.org/10.1016/j.lithos.2014.07.016
    Guo, C. L., Wilde, S. A., Henderson, R. A., et al., 2020. Cogenetic Dykes the Key to Identifying Diverse Magma Batches in the Assembly of Granitic Plutons. Journal of Petrology, 61(11/12): egaa105. https://doi.org/10.1093/petrology/egaa105
    Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1/2/3): 107–114. https://doi.org/10.1016/0009-2541(91)90051-r
    He, B., Xu, Y. G., Paterson, S., 2009. Magmatic Diapirism of the Fangshan Pluton, Southwest of Beijing, China. Journal of Structural Geology, 31(6): 615–626. https://doi.org/10.1016/j.jsg.2009.04.007
    Hodge, K. F., Carazzo, G., Jellinek, A. M., 2012a. Experimental Constraints on the Deformation and Breakup of Injected Magma. Earth and Planetary Science Letters, 325/326: 52–62. https://doi.org/10.1016/j.epsl.2012.01.031
    Hodge, K. F., Carazzo, G., Montague, X., et al., 2012b. Magmatic Structures in the Tuolumne Intrusive Suite, California: A New Model for the Formation and Deformation of Ladder Dikes. Contributions to Mineralogy and Petrology, 164(4): 587–600. https://doi.org/10.1007/s00410-012-0760-6
    Holden, P., Halliday, A. N., Stephens, W. E., 1987. Neodymium and Strontium Isotope Content of Microdiorite Enclaves Points to Mantle Input to Granitoid Production. Nature, 330(6143): 53–56. https://doi.org/10.1038/330053a0
    Holness, M. B., Martin, V. M., Pyle, D. M., 2005. Information about Open-System Magma Chambers Derived from Textures in Magmatic Enclaves: The Kameni Islands, Santorini, Greece. Geological Magazine, 142(6): 637–649. https://doi.org/10.1017/s0016756805001172
    Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637–648. https://doi.org/10.1016/j.gca.2004.07.006
    Hu, J. L., Xu, D. M., Zhang, K., et al., 2016. Zircon U-Pb Dating, Hf Isotope and REE Geochemistry of the Quartz-Porphyry in the Qibaoshan Cu-Polymetallic Deposit in Hunan. Geotectonica et Metallogenia, 40(6): 1185–1199 (in Chinese with English Abstract)
    Huang, F., He, Y. S., 2010. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-Type Adakites. Chinese Science Bulletin, 55(22): 2428–2439. https://doi.org/10.1007/s11434-010-3224-2
    Huppert, H. E., Sparks, R. S. J., Turner, J. S., 1982. Effects of Volatiles on Mixing in Calc-Alkaline Magma Systems. Nature, 297(5867): 554–557. https://doi.org/10.1038/297554a0
    Hutton, D. H. W., 1992. Granite Sheeted Complexes: Evidence for the Dyking Ascent Mechanism. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 377–382. https://doi.org/10.1017/s0263593300008038
    Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4): 489–508. https://doi.org/10.1016/s0016-7037(99)00027-7
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171–198. https://doi.org/10.1016/s0024-4937(01)00066-4
    Ji, W. B., Chen, Y., Chen, K., et al., 2018a. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 2. Magnetic Fabrics and Gravity Survey. Journal of Geophysical Research: Solid Earth, 123(1): 711–731. https://doi.org/10.1002/2017jb014598
    Ji, W. B., Faure, M., Lin, W., et al., 2018b. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research: Solid Earth, 123(1): 689–710. https://doi.org/10.1002/2017jb014597
    Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174–193. https://doi.org/10.1016/j.jseaes.2016.07.005
    Jiang, Y. H., Jiang, S. Y., Dai, B. Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 107(3/4): 185–204. https://doi.org/10.1016/j.lithos.2008.10.006
    Langmuir, C. H., 1989. Geochemical Consequences of in situ Crystallization. Nature, 340(6230): 199–205. https://doi.org/10.1038/340199a0
    Le Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
    Li, J., 2015. Mineralogical Constraints on Magmatic and Hydrothermal Evolutions of the Mesozoic Rare-Metal Granites in South China: [Dissertation]. University of Chinese Academy of Sciences, Beijing (in Chinese)
    Li, P. C., Chen, G. H., Xu, D. R., et al., 2007. Petrological and Geochemical Characteristics and Petrogenesis of Neoproterozoic Peraluminous Granites in Northeastern Hunan Province. Geotectonica et Metallogenia, 31(1): 126–136 (in Chinese with English Abstract)
    Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91–137. https://doi.org/10.1016/j.earscirev.2019.03.003
    Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850–790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2): 341–357. https://doi.org/10.1016/j.lithos.2007.04.007
    Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202–1215. https://doi.org/10.1016/j.gr.2014.01.003
    Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1/2): 14–30. https://doi.org/10.1016/j.precamres.2006.07.009
    Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179–210. https://doi.org/10.1016/j.precamres.2007.04.021
    Liu, H. S., Martelet, G., Wang, B., et al., 2018. Incremental Emplacement of the Late Jurassic Midcrustal, Lopolith-Like Qitianling Pluton, South China, Revealed by AMS and Bouguer Gravity Data. Journal of Geophysical Research: Solid Earth, 123(10): 9249–9268. https://doi.org/10.1029/2018jb015761
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4
    Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240/241/242/243: 337–354. https://doi.org/10.1016/j.lithos.2015.11.026
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley
    Michel, J., Baumgartner, L., Putlitz, B., et al., 2008. Incremental Growth of the Patagonian Torres Del Paine Laccolith over 90 K. y. Geology, 36(6): 459. https://doi.org/10.1130/g24546a.1
    Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1/2): 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040
    Morgan, S., Law, R., Nyman, M., 1998. Laccolith-Like Emplacement Model for the Papoose Flat Pluton Based on Porphyroblast-Matrix Analysis. Geological Society of America Bulletin, 110(1): 96–110. https://doi.org/10.1130/0016-7606(1998)110<0096:llemft>2.3.co;2 doi: 10.1130/0016-7606(1998)110<0096:llemft>2.3.co;2
    O'Driscoll, B., Troll, V. R., Reavy, R. J., et al., 2006. The Great Eucrite Intrusion of Ardnamurchan, Scotland: Reevaluating the Ring-Dike Concept. Geology, 34(3): 189. https://doi.org/10.1130/g22294.1
    Park, C., Song, Y., Chung, D., et al., 2016. Recrystallization and Hydrothermal Growth of High U-Th Zircon in the Weondong Deposit, Korea: Record of Post-Magmatic Alteration. Lithos, 260: 268–285. https://doi.org/10.1016/j.lithos.2016.05.026
    Patiño Douce, A. E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55–75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
    Patiño Douce, A. E., McCarthy, T. C., 1998. Melting of Crustal Rocks Duringcontinental Collision and Subduction. In: Hacker, B. R., Liou, J. G., eds., When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer, Dordrecht, 27–55. https://doi.org/10.1007/978-94-015-9050-1_2
    Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21(1): 115–144. https://doi.org/10.1111/j.1751-908x.1997.tb00538.x
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Petford, N., Clemens, J. D., 2000. Granites are not Diapiric! Geology Today, 16(5): 180–184. https://doi.org/10.1111/j.1365-2451.2000.00008.x
    Petford, N., Cruden, A. R., McCaffrey, K. J. W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408(6813): 669–673. https://doi.org/10.1038/35047000
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891
    Rapp, R. P., Xiao, L., Shimizu, N., 2002. Experimental Constraints on the Origin of Potassium-Rich Adakites in Eastern China. Acta Petrology Sinica, 18: 293–302 http://www.oalib.com/paper/1473156
    Romer, R. L., Förster, H. J., Glodny, J., 2022. Role of Fractional Crystallization, Fluid-Melt Separation, and Alteration on the Li and B Isotopic Composition of a Highly Evolved Composite Granite Pluton: The Case of the Eibenstock Granite, Erzgebirge, Germany. Lithos, 422/423: 106722. https://doi.org/10.1016/j.lithos.2022.106722
    Rong, W., Zhang, S. B., Zheng, Y. F., et al., 2018. Mixing of Felsic Magmas in Granite Petrogenesis: Geochemical Records of Zircon and Garnet in Peraluminous Granitoids from South China. Journal of Geophysical Research: Solid Earth, 123(4): 2738–2769. https://doi.org/10.1002/2017jb014022
    Sawka, W. N., Heizler, M. T., Kistler, R. W., et al., 1990. Geochemistry of Highly Fractionated I- and S-Type Granites from the Tin-Tungsten Province of Western Tasmania. Geological Society of America Special Papers, 246: 161–180. https://doi.org/10.1130/spe246-p161
    Scaillet, B., Holtz, F., Pichavant, M., et al., 1996. Viscosity of Himalayan Leucogranites: Implications for Mechanisms of Granitic Magma Ascent. Journal of Geophysical Research: Solid Earth, 101(B12): 27691–27699. https://doi.org/10.1029/96jb01631
    Scaillet, B., Pêcher, A., Rochette, P., et al., 1995. The Gangotri Granite (Garhwal Himalaya): Laccolithic Emplacement in an Extending Collisional Belt. Journal of Geophysical Research: Solid Earth, 100(B1): 585–607. https://doi.org/10.1029/94jb01664
    Schaen, A. J., Schoene, B., Dufek, J., et al., 2021. Transient Rhyolite Melt Extraction to Produce a Shallow Granitic Pluton. Science Advances, 7(21): eabf0604. https://doi.org/10.1126/sciadv.abf0604
    Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394–409. https://doi.org/10.1007/bf00307273
    Shu, L. S., Wang, D. Z., 2006. A Comparison Study of Basin and Range Tectonics in the Western North America and Southeastern China. Geological Journal of China Universities, 12: 1–13 (in Chinese with English Abstract)
    Sirbescu, M. L. C., Nabelek, P. I., 2003. Crustal Melts below 400 ℃. Geology, 31(8): 685. https://doi.org/10.1130/g19497.1
    Skjerlie, K. P., Patiño Douce, A. E., 2002. The Fluid-Absent Partial Melting of a Zoisite-Bearing Quartz Eclogite from 1·0 to 3·2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-Zone Processes. Journal of Petrology, 43(2): 291–314. https://doi.org/10.1093/petrology/43.2.291
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Spiess, R., Langone, A., Caggianelli, A., et al., 2021. Unveiling Ductile Deformation during Fast Exhumation of a Granitic Pluton in a Transfer Zone. Journal of Structural Geology, 147: 104326. https://doi.org/10.1016/j.jsg.2021.104326
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Thomas, N., Tait, S. R., 1997. The Dimensions of Magmatic Inclusions as a Constraint on the Physical Mechanism of Mixing. Journal of Volcanology and Geothermal Research, 75(1/2): 167–178. https://doi.org/10.1016/S0377-0273(96)00034-0
    Thomas, N., Tait, S., Koyaguchi, T., 1993. Mixing of Stratified Liquids by the Motion of Gas Bubbles: Application to Magma Mixing. Earth and Planetary Science Letters, 115(1/2/3/4): 161–175. https://doi.org/10.1016/0012-821x(93)90220-4
    Thomas, R., Förster, H. J., Heinrich, W., 2003. The Behaviour of Boron in a Peraluminous Granite-Pegmatite System and Associated Hydrothermal Solutions: A Melt and Fluid-Inclusion Study. Contributions to Mineralogy and Petrology, 144(4): 457–472. https://doi.org/10.1007/s00410-002-0410-5
    Vigneresse, J. L., 1990. Use and Misuse of Geophysical Data to Determine the Shape at Depth of Granitic Intrusions. Geological Journal, 25(3/4): 249–260. https://doi.org/10.1002/gj.3350250308
    Vigneresse, J. L., Bouchez, J. L., 1997. Successive Granitic Magma Batches during Pluton Emplacement: The Case of Cabeza de Araya (Spain). Journal of Petrology, 38(12): 1767–1776. https://doi.org/10.1093/petroj/38.12.1767
    Vigneresse, J. L., Clemens, J. D., 2000. Granitic Magma Ascent and Emplacement: Neither Diapirism nor Neutral Buoyancy. Geological Society, London, Special Publications, 174(1): 1–19. https://doi.org/10.1144/gsl.sp.1999.174.01.01
    Wang, J. Q., Shu, L. S., Santosh, M., 2016. Petrogenesis and Tectonic Evolution of Lianyunshan Complex, South China: Insights on Neoproterozoic and Late Mesozoic Tectonic Evolution of the Central Jiangnan Orogen. Gondwana Research, 39: 114–130. https://doi.org/10.1016/j.gr.2016.06.015
    Wang, J. Q., Shu, L. S., Santosh, M., 2017. U-Pb and Lu-Hf Isotopes of Detrital Zircon Grains from Neoproterozoic Sedimentary Rocks in the Central Jiangnan Orogen, South China: Implications for Precambrian Crustal Evolution. Precambrian Research, 294: 175–188. https://doi.org/10.1016/j.precamres.2017.03.025
    Wang, J. Q., Shu, L. S., Santosh, M., 2018. Petrogenesis and Tectonic Significance of Late Mesozoic Granitic and Adakitic Rocks from Inland South China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Journal of the Geological Society, 175(4): 679–693. https://doi.org/10.1144/jgs2017-081
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147–163. https://doi.org/10.1016/j.lithos.2014.07.026
    Wang, L. X., Ma, C. Q., Zhang, J. Y., et al., 2008. Petrological and Geochemical Characteristics and Petrogenesis of the Early Cretaceous Taohuashan-Xiaomoshan Granites in Northeastern Hunan Province. Geological Journal of China Universities, 14(3): 334–349 (in Chinese with English Abstract)
    Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144. https://doi.org/10.1093/petrology/egi070
    Wang, W., Chen, F. K., Hu, R., et al., 2012. Provenance and Tectonic Setting of Neoproterozoic Sedimentary Sequences in the South China Block: Evidence from Detrital Zircon Ages and Hf-Nd Isotopes. International Journal of Earth Sciences, 101(7): 1723–1744. https://doi.org/10.1007/s00531-011-0746-z
    Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117–131. https://doi.org/10.1016/j.precamres.2007.06.005
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1/2): 79–103. https://doi.org/10.1016/j.precamres.2004.07.006
    Wang, Y. J., Fan, W. M., Cawood, P. A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3/4): 297–308. https://doi.org/10.1016/j.lithos.2008.07.019
    Wang, Y. J., Gan, C. S., Tan, Q. L., et al., 2018. Early Neoproterozoic (∼840 Ma) Slab Window in South China: Key Magmatic Records in the Chencai Complex. Precambrian Research, 314: 434–451. https://doi.org/10.1016/j.precamres.2018.06.002
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x
    Wei, W., Chen, Y., Faure, M., et al., 2016. An Early Extensional Event of the South China Block during the Late Mesozoic Recorded by the Emplacement of the Late Jurassic Syntectonic Hengshan Composite Granitic Massif (Hunan, SE China). Tectonophysics, 672/673: 50–67. https://doi.org/10.1016/j.tecto.2016.01.028
    Weinberg, R. F., 2006. Melt Segregation Structures in Granitic Plutons. Geology, 34(4): 305. https://doi.org/10.1130/g22406.1
    Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212/213/214/215: 158–188. https://doi.org/10.1016/j.lithos.2014.08.021
    White, L. T., Ireland, T. R., 2012. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 306/307: 78–91. https://doi.org/10.1016/j.chemgeo.2012.02.025
    Wiebe, R. A., Adams, S. D., 1997. Felsic Enclave Swarms in the Gouldsboro Granite, Coastal Maine: A Record of Eruption through the Roof of a Silicic Magma Chamber. The Journal of Geology, 105(5): 617–628. https://doi.org/10.1086/515964
    Wilson, C. J. N., Charlier, B. L. A., 2016. The Life and Times of Silicic Volcanic Systems. Elements, 12(2): 103–108. https://doi.org/10.2113/gselements.12.2.103
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219. https://doi.org/10.1007/s11430-016-5139-1
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Wyllie, P. J., Cox, K. G., Biggar, G. M., 1962. The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 3(2): 238–243. https://doi.org/10.1093/petrology/3.2.238
    Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347–363. https://doi.org/10.1016/j.precamres.2009.08.009
    Zhang, F. F., Wang, Y. J., Fan, W. M., et al., 2010. LA-ICPMS Zircon U-Pb Geochronology of Late Early Paleozoic Granites in Eastern Hunan and Western Jiangxi Provinces, South China. Geochimica, 39(5): 414–426 (in Chinese with English Abstract)
    Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241–1260. https://doi.org/10.1016/j.gr.2012.09.005
    Zhang, Y. Z., Wang, Y. J., Fan, W. M., et al., 2012. Geochronological and Geochemical Constraints on the Metasomatised Source for the Neoproterozoic (~825 Ma) High-Mg Volcanic Rocks from the Cangshuipu Area (Hunan Province) along the Jiangnan Domain and Their Tectonic Implications. Precambrian Research, 220/221: 139–157. https://doi.org/10.1016/j.precamres.2012.07.003
    Zhang, Y. Z., Wang, Y. J., Geng, H. Y., et al., 2013. Early Neoproterozoic (∼850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Research, 231: 325–342. https://doi.org/10.1016/j.precamres.2013.03.016
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. https://doi.org/10.1016/j.precamres.2012.09.017
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299–302. https://doi.org/10.1130/g31701.1
    Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. https://doi.org/10.1016/s0012-821x(01)00595-7
    Zhu, B. Q., Chen, Y. W., Peng, J. H., 2001. Lead Isotope Geochemistry of the Urban Environment in the Pearl River Delta. Applied Geochemistry, 16(4): 409–417. https://doi.org/10.1016/s0883-2927(00)00047-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(11) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return