Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Liangxuan Jiao, Zhenbing She, Dominic Papineau, Yaguan Zhang, Matthew S. Dodd, Kenan Cao, Qun Chen, Guoyong Chen. Integrated Stratigraphy and Mineralogy of the Doushantuo Formation in Weng'an, South China, and Implications for Ediacaran Phosphogenesis. Journal of Earth Science, 2024, 35(2): 476-503. doi: 10.1007/s12583-022-1765-3
Citation: Liangxuan Jiao, Zhenbing She, Dominic Papineau, Yaguan Zhang, Matthew S. Dodd, Kenan Cao, Qun Chen, Guoyong Chen. Integrated Stratigraphy and Mineralogy of the Doushantuo Formation in Weng'an, South China, and Implications for Ediacaran Phosphogenesis. Journal of Earth Science, 2024, 35(2): 476-503. doi: 10.1007/s12583-022-1765-3

Integrated Stratigraphy and Mineralogy of the Doushantuo Formation in Weng'an, South China, and Implications for Ediacaran Phosphogenesis

doi: 10.1007/s12583-022-1765-3
More Information
  • Corresponding author: Liangxuan Jiao, cug_jiaolx@163.com
  • Received Date: 01 Aug 2022
  • Accepted Date: 09 Oct 2022
  • Issue Publish Date: 30 Apr 2024
  • The Ediacaran–Cambrian Phosphogenic Episode is the Earth's first true phosphogenic event and resulted in worldwide phosphate deposits, which occurred during the processes of the Neoproterozoic Oxygenation Event. The Ediacaran Doushantuo Formation (ca. 635–551 Ma) of Weng'an area in central Guizhou, South China, contains two economic phosphorite beds (the Lower and Upper Phosphorite Beds). This paper presents a detailed stratigraphic, sedimentological and mineralogical study of multiple outcrop and drill core sections of the Doushantuo Formation across the Weng'an area, and identified 11 lithofacies and 4 types of phosphatic grains. Significant differences in lithofacies and grain types between the upper and lower phosphate deposits are observed, indicating that the two sets of phosphate deposits are the products of two distinct phosphogenic processes. The Lower Phosphorite Bed mainly consists of banded and laminated phosphorites, contains micro-oncoids formed by microbially-mediated precipitation and peloids formed by in-situ chemically oscillating reactions, indicating a biochemical and chemical enrichment of phosphorus to sediments during the Early Ediacaran Period. The Upper Phosphorite Bed is mainly composed of carbonaceous, massive, and stromatolitic phosphorites, contains bioclasts (phosphatized spheroidal fossils), and intraclasts formed by hydrodynamic agitation, suggesting that the major accesses of phosphorus to sediments were the remineralization of organic P. Deposition of the two economic phosphorite beds was controlled by two sea-level cycles. Such differences have also been documented in contemporaneous phosphate-bearing successions in Brazil and Mangolia, indicating a significant shift in global phosphogenic mechanism during the early and middle Ediacaran, which may be due to the changes in redox conditions in seawater, associated with the Neoproterozoic Oxygenation Event. These regional active P-cycle processes could produce more free oxygen, which may have contributed to the upcoming Phanerozoic global oxidation.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abram, M. B., Holz, M., 2020. Early to Middle Devonian Ironstone and Phosphorite in the Northwestern Gondwana Parnaíba Basin, Brazil: A Record of an Epeiric Margin Paleoceanographic Changes. Sedimentary Geology, 402: 105646. https://doi.org/10.1016/j.sedgeo.2020.105646
    Ahmad, F., Baioumy, H., Farouk, S., et al., 2020. Geochemistry and Stable Isotopes of the Upper Campanian–Lower Maastrichtian Phosphorite-Bearing Sequence, Central Jordan: Implications for Their Age, Origin, and Diagenesis. Geological Journal, 55(6): 4453–4468. https://doi.org/10.1002/gj.3692
    Algabri, M., She, Z. B., Jiao, L. X., et al., 2020. Apatite-Glaucony Association in the Ediacaran Doushantuo Formation, South China and Implications for Marine Redox Conditions. Precambrian Research, 347: 105842. https://doi.org/10.1016/j.precamres.2020.105842
    Álvaro, J. J., Shields-Zhou, G. A., Ahlberg, P., et al., 2016. Ediacaran-Cambrian Phosphorites from the Western Margins of Gondwana and Baltica. Sedimentology, 63(2): 350–377. https://doi.org/10.1111/sed.12217
    Ammerman, J. S., Hood, R. R., Case, D. A., et al., 2003. Phosphorus Deficiency in the Atlantic: An Emerging Paradigm on Oceanography. Eos, Transactions American Geophysical Union, 84(18): 165–170. https://doi.org/10.1029/2003eo180001
    Anderson, R. P., MacDonald, F. A., Jones, D. S., et al., 2017. Doushantuo-Type Microfossils from Latest Ediacaran Phosphorites of Northern Mongolia. Geology, 45(12): 1079–1082. https://doi.org/10.1130/g39576.1
    Anderson, R. P., McMahon, S., Macdonald, F. A., et al., 2019. Palaeobiology of Latest Ediacaran Phosphorites from the Upper Khesen Formation, Khuvsgul Group, Northern Mongolia. Journal of Systematic Palaeontology, 17(6): 501–532. https://doi.org/10.1080/14772019.2018.1443977
    Anttila, E., MacDonald, F., Bold, U., 2021. Stratigraphy of the Khuvsgul Group, Mongolia. Mongolian Geoscientist, 26(52): 2–15. https://doi.org/10.5564/mgs.v26i52.1516
    Arning, E. T., Lückge, A., Breuer, C., et al., 2009. Genesis of Phosphorite Crusts off Peru. Marine Geology, 262(1/2/3/4): 68–81. https://doi.org/10.1016/j.margeo.2009.03.006
    Banerjee, D. M., Schidlowski, M., Siebert, F., et al., 1997. Geochemical Changes across the Proterozoic-Cambrian Transition in the Durmala Phosphorite Mine Section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1/2/3/4): 183–194. https://doi.org/10.1016/S0031-0182(97)00060-6
    Barfod, G. H., Albarède, F., Knoll, A. H., et al., 2002. New Lu-Hf and Pb-Pb Age Constraints on the Earliest Animal Fossils. Earth and Planetary Science Letters, 201(1): 203–212. https://doi.org/10.1016/S0012-821x(02)00687-8
    Bertrand-Sarfati, J., Flicoteaux, R., Moussine-Pouchkine, A., et al., 1997. Lower Cambrian Apatitic Stromatolites and Phospharenites Related to the Glacio-Eustatic Cratonic Rebound (Sahara, Algeria). SEPM Journal of Sedimentary Research, 67(5): 957–974. https://doi.org/10.1306/d426868a-2b26-11d7-8648000102c1865d
    Bjerrum, C. J., Canfield, D. E., 2002. Ocean Productivity before about 1.9 Gyr ago Limited by Phosphorus Adsorption Onto Iron Oxides. Nature, 417(6885): 159–162. https://doi.org/10.1038/417159a
    Bristow, T. F., Kennedy, M. J., Derkowski, A., et al., 2009. Mineralogical Constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 106(32): 13190–13195. https://doi.org/10.1073/pnas.0901080106
    Caird, R. A., Pufahl, P. K., Hiatt, E. E., et al., 2017. Ediacaran Stromatolites and Intertidal Phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event. Sedimentary Geology, 350: 55–71. https://doi.org/10.1016/j.sedgeo.2017.01.005
    Chen, D. F., Dong, W. Q., Zhu, B. Q., et al., 2004a. Pb-Pb Ages of Neoproterozoic Doushantuo Phosphorites in South China: Constraints on Early Metazoan Evolution and Glaciation Events. Precambrian Research, 132(1/2): 123–132. https://doi.org/10.1016/j.precamres.2004.02.005
    Chen, J. Y., Bottjer, D. J., Oliveri, P., et al., 2004b. Small Bilaterian Fossils from 40 to 55 Million Years before the Cambrian. Science, 305(5681): 218–222. https://doi.org/10.1126/science.1099213
    Chen, L., Xiao, S. H., Pang, K., et al., 2014. Cell Differentiation and Germ–Soma Separation in Ediacaran Animal Embryo-Like Fossils. Nature, 516(7530): 238–241. https://doi.org/10.1038/nature13766
    Compton, J. S., Bergh, E. W., 2016. Phosphorite Deposits on the Namibian Shelf. Marine Geology, 380: 290–314. https://doi.org/10.1016/j.margeo.2016.04.006
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765
    Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian—Cambrian Boundary. Nature, 308(5956): 231–236. https://doi.org/10.1038/308231a0
    Cook, P. J., 1992. Phosphogenesis around the Proterozoic-Phanerozoic Transition. Journal of the Geological Society, 149(4): 615–620 (in Chinese with English Abstract) doi: 10.1144/gsjgs.149.4.0615
    Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28–36. https://doi.org/10.1016/j.epsl.2018.02.016
    Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126(1/2): 145–163. https://doi.org/10.1130/b30819.1
    Dodd, M. S., Papineau, D., She, Z. B., et al., 2018. Organic Remains in Late Palaeoproterozoic Granular Iron Formations and Implications for the Origin of Granules. Precambrian Research, 310: 133–152. https://doi.org/10.1016/j.precamres.2018.02.016
    Dorjnamjaa, D., 2016. Neoproterozoic–Cambrian Biostratigraphy of the Ancient Phosphate Basins of Mongolia and the Influence of Bacterial Communities on Phosphorite Accumulation: A Review. International Journal of Agriculture Innovations and Research, 5(3): 372–384
    Drummond, J. B. R., Pufahl, P. K., Porto, C. G., et al., 2015. Neoproterozoic Peritidal Phosphorite from the Sete Lagoas Formation (Brazil) and the Precambrian Phosphorus Cycle. Sedimentology, 62(7): 1978–2008. https://doi.org/10.1111/sed.12214
    Felitsyn, S. B., Bogomolov, E. S., 2020. Nd Isotope Composition of the Ediacaran and Earliest Cambrian Phosphorite Nodules and Fe Sulphide from the East European Platform. Geological Magazine, 157(12): 2081–2088. https://doi.org/10.1017/s0016756820000497
    Filippelli, G. M., 2008. The Global Phosphorus Cycle: Past, Present, and Future. Elements, 4(2): 89–95. https://doi.org/10.2113/gselements.4.2.89
    Flicoteaux, R., Trompette, R., 1998. Cratonic and Foreland Early Cambrian Phosphorites of West Africa: Palaeoceanographical and Climatical Contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 139(3/4): 107–120. https://doi.org/10.1016/S0031-0182(97)00141-7
    Föllmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 40(1/2): 55–124. https://doi.org/10.1016/0012-8252(95)00049-6
    Gan, T., Luo, T. Y., Pang, K., et al., 2021. Cryptic Terrestrial Fungus-Like Fossils of the Early Ediacaran Period. Nature Communications, 12(1): 1–12. https://doi.org/10.1038/s41467-021-20975-1
    Hein, J. R., Perkins, R. B., McIntyre, B. R., 2004. Chapter 2 Evolution of Thought Concerning the Origin of the Phosphoria Formation, Western us Phosphate Field. Life Cycle of the Phosphoria Formation-From Deposition to the Post-Mining Environment. Elsevier, Amsterdam. 19–42. https://doi.org/10.1016/s1874-2734(04)80004-4
    Ilyin, A. V., Heinsalu, H. N., 1990. Early Ordovician Shelly Phosphorites of the Baltic Phosphate Basin. Geological Society, London, Special Publications, 52(1): 253–259. https://doi.org/10.1144/gsl.sp.1990.052.01.18
    Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1/2): 303–320. https://doi.org/10.1016/j.epsl.2007.07.009
    Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849. https://doi.org/10.1016/j.gr.2011.01.006
    Jiang, G., Kennedy, M. J., Christie-Blick, N., et al., 2006. Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China. Journal of Sedimentary Research, 76: 978–995. https://doi.org/10.2110/JSR.2006.086
    Kametaka, M., Takebe, M., Nagai, H., et al., 2005. Sedimentary Environments of the Middle Permian Phosphorite-Chert Complex from the Northeastern Yangtze Platform, China; The Gufeng Formation: A Continental Shelf Radiolarian Chert. Sedimentary Geology, 174(3/4): 197–222. https://doi.org/10.1016/j.sedgeo.2004.12.005
    Kholodov, V., Paul, R. K., 2001. Geochemistry and Metallogeny of Phosphorus in the Russian Platform during the Jurassic–Cretaceous. Lithology and Mineral Resources, 36: 195–210. https://doi.org/10.1023/a%3a1010400623550
    Krajewski, K. P., 2008. The Botneheia Formation (Middle Triassic) in Edgeøya and Barentsøya, Svalbard: Lithostratigraphy, Facies, Phosphogenesis, Paleoenvironment. Polish Polar Research, 29(4): 319–364
    Krajewski, K., Karcz, P., Wozny, E., et al., 2007. Type Section of the Bravaisberget Formation (Middle Triassic) at Bravaisberget, Western Nathorst Land, Spitsbergen, Svalbard. Polish Polar Research, 28(2): 79–122
    Laakso, T. A., Sperling, E. A., Johnston, D. T., et al., 2020. Ediacaran Reorganization of the Marine Phosphorus Cycle. Proceedings of the National Academy of Sciences of the United States of America, 117(22): 11961–11967. https://doi.org/10.1073/pnas.1916738117
    Larina, E., Bottjer, D. J., Corsetti, F. A., et al., 2019. Uppermost Triassic Phosphorites from Williston Lake, Canada: Link to Fluctuating Euxinic-Anoxic Conditions in Northeastern Panthalassa before the End-Triassic Mass Extinction. Scientific Reports, 9: 18790. https://doi.org/10.1038/s41598-019-55162-2
    Lenton, T. M., Boyle, R. A., Poulton, S. W., et al., 2014. Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era. Nature Geoscience, 7(4): 257–265. https://doi.org/10.1038/ngeo2108
    Li, C., Hardisty, D. S., Luo, G., et al., 2017. Uncovering the Spatial Heterogeneity of Ediacaran Carbon Cycling. Geobiology, 15(2): 211–224. https://doi.org/10.1111/gbi.12222
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. https://doi.org/10.1126/science.1182369
    Liu, P. J., Xiao, S. H., Yin, C. Y., et al., 2008. Systematic Description and Phylogenetic Affinity of Tubular Microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51(2): 339–366. https://doi.org/10.1111/j.1475-4983.2008.00762.x
    Liu, Z. R. R., Zhou, M. F., 2017. Meishucun Phosphorite Succession (SW China) Records Redox Changes of the Early Cambrian Ocean. GSA Bulletin, 129: 1554–1567. https://doi.org/10.1130/b31612.1
    Liu, Z. R. R., Zhou, M. F., 2020. Early Cambrian Ocean Mixing Recorded by Phosphorite Successions in the Nanhua Basin, South China. Precambrian Research, 349: 105414. https://doi.org/10.1016/j.precamres.2019.105414
    Mazumdar, A., Banerjee, D. M., Schidlowski, M., et al., 1999. Rare-Earth Elements and Stable Isotope Geochemistry of Early Cambrian Chert-Phosphorite Assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chemical Geology, 156(1/2/3/4): 275–297. https://doi.org/10.1016/S0009-2541(98)00187-9
    McFadden, K. A., Huang, J., Chu, X. L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197–3202. https://doi.org/10.1073/pnas.0708336105
    Muscente, A. D., Hawkins, A. D., Xiao, S. H., 2015. Fossil Preservation through Phosphatization and Silicification in the Ediacaran Doushantuo Formation (South China): A Comparative Synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 434: 46–62. https://doi.org/10.1016/j.palaeo.2014.10.013
    Nelson, G. J., Pufahl, P. K., Hiatt, E. E., 2010. Paleoceanographic Constraints on Precambrian Phosphorite Accumulation, Baraga Group, Michigan, USA. Sedimentary Geology, 226(1/2/3/4): 9–21. https://doi.org/10.1016/j.sedgeo.2010.02.001
    Ogihara, S., 1999. Geochemical Characteristics of Phosphorite and Carbonate Nodules from the Miocene Funakawa Formation, Western Margin of the Yokote Basin, Northeast Japan. Sedimentary Geology, 125(1/2): 69–82. https://doi.org/10.1016/s0037-0738(98)00136-5
    Ounis, A., Kocsis, L., Chaabani, F., et al., 2008. Rare Earth Elements and Stable Isotope Geochemistry (δ13C and δ18O) of Phosphorite Deposits in the Gafsa Basin, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(1/2): 1–18. https://doi.org/10.1016/j.palaeo.2008.07.005
    Ouyang, Q., Zhou, C. M., Xiao, S. H., et al., 2021. Distribution of Ediacaran Acanthomorphic Acritarchs in the Lower Doushantuo Formation of the Yangtze Gorges Area, South China: Evolutionary and Stratigraphic Implications. Precambrian Research, 353: 106005. https://doi.org/10.1016/j.precamres.2020.106005
    Papineau, D., 2010. Global Biogeochemical Changes at both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10(2): 165–181. https://doi.org/10.1089/ast.2009.0360
    Papineau, D., 2020. Chemically Oscillating Reactions in the Formation of Botryoidal Malachite. American Mineralogist, 105(4): 447–454. https://doi.org/10.2138/am-2020-7029
    Papineau, D., de Gregorio, B., Fearn, S., et al., 2016. Nanoscale Petrographic and Geochemical Insights on the Origin of the Palaeoproterozoic Stromatolitic Phosphorites from Aravalli Supergroup, India. Geobiology, 14(1): 3–32. https://doi.org/10.1111/gbi.12164
    Papineau, D., Purohit, R., Fogel, M. L., et al., 2013. High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere. Earth and Planetary Science Letters, 362: 225–236. https://doi.org/10.1016/j.epsl.2012.11.050
    Papineau, D., She, Z. B., Dodd, M. S., 2017. Chemically-Oscillating Reactions during the Diagenetic Oxidation of Organic Matter and in the Formation of Granules in Late Palaeoproterozoic Chert from Lake Superior. Chemical Geology, 470: 33–54. https://doi.org/10.1016/j.chemgeo.2017.08.021
    Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467(7319): 1088–1090. https://doi.org/10.1038/nature09485
    Poulton, T. P., Aitken, J. D., 1989. The Lower Jurassic Phosphorites of Southeastern British Columbia and Terrane Accretion to Western North America. Canadian Journal of Earth Sciences, 26(8): 1612–1616. https://doi.org/10.1139/e89-137
    Pufahl, P. K., Grimm, K. A., 2003. Coated Phosphate Grains: Proxy for Physical, Chemical, and Ecological Changes in Seawater. Geology, 31(9): 801–804. https://doi.org/10.1130/g19658.1
    Pufahl, P. K., Groat, L. A., 2017. Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper. Economic Geology, 112(3): 483–516. https://doi.org/10.2113/econgeo.112.3.483
    Reinhard, C. T., Planavsky, N. J., Gill, B. C., et al., 2017. Evolution of the Global Phosphorus Cycle. Nature, 541(7637): 386–389. https://doi.org/10.1038/nature20772
    Sahoo, S. K., Planavsky, N. J., Jiang, G., et al., 2016. Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 14(5): 457–468. https://doi.org/10.1111/gbi.12182
    Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546–549. https://doi.org/10.1038/nature11445
    Salama, W., El-Kammar, A., Saunders, M., et al., 2015. Microbial Pathways and Palaeoenvironmental Conditions Involved in the Formation of Phosphorite Grains, Safaga District, Egypt. Sedimentary Geology, 325: 41–58. https://doi.org/10.1016/j.sedgeo.2015.05.004
    Salama, W., Khirekesh, Z., Amini, A., et al., 2018. Diagenetic Evolution of the Upper Devonian Phosphorites, Alborz Mountain Range, Northern Iran. Sedimentary Geology, 376: 90–112. https://doi.org/10.1016/j.sedgeo.2018.08.001
    Sanders, C., Grotzinger, J., 2021. Sedimentological and Stratigraphic Constraints on Depositional Environment for Ediacaran Carbonate Rocks of the São Francisco Craton: Implications for Phosphogenesis and Paleoecology. Precambrian Research, 363: 106328. https://doi.org/10.1016/j.precamres.2021.106328
    Schöllhorn, I., Houben, A., Gertsch, B., et al., 2019. Enhanced Upwelling and Phosphorite Formation in the Northeastern Pacific during the Late Oligocene: Depositional Mechanisms, Environmental Conditions, and the Impact of Glacio-Eustacy. Geological Society of America Bulletin, 132(3–4): 687–709
    Schwid, M. F., Xiao, S. H., Hiatt, E. E., et al., 2020. Iron Phosphate in the Ediacaran Doushantuo Formation of South China: A Previously Undocumented Marine Phosphate Sink. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 109993. https://doi.org/10.1016/j.palaeo.2020.109993 doi: 10.1016/j.palaeo.2020.109993s
    She, Z., Strother, P., Mcmahon, G., et al., 2013. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites Ⅰ: In situ Micro-Analysis of Textures and Composition. Precambrian Research, 235(3): 20–35. https://doi.org/10.1016/j.precamres.2013.05.011
    She, Z. B., Strother, P., Papineau, D., 2014. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites Ⅱ: Microbial Diversity and C Isotopes. Precambrian Research, 251: 62–79. https://doi.org/10.1016/j.precamres.2014.06.004
    She, Z. B., Zhang, Y. T., Liu, W., et al., 2016. New Observations of Ambient Inclusion Trails (AITs) and Pyrite Framboids in the Ediacaran Doushantuo Formation, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 374–388. https://doi.org/10.1016/j.palaeo.2016.08.035
    Shields-Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4–11. https://doi.org/10.1130/gsatg102a.1
    Silva, P. L., Bustin, R. M., 2020. Significance and Distribution of Apatite in the Triassic Doig Phosphate Zone, Western Canada Sedimentary Basin. Minerals, 10(10): 904. https://doi.org/10.3390/min10100904
    Song, X., Zeng, D., Cai, J., et al., 2020. Geological Characteristics and Ore-Controlling Factors of No. Ⅱ Ore Body of Yingping Phosphate Deposit, Guizhou Province. Mineral Exploration, 11(1): 136–149 (in Chinese with English Abstract)
    Soudry, D., 1992. Primary Bedded Phosphorites in the Campanian Mishash Formation, Negev, Southern Israel. Sedimentary Geology, 80(1/2): 77–88. https://doi.org/10.1016/0037-0738(92)90033-n
    Soudry, D., Southgat, P. N., 1989. Ultrastructure of a Middle Cambrian Primary Nonpelletal Phosphorite and Its Early Transformation into Phosphate Vadoids: Georgina Basin, Australia. SEPM Journal of Sedimentary Research, 59(1): 53–64. https://doi.org/10.1306/212f8f17-2b24-11d7-8648000102c1865d
    Swett, K., Crowder, R. K., 1982. Primary Phosphatic Oolites from the Lower Cambrian of Spitsbergen. SEPM Journal of Sedimentary Research, 52(2): 587–593. https://doi.org/10.1306/212f7fa9-2b24-11d7-8648000102c1865d
    Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Science, Oxford
    Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400(6744): 525–531. https://doi.org/10.1038/22941
    Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347. https://doi.org/10.1130/g24513a.1
    Wang, W., Guan, C., Zhou, C., et al., 2017. Integrated Carbon, Sulfur, and Nitrogen Isotope Chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial Gradient, Ocean Redox Oscillation, and Fossil Distribution. Geobiology, 15(4): 552–571. https://doi.org/10.1111/gbi.12226
    Wang, X. C., Li, X. H., Li, Z. X., et al., 2012. Episodic Precambrian Crust Growth: Evidence from U-Pb Ages and Hf-O Isotopes of Zircon in the Nanhua Basin, Central South China. Precambrian Research, 222/223: 386–403. https://doi.org/10.1016/j.precamres.2011.06.001
    Wang, Z. C., Liu, J. J., Jiang, H., et al., 2019. Lithofacies Paleogeography and Exploration Significance of Sinian Doushantuo Depositional Stage in the Middle–Upper Yangtze Region, Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 41–53. https://doi.org/10.1016/S1876-3804(19)30004-7
    Wigley, R. A., Compton, J. S., 2013. Microstratigraphy of a Miocene Layered Phosphatic Pebble from the Western Margin of South Africa. Sedimentology, 60(3): 666–678. https://doi.org/10.1111/j.1365-3091.2012.01355.x
    Xiao, S., 2004. New Multicellular Algal Fossils and Acritarchs in Doushantuo Chert Nodules (Neoproterozoic; Yangtze Gorges, South China). Journal of Paleontology, 78(2): 393–401 doi: 10.1666/0022-3360(2004)078<0393:NMAFAA>2.0.CO;2
    Xiao, S. H., Bykova, N., Kovalick, A., et al., 2017. Stable Carbon Isotopes of Sedimentary Kerogens and Carbonaceous Macrofossils from the Ediacaran Miaohe Member in South China: Implications for Stratigraphic Correlation and Sources of Sedimentary Organic Carbon. Precambrian Research, 302: 171–179. https://doi.org/10.1016/j.precamres.2017.10.006
    Xiao, S. H., McFadden, K. A., Peek, S., et al., 2012. Integrated Chemostratigraphy of the Doushantuo Formation at the Northern Xiaofenghe Section (Yangtze Gorges, South China) and Its Implication for Ediacaran Stratigraphic Correlation and Ocean Redox Models. Precambrian Research, 192/193/194/195: 125–141. https://doi.org/10.1016/j.precamres.2011.10.021
    Xiao, S. H., Zhang, Y., Knoll, A. H., 1998. Three-Dimensional Preservation of Algae and Animal Embryos in a Neoproterozoic Phosphorite. Nature, 391(6667): 553–558. https://doi.org/10.1038/35318
    Xiao, S. H., Zhou, C. M., Liu, P. J., et al., 2014. Phosphatized Acanthomorphic Acritarchs and Related Microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and Their Implications for Biostratigraphic Correlation. Journal of Paleontology, 88(1): 1–67. https://doi.org/10.1666/12-157r
    Xiao, S., Knoll, A. H., 2000. Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767–788
    Yang, H. Y., Xiao, J. F., Xia, Y., et al., 2019. Origin of the Ediacaran Weng'an and Kaiyang Phosphorite Deposits in the Nanhua Basin, SW China. Journal of Asian Earth Sciences, 182: 103931. https://doi.org/10.1016/j.jseaes.2019.103931
    Yang, H. Y., Xiao, J. F., Xia, Y., et al., 2021. Phosphorite Generative Processes around the Precambrian–Cambrian Boundary in South China: An Integrated Study of Mo and Phosphate O Isotopic Compositions. Geoscience Frontiers, 12(5): 101187. https://doi.org/10.1016/j.gsf.2021.101187
    Yang, H. Y., Xiao, J. F., Xia, Y., et al., 2022. Diagenesis of Ediacaran―Early Cambrian Phosphorite: Comparisons with Recent Phosphate Sediments Based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813. https://doi.org/10.1016/j.oregeorev.2022.104813
    Yin, C. Y., Tang, F., Liu, Y. Q., et al., 2005. U-Pb Zircon Age from the Base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: Constraint on the Age of Marinoan Glaciation. Episodes, 28(1): 48–51. https://doi.org/10.18814/epiiugs/2005/v28i1/006
    Yin, Z. J., Zhu, M. Y., Davidson, E. H., et al., 2015. Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 112(12): E1453–E1460. https://doi.org/10.1073/pnas.1414577112
    Yuan, X. L., Chen, Z., Xiao, S. H., et al., 2011. An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes. Nature, 470(7334): 390–393. https://doi.org/10.1038/nature09810
    Zarasvandi, A., Fereydouni, Z., Pourkaseb, H., et al., 2019. Geochemistry of Trace Elements and Their Relations with Organic Matter in Kuh-e-Sefid Phosphorite Mineralization, Zagros Mountain, Iran. Ore Geology Reviews, 104: 72–87. https://doi.org/10.1016/j.oregeorev.2018.10.013
    Zhang, S. H., Jiang, G. Q., Zhang, J. M., et al., 2005. U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 33(6): 473–476. https://doi.org/10.1130/g21418.1
    Zhang, Y. G., Pufahl, P. K., Du, Y. S., et al., 2019. Economic Phosphorite from the Ediacaran Doushantuo Formation, South China, and the Neoproterozoic–Cambrian Phosphogenic Event. Sedimentary Geology, 388: 1–19. https://doi.org/10.1016/j.sedgeo.2019.05.004
    Zhang, Y. L., Li, Z. Y., Dini, S. M., et al., 2021. Origin and Evolution of the Late Cretaceous Reworked Phosphorite in the Sirhan-Turayf Basin, Northern Saudi Arabia. Minerals, 11(4): 350. https://doi.org/10.3390/min11040350
    Zhou, C. M., Guan, C. G., Cui, H., et al., 2016. Methane-Derived Authigenic Carbonate from the Lower Doushantuo Formation of South China: Implications for Seawater Sulfate Concentration and Global Carbon Cycle in the Early Ediacaran Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 145–155. https://doi.org/10.1016/j.palaeo.2016.08.017
    Zhou, C. M., Li, X. H., Xiao, S. H., et al., 2017. A New SIMS Zircon U-Pb Date from the Ediacaran Doushantuo Formation: Age Constraint on the Weng'an Biota. Geological Magazine, 154(6): 1193–1201. https://doi.org/10.1017/s0016756816001175
    Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28. https://doi.org/10.1016/j.precamres.2011.07.019
    Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7–61. https://doi.org/10.1016/j.palaeo.2007.03.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(79) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return