Citation: | Selma Demer. Geological Genesis of Alkaline Magnesium-Type Groundwater within the Ophiolitic Rocks Areas in Southwestern Turkey. Journal of Earth Science, 2023, 34(4): 1231-1248. doi: 10.1007/s12583-022-1767-1 |
The groundwaters within the ophiolite nappes in the southwestern part of Turkey have different physical and geochemical characteristics and are divided into five different groundwater facies. These are (1) Mg-HCO3, (2) Mg-HCO3-CO3, (3) Mg-CO3-HCO3, (4) Na-Ca-Cl-CO3, and (5) Ca-Mg-HCO3. The waters interact with ophiolites, mainly made up of basic-ultrabasic rocks, are characterized by alkaline and hyperalkaline character. Alkaline waters have high Mg, HCO3 contents and Μg/Ca ratio, and hyperalkaline water has high Na, Ca contents, and low Μg/Ca ratio. The waters in the study area formed by the interaction of meteoric waters with variously serpentinized ultramafic rocks under low-temperature conditions. Silicate weathering is the main hydrogeochemical process that plays a role in the chemical composition of water. Mg-HCO3-type groundwaters are produced under open-system conditions with respect to CO2 due to meteoric water-serpentinized peridotite interactions in a shallow environment. Deep-seated groundwaters are Na-Ca-Cl-CO3-type waters with high pH (TN-8 sample with pH 10.72), depleted in terms of Mg due to water-peridotite interaction under closed-system conditions with respect to CO2. Salda Lake with an alkaline character and high Mg and Na content is characterized by high evaporation and hydromagnesite deposition.
Abdalla, O., Abri, R. A., Semhi, K., et al., 2016. Groundwater Recharge to Ophiolite Aquifer in North Oman: Constrained by Stable Isotopes and Geochemistry. Environmental Earth Sciences, 75(15): 1117. https://doi.org/10.1007/s12665-016-5887-8 |
APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn, In: Eaton, A. D., Clesceri, L. S., Rice, E. W., et al., American Public Health Association. Washington, DC |
Barnes, I., Lamarche, V. C. Jr, Himmelberg, G., 1967. Geochemical Evidence of Present-Day Serpentinization. Science, 156(3776): 830–832. https://doi.org/10.1126/science.156.3776.830 |
Barnes, I., O'Neil, J. R., 1969. The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States. Geological Society of America Bulletin, 80(10): 1947. https://doi.org/10.1130/0016-7606(1969)80[1947:trbfis]2.0.co;2 |
Barnes, I., O'Neil, J. R., Trescases, J. J., 1978. Present Day Serpentinization in New Caledonia, Oman and Yugoslavia. Geochimica et Cosmochimica Acta, 42(1): 144–145. https://doi.org/10.1016/0016-7037(78)90225-9 |
Boschetti, T., Toscani, L., 2008. Springs and Streams of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction Path Modeling of Waters Interacting with Serpentinized Ultramafic Rocks. Chemical Geology, 257(1/2): 76–91. https://doi.org/10.1016/j.chemgeo.2008.08.017 |
Braithwaite, C. J. R., Zedef, V., 1996. Hydromagnesite Stromatolites and Sediments in an Alkaline Lake, Salda Golu, Turkey. SEPM Journal of Sedimentary Research, 66: 991–1002. https://doi.org/10.1306/d426845f-2b26-11d7-8648000102c1865d |
Calmbach, L., 1999. AquaChem Computer Code-Version 3.7: Aqueous Geochemical Analyses, Plotting and Modelling. Waterloo Hydrogeologic, Waterloo, Ontario, Canada. 184 |
Chavagnac, V., Ceuleneer, G., Monnin, C., et al., 2013a. Mineralogical Assemblages Forming at Hyperalkaline Warm Springs Hosted on Ultramafic Rocks: A Case Study of Oman and Ligurian Ophiolites. Geochemistry, Geophysics, Geosystems, 14(7): 2474–2495. https://doi.org/10.1002/ggge.20146 |
Chavagnac, V., Monnin, C., Ceuleneer, G., et al., 2013b. Characterization of Hyperalkaline Fluids Produced by Low-Temperature Serpentinization of Mantle Peridotites in the Oman and Ligurian Ophiolites. Geochemistry, Geophysics, Geosystems, 14(7): 2496–2522. https://doi.org/10.1002/ggge.20147 |
Cipolli, F., Gambardella, B., Marini, L., et al., 2004. Geochemistry of High-pH Waters from Serpentinites of the Gruppo Di Voltri (Genova, Italy) and Reaction Path Modeling of CO2 Sequestration in Serpentinite Aquifers. Applied Geochemistry, 19(5): 787–802. https://doi.org/10.1016/j.apgeochem.2003.10.007 |
Collins, A. S., Robertson, A. H. F., 2003. Kinematic Evidence for Late Mesozoic–Miocene Emplacement of the Lycian Allochthon over the Western Anatolide Belt, SW Turkey. Geological Journal, 38(3/4): 295–310. https://doi.org/10.1002/gj.957 |
Critelli, T., Vespasiano, G., Apollaro, C., et al., 2015. Hydrogeochemical Study of an Ophiolitic Aquifer: A Case Study of Lago (Southern Italy, Calabria). Environmental Earth Sciences, 74(1): 533–543. https://doi.org/10.1007/s12665-015-4061-z |
Çelik, Ö. F., Delaloye M. F., 2003. Origin of Metamorphic Soles and Their Post-Kinematic Mafic Dyke Swarms in the Antalya and Lycian Ophiolites, SW Turkey. Geological Journal, 38(3/4): 235–256. https://doi.org/10.1002/gj.954 |
Çelik, Ö. F., Delaloye, M. F., 2006. Characteristics of Ophiolite-Related Metamorphic Rocks in the Beysehir Ophiolitic Mélange (Central Taurides, Turkey), Deduced from Whole Rock and Mineral Chemistry. Journal of Asian Earth Sciences, 26(5): 461–476. https://doi.org/10.1016/j.jseaes.2004.10.008 |
D'Alessandro, W., Yüce, G., Italiano, F., et al., 2018. Large Compositional Differences in the Gases Released from the Kizildag Ophiolitic Body (Turkey): Evidences of Prevailingly Abiogenic Origin. Marine and Petroleum Geology, 89: 174–184. https://doi.org/10.1016/j.marpetgeo.2016.12.017 |
Davraz, A., Sener, E., Özçelik, M., 2003. The Relationship Between Lineaments and Groundwater Potential: A Case Study of Burdur. Süleyman Demirel University Journal of Engineering Sciences and Design, 7(2): 455–461 |
Davraz, A., Varol, S., Sener, E. H., et al., 2019. Assessment of Water Quality and Hydrogeochemical Processes of Salda Alkaline Lake (Burdur, Turkey). Environmental Monitoring and Assessment, 191(11): 701. https://doi.org/10.1007/s10661-019-7889-y |
De Graciansky, P. C., 1972. Recherches Géologiques Dans le Taurus Lycien: [Dissertation]. Université de Paris-Sud (Orsay), France |
Demer, S., Elitok, Ö., Memiş, Ü., 2019. Origin and Geochemical Evolution of Groundwaters at the Northeastern Extend of the Active Fethiye-Burdur Fault Zone within the Ophiolitic Teke Nappes, SW Turkey. Arabian Journal of Geosciences, 12(24): 783. https://doi.org/10.1007/s12517-019-4963-2 |
Dilek, Y., Flower, M. F. J., 2003. Arc-Trench Rollback and Forearc Accretion: 2. A Model Template for Ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1): 43–68. https://doi.org/10.1144/gsl.sp.2003.218.01.04 |
Dilek, Y., Thy, P., Hacker, B., et al., 1999. Structure and Petrology of Tauride Ophiolites and Mafic Dike Intrusions (Turkey): Implications for the Neotethyan Ocean. Geological Society of America Bulletin, 111(8): 1192–1216. https://doi.org/10.1130/0016-7606(1999)1111192:sapoto>2.3.co;2 doi: 10.1130/0016-7606(1999)1111192:sapoto>2.3.co;2 |
Dişli, E., 2018. Evaluation of Hydrogeochemical Processes for Waters' Chemical Composition and Stable Isotope Investigation of Groundwater/Surface Water in Karst-Dominated Terrain, the Upper Tigris River Basin, Turkey. Aquatic Geochemistry, 24(1): 363–396. https://doi.org/10.1007/s10498-019-09349-8 |
Elitok, Ö., 2001. Geochemistry and Tectonic Significance of the Şarkikaraağaç Ophiolites in the Beyşehir-Hoyran Nappes, SW Turkey. In: Akıncı, Ö., Görmüş, M., Kuşçu, M., et al., eds., Proceedings of the 4th International Symposium on Eastern Mediterranean Geology, May 21–25, 2001, Isparta, Turkey. 181–196 |
Elitok, Ö., 2012. Geology, Geochemistry and Geodynamic Implications of the Mafic-Ultramafic Rocks from the Northern Part of the Antalya Complex, SW Turkey. Tectonophysics, 568/569: 335–356. https://doi.org/10.1016/j.tecto.2011.08.023 |
Elitok, Ö., Drüppel, K., 2008. Geochemistry and Tectonic Significance of Metamorphic Sole Rocks beneath the Beyşehir-Hoyran Ophiolite (SW-Turkey). Lithos, 100(1/2/3/4): 322–353. https://doi.org/10.1016/j.lithos.2007.06.022 |
Ferrini, V., de Vito, C., Mignardi, S., 2009. Synthesis of Nesquehonite by Reaction of Gaseous CO2 with Mg Chloride Solution: Its Potential Role in the Sequestration of Carbon Dioxide. Journal of Hazardous Materials, 168(2/3): 832–837. https://doi.org/10.1016/j.jhazmat.2009.02.103 |
Giampouras, M., Garrido, C. J., Bach, W., et al., 2020. On the Controls of Mineral Assemblages and Textures in Alkaline Springs, Samail Ophiolite, Oman. Chemical Geology, 533: 119435. https://doi.org/10.1016/j.chemgeo.2019.119435 |
Giampouras, M., Garrido, C. J., Zwicker, J., et al., 2019. Geochemistry and Mineralogy of Serpentinization-Driven Hyperalkaline Springs in the Ronda Peridotites. Lithos, 350/351: 105215. https://doi.org/10.1016/j.lithos.2019.105215 |
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088–1090. https://doi.org/10.1126/science.170.3962.1088 |
Güler, C., Thyne, G. D., Tağa, H., et al., 2017. Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey). Geofluids, 2017: 1–21. https://doi.org/10.1155/2017/3153924 |
Hayward, A. B., 1984. Miocene Clastic Sedimentation Related to the Emplacement of the Lycian Nappes and the Antalya Complex, S. W. Turkey. Geological Society, London, Special Publications, 17(1): 287–300. https://doi.org/10.1144/gsl.sp.1984.017.01.21 |
Irlayıcı, A., 1998. Hydrogeological Investigations between Eğirdir and Burdur Lakes: [Dissertation]. Süleyman Demirel University, Isparta, Turkey. 150 (in Turkish) |
Kazanci, N., Girgin, S., Dügel, M, 2004. On the Limnology of Salda Lake, a Large and Deep Soda Lake in Southwestern Turkey: Future Management Proposals. Aquatic Conservation: Marine and Freshwater Ecosystems, 14(2): 151–162. https://doi.org/10.1002/aqc.609 |
Kharaka, Y. K., Gunter, W. D., Aggarwal, P. K., et al., 1988. SOLMINEQ. 88: A Computer Program for Geochemical Modeling of Water-Rock Interactions. US Geolological Survey Water-Resources Investigation Report 88-4227, Washington, D. C. . 420 |
Kloprogge, J. T., Martens, W. N., Nothdurft, L., et al., 2003. Low-Temperature Synthesis and Characterization of Nesquehonite. Journal of Materials Science Letters, 22: 825–829. https://doi.org/10.1023/a:1023916326626 |
Konak, N., Şenel, M., 2002. Geological Maps of Turkey in 1/500 000 Scale, Denizli Sheet. General Directorate of Mineral Research and Exploration Institute (MTA), Ankara |
Lapierre, H., Bosch, D., Narros, A., et al., 2007. The Mamonia Complex (SW Cyprus) Revisited: Remnant of Late Triassic Intra-Oceanic Volcanism along the Tethyan Southwestern Passive Margin. Geological Magazine, 144(1): 1–19. https://doi.org/10.1017/s0016756806002937 |
Mandel, S., Shiftan, Z. L., 1981. Groundwater Resources: Investigation and Development. Academic Press Inc., London. 269 |
Marcoux, J., Brun, J. P., Burg, J. P., et al., 1987. Shear Structures in Anhydrite at the Base of Thrust Sheets (Antalya, Southern Turkey). Journal of Structural Geology, 9(5/6): 555–561. https://doi.org/10.1016/0191-8141(87)90140-4 |
Marques, J. M., Carreira, P. M., Carvalho, M. R., et al., 2008. Origins of High pH Mineral Waters from Ultramafic Rocks, Central Portugal. Applied Geochemistry, 23(12): 3278–3289. https://doi.org/10.1016/j.apgeochem.2008.06.029 |
Meybeck, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287(5): 401–428. https://doi.org/10.2475/ajs.287.5.401 |
Meyer-Dombard, D. R., Woycheese, K. M., Yargıçoğlu, E. N., et al., 2015. High pH Microbial Ecosystems in a Newly Discovered, Ephemeral, Serpentinizing Fluid Seep at Yanartaş (Chimera), Turkey. Frontiers in Microbiology, 5: 723. https://doi.org/10.3389/fmicb.2014.00723 |
Miller, H. M., Matter, J. M., Kelemen, P., et al., 2016. Modern Water/Rock Reactions in Oman Hyperalkaline Peridotite Aquifers and Implications for Microbial Habitability. Geochimica et Cosmochimica Acta, 179: 217–241. https://doi.org/10.1016/j.gca.2016.01.033 |
Monnin, C., Chavagnac, V., Boulart, C., et al., 2014. Fluid Chemistry of the Low Temperature Hyperalkaline Hydrothermal System of Prony Bay (New Caledonia). Biogeosciences, 11(20): 5687–5706. https://doi.org/10.5194/bg-11-5687-2014 |
Monnin, C., Quéméneur, M., Price, R., et al., 2021. The Chemistry of Hyperalkaline Springs in Serpentinizing Environments: 1. the Composition of Free Gases in New Caledonia Compared to other Springs Worldwide. Journal of Geophysical Research: Biogeosciences, 126(9): e2021JG006243. https://doi.org/10.1029/2021jg006243 |
Morrill, P. L., Kuenen, J. G., Johnson, O. J., et al., 2013. Geochemistry and Geobiology of a Present-Day Serpentinization Site in California: The Cedars. Geochimica et Cosmochimica Acta, 109: 222–240. https://doi.org/10.1016/j.gca.2013.01.043 |
Neal, C., Shand, P., 2002. Spring and Surface Water Quality of the Cyprus Ophiolites. Hydrology and Earth System Sciences, 6(5): 797–817. https://doi.org/10.5194/hess-6-797-2002 |
Neal, C., Stanger, G., 1985. Past and Present Serpentinisation of Ultramafic Rocks; An Example from the Semail Ophiolite Nappe of Northern Oman. The Chemistry of Weathering. In: Drever, J. I., ed., The Chemistry of Weathering, NATO ASI Series C: Mathematical and Physical Sciences. Springer Netherlands, Dordrecht. 149: 249–275. |
Neubeck, A., Boosman, A., Hosgörmez, H., et al., 2021. δ60Ni and δ13C Composition of Serpentinites and Carbonates of the Tekirova Ophiolite, Turkey, and Meatiq Ophiolite, Egypt. Frontiers in Earth Science, 9: 651967. https://doi.org/10.3389/feart.2021.651967 |
Paukert, A. N., Matter, J. M., Kelemen, P. B., et al., 2012. Reaction Path Modeling of Enhanced in situ CO2 Mineralization for Carbon Sequestration in the Peridotite of the Samail Ophiolite, Sultanate of Oman. Chemical Geology, 330/331: 86–100. https://doi.org/10.1016/j.chemgeo.2012.08.013 |
Poisson, A., Yağmurlu, F., Bozcu, M., et al., 2003. New Insights on the Tectonic Setting and Evolution around the Apex of the Isparta Angle (SW Turkey). Geological Journal, 38(3/4): 257–282. https://doi.org/10.1002/gj.955 |
Power, I. M., Harrison, A. L., Dipple, G. M., et al., 2019. Magnesite Formation in Playa Environments near Atlin, British Columbia, Canada. Geochimica et Cosmochimica Acta, 255: 1–24. https://doi.org/10.1016/j.gca.2019.04.008 |
Power, I. M., Wilson, S. A., Thom, J. M., et al., 2009. The Hydromagnesite Playas of Atlin, British Columbia, Canada: A Biogeochemical Model for CO2 Sequestration. Chemical Geology, 260(3/4): 286–300. https://doi.org/10.1016/j.chemgeo.2009.01.012 |
Pyrgaki, K., Argyraki, A., Botsou, F., et al., 2021. Hydrogeochemical Investigation of Cr in the Ultramafic Rock-Related Water Bodies of Loutraki Basin, Northeast Peloponnese, Greece. Environmental Earth Sciences, 80(2): 62. https://doi.org/10.1007/s12665-020-09342-3 |
Rimmelé, G., Jolivet, L., Oberhänsli, R., et al., 2003. Deformation History of the High-Pressure Lycian Nappes and Implications for Tectonic Evolution of SW Turkey. Tectonics, 22(2): 1007. https://doi.org/10.1029/2001tc901041 |
Robertson, A. H. F., Woodcock, N. H., 1980. Strike-Slip Related Sedimentation in the Antalya Complex, SW Turkey. In: Ballance, P. F., Reading, H. G., eds., Sedimentation in Oblique-Slip Mobile Zones. 127–145. |
Russell, M. J., Ingham, J. K., Zedef, V., et al., 1999. Search for Signs of Ancient Life on Mars: Expectations from Hydromagnesite Microbialites, Salda Lake, Turkey. Journal of the Geological Society, 156(5): 869–888. https://doi.org/10.1144/gsjgs.156.5.0869 |
Seyman, F., 2005. Hydrogeological Investigations of Senirkent-Uluborlu (Isparta) Basin: [Dissertation]. Süleyman Demirel University, Isparta, Turkey. 96 (in Turkish) |
Stanger, G., 1986. The Hydrogeology of the Oman Mountians: [Dissertation]. Open University, London |
Şenel, M., 2002. Geological Maps of Turkey in 1/500 000 Scale, Konya Sheet. General Directorate of Mineral Research and Exploration Institute (MTA), Ankara |
Şenel, M., 2007. Characteristic Features of the Lycian Nappes and Their Evolution. Colloquium of Menderes Massif, Extended Book of Abstracts (ın Turkish) |
Şener, E., Soyaslan, İ. İ., 2006. Evaluation of Karstic Discharges in the East of Egirdir Lake (Turkey) Using Satellite Images. In: The Ⅲ International Scientific and Practical Conference: Use of the Water Resources and Its Integretional Management in Globalization Processes, 6–7 July 2006, Bakü. 70–72 |
Şener, Ş., Taştekin, N., 2019. Hydrogeologic and Hydrogeochemical Investigation of Beyşehir (Konya) Plain. Journal of Engineering Sciences and Design, 7(3): 647–661. https://doi.org/10.21923/jesd.541781 |
Şengör, A. M. C., Yilmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 75(3/4): 181–241. https://doi.org/10.1016/0040-1951(81)90275-4 |
Torres-Martínez, J. A., Mora, A., Mahlknecht, J., et al., 2021. Determining Nitrate and Sulfate Pollution Sources and Transformations in a Coastal Aquifer Impacted by Seawater Intrusion―A Multi-Isotopic Approach Combined with Self-Organizing Maps and a Bayesian Mixing Model. Journal of Hazardous Materials, 417: 126103. https://doi.org/10.1016/j.jhazmat.2021.126103 |
Turhan, N., 2002. Geological Maps of Turkey in 1/500 000 scale, Ankara Sheet. General Directorate of Mineral Research and Exploration Institute (MTA), Ankara |
Varol, S. O., Davraz, A., 2010. Hydrogeological Investigation of Sarkikaraagac Basin (Isparta, Turkey) and Groundwater Vulnerability. Water International, 35(2): 177–194. https://doi.org/10.1080/02508061003663445 |
Varol, S., Davraz, A., Şener, Ş., et al., 2017. Monitoring the Hydrogeology and Hydrogeochemical Properties and Detecting Pollution Situation of the Salda Lake Wetland. TÜBİTAK-ÇAYDAG Project Report, Project No: 114Y084 |
Varol, S., Davraz, A., Şener, Ş., et al., 2018. Application of a Conceptual Water Budget Model for Salda Lake, (Burdur/Turkey). Journal of Engineering Sciences and Design, 6(1): 29–37. https://doi.org/10.21923/jesd.374412 |
Vespasiano, G., Muto, F., Apollaro, C., 2021. Geochemical, Geological and Groundwater Quality Characterization of a Complex Geological Framework: The Case Study of the Coreca Area (Calabria, South Italy). Geosciences, 11(3): 121. https://doi.org/10.3390/geosciences11030121 |
Wu, C., Wu, X., Lu, C. Y., et al., 2021. Hydrogeochemical Characterization and Its Seasonal Changes of Groundwater Based on Self-Organizing Maps. Water, 13(21): 3065. https://doi.org/10.3390/w13213065 |
Yagmurlu, F., Savasçin, Y., Ergün, M, 1997. Relation of Alkaline Volcanism and Active Tectonism within the Evolution of the Isparta Angle, Sw Turkey. The Journal of Geology, 105(6): 717–728. https://doi.org/10.1086/515978 |
Yuce, G., Italiano, F., D'Alessandro, W., et al., 2014. Origin and Interactions of Fluids Circulating over the Amik Basin (Hatay, Turkey) and Relationships with the Hydrologic, Geologic and Tectonic Settings. Chemical Geology, 388: 23–39. https://doi.org/10.1016/j.chemgeo.2014.09.006 |
Yuce, G., Yasin, D., D'Alessandro, et al., 2015. Hydrochemical Properties of High Alkaline (pH ≥ 9) Thermal Water and Its Evaluation in Kızıldağ (Hatay) Ophiolites. UCTEA Chamber of Geological Engineers 2nd Medical Geology Symposium, 12–15 November, 2015, Konya. 33 |
Zedef, V., Russell, M. J., Fallick, A. E., et al., 2000. Genesis of Vein Stockwork and Sedimentary Magnesite and Hydromagnesite Deposits in the Ultramafic Terranes of Southwestern Turkey: A Stable Isotope Study. Economic Geology, 95(2): 429–445. https://doi.org/10.2113/gsecongeo.95.2.429 |
Zhang, B., Zhao, D., Zhou, P. P., et al., 2020. Hydrochemical Characteristics of Groundwater and Dominant Water-Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3): 836. https://doi.org/10.3390/w12030836 |
Zhu, G. F., Su, Y. H., Feng, Q., 2008. The Hydrochemical Characteristics and Evolution of Groundwater and Surface Water in the Heihe River Basin, Northwest China. Hydrogeology Journal, 16(1): 167–182. https://doi.org/10.1007/s10040-007-0216-7 |