Citation: | Changbin Yan, Ziang Gao, Gongbiao Yang, Zihe Gao, Lei Huang, Jihua Yang. An Experimental-Based Model for Prediction of the Rock Mass-Related TBM Utilization by Adopting the RMR and Moisture-Dependent CAI. Journal of Earth Science, 2025, 36(2): 668-684. doi: 10.1007/s12583-022-1771-5 |
To reduce the uncertainty associated with the traditional definition of tunnel boring machine (TBM) utilization (
Alber, M. , 1996. Prediction of Penetration and Utilization for Hard Rock TBMs. In: ISRM International Symposium-EUROCK 96. International Society for Rock Mechanics and Rock Engineering, 721–725 |
Alber, M. , Yaralı, O. , Dahl, F. , et al. , 2014. ISRM Suggested Method for Determining the Abrasivity of Rock by the CERCHAR Abrasivity Test. Rock Mechanics and Rock Engineering, 47(1): 261–266. https://doi.org/10.1007/s00603-013-0518-0 |
Apaydin, A. , Korkmaz, N. , Ciftci, D. , 2019. Water Inflow into Tunnels: Assessment of the Gerede Water Transmission Tunnel (Turkey) with Complex Hydrogeology. Quarterly Journal of Engineering Geology and Hydrogeology, 52(3): 346–359. https://doi.org/10.1144/qjegh2017-125 |
ASTM-D7625, 2010. Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method. American Society for Testing and Materials |
Abu Bakar, M. Z. , Majeed, Y. , 2020. Load-Indentation Testing to Assess Porewater Pressure Effects on Linear Drag and Disc Cutting of a Saturated Permeable Brittle Rock. Quarterly Journal of Engineering Geology and Hydrogeology, 53(1): 117–124. https://doi.org/10.1144/qjegh2018-008 |
Abu Bakar(Bakar), M. Z. , Majeed, Y. , Rostami, J. , 2016. Effects of Rock Water Content on CERCHAR Abrasivity Index. Wear, 368/369: 132–145. https://doi.org/10.1016/j.wear.2016.09.007 |
Barton, N. , 2000. TBM Tunnelling in Jointed and Faulted Rock. Balkema, Brookfield |
Bieniawski, Z. T. , 1989. Engineering Rock Mass Classifications. Wiley, New York |
Bilgin, N. , Balci, C. , Acaroglu, O. , et al. , 1999. The Performance Prediction of a TBM in Tuzla-Dragos Sewerage Tunnel. In: World Tunnel Congress, Challenges for the 21st Century. Balkema, 817–827 |
Bruland, A. , 1998. Hard Rock Tunnel Boring: [Dissertation]. The Norwegian University of Science and Technology, Trondheim |
Cardu, M. , Oreste, P. , Cicala, T. , 2009. Analysis of the Tunnel Boring Machine Advancement on the Bologna-Florence Railway Link. American Journal of Engineering and Applied Sciences, 2(2): 416–420. https://doi.org/10.3844/ajeassp.2009.416.420 |
Delisio, A. , Zhao, J. , 2014. A New Model for TBM Performance Prediction in Blocky Rock Conditions. Tunnelling and Underground Space Technology, 43: 440–452. https://doi.org/10.1016/j.tust.2014.06.004 |
Einstein, H. H. , 1996. Risk and Risk Analysis in Rock Engineering. Tunnelling and Underground Space Technology, 11(2): 141–155. https://doi.org/10.1016/0886-7798(96)00014-4 |
Farrokh, E. , 2018. Introducing Hard Rock TBMS’ Downtime Analysis Model with Reference to Past Case Histories’ Data. Journal of Mining and Environment, 9: 457–472 |
Farrokh, E. , Rostami, J. , Laughton, C. , 2011. Analysis of Unit Supporting Time and Support Installation Time for Open TBMS. Rock Mechanics and Rock Engineering, 44(4): 431–445. https://doi.org/10.1007/s00603-011-0135-8 |
Frough, O. , Torabi, S. R. , 2013. An Application of Rock Engineering Systems for Estimating TBM Downtimes. Engineering Geology, 157: 112–123. https://doi.org/10.1016/j.enggeo.2013.02.003 |
Frough, O. , Torabi, S. R. , Yagiz, S. , 2015. Application of RMR for Estimating Rock-Mass–Related TBM Utilization and Performance Parameters: A Case Study. Rock Mechanics and Rock Engineering, 48(3): 1305–1312. https://doi.org/10.1007/s00603-014-0619-4 |
Frough, O. , Khetwal, A. , Rostami, J. , 2019. Predicting TBM Utilization Factor Using Discrete Event Simulation Models. Tunnelling and Underground Space Technology, 87: 91–99. https://doi.org/10.1016/j.tust.2019.01.017 |
Gong, Q. M. , Lu, J. W. , Wei, J. Z. , et al. , 2018. Study on Estimation and Prediction of TBM Utilization Rate Using Rock Mass Rating (RMR). Construction Technology, 47(5): 92–98, 127 (in Chinese with English Abstract) doi: 10.3969/j.issn.1009-4539.2018.05.025 |
Han, L. , Wang, L. , Zhang, W. G. , 2020. Quantification of Statistical Uncertainties of Rock Strength Parameters Using Bayesian-Based Markov Chain Monte Carlo Method. IOP Conference Series: Earth and Environmental Science, 570(3): 032051. https://doi.org/10.1088/1755-1315/570/3/032051 |
Han, L. , Wu, C. , Zhang, W. G. , et al. , 2022. Estimation of Compressibility of Bukit Timah Granitic Residual Soils in Singapore and Variability Analysis. International Journal of Geotechnical Engineering, 16(3): 327–342. https://doi.org/10.1080/19386362.2021.1968649 |
Hamidi, J. K. , Shahriar, K. , Rezai, B. , et al. , 2010. Performance Prediction of Hard Rock TBM Using Rock Mass Rating (RMR) System. Tunnelling and Underground Space Technology, 25(4): 333–345. https://doi.org/10.1016/j.tust.2010.01.008 |
Hassanpour, J. , Rostami, J. , Zhao, J. , 2011. A New Hard Rock TBM Performance Prediction Model for Project Planning. Tunnelling and Underground Space Technology, 26(5): 595–603. https://doi.org/10.1016/j.tust.2011.04.004 |
Jenni, J. P. , Balissat, M. , 1979. Rock Testing Methods Performed to Predict the Utilization Possibilities of a Tunnel Boring Machine. In: 4th ISRM Congress. International Society for Rock Mechanics and Rock Engineering, Montreux |
Kahraman, S. , 2002. Correlation of TBM and Drilling Machine Performances with Rock Brittleness. Engineering Geology, 65(4): 269–283. https://doi.org/10.1016/s0013-7952(01)00137-5 |
Kim, T. , 2004. Development of a Fuzzy Logic-Based Utilization Predictor Model for Hard Rock Tunnel Boring Machines: [Dissertation]. Colorado School of Mines, Colorado |
Koor, N. P. , 2018. What Lies Beneath? A Decade of Underground Construction in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 51: 301–310. https://doi.org/10.1144/qjegh201-081 |
Linde-Arias, E. , Harris, D. , Ghail, R. , 2018. Engineering Geology and Tunnelling in the Limmo Peninsula, East London. Quarterly Journal of Engineering Geology and Hydrogeology, 51: 23–30 |
Liu, Q. S. , Liu, J. P. , Pan, Y. C. , et al. , 2017. A Wear Rule and Cutter Life Prediction Model of a 20-In. TBM Cutter for Granite: A Case Study of a Water Conveyance Tunnel in China. Rock Mechanics and Rock Engineering, 50(5): 1303–1320. https://doi.org/10.1007/s00603-017-1176-4 |
Liu, L. , Guo, J. , Wang, H. , 2012. Experimental Study on the Correlation between Rock Abrasiveness and Triaxial Strength of the Hanjiang-to-Weihe Water Conveyance Tunnel. Des. Hydroelectr. Power Stn., 28: 88–90 (in Chinese with English Abstract) |
Maleki, Z. , Farhadian, H. , Nikvar-Hassani, A. , 2021. Geological Hazards in Tunnelling: The Example of Gelas Water Conveyance Tunnel, Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 54(1): qjegh2019-2114. https://doi.org/10.1144/qjegh2019-114 |
Moosazadeh, S. , Aghababaie, H. , Hoseinie, H. , et al. , 2018. Simulation of Tunnel Boring Machine Utilization: A Case Study. Journal of Mining and Environment, 9: 53–60 |
Nelson, P. P. , O’Rourke, T. D. , Glaser, S. D. , 1985. TBM System Downtime―Causes, Frequency and Duration on Six Tunnel Projects. In: Rapid Excavation and Tunneling Conference Proceedings. Society of Mining Engineers, June 16–20, 1985, New York |
Patel, S. , Pandit, D. , 2018. Assessment of TBM’s Performance Parameters. In: The 6th International Conference on Energy, Infrastructure & Management (ICEIM-2018). ICEIM, February 15–16, 2018, Gandhinagar |
Palmström, A. , 2009. Combining the RMR, Q, and RMi Classification Systems. Tunnelling and Underground Space Technology, 24(4): 491–492. https://doi.org/10.1016/j.tust.2008.12.002 |
Phillips, H. R. , Roxborough, F. F. , 1981. The Influence of Tool Material on the Wear Rate of Rock Cutting Picks. In: Proceedings of the 34th Annual Conference of Australian Institute of Metals. Australian Institute of Physics, 52–56 |
Rasouli, M. , 2009. Engineering Geological Studies of the Diversion Tunnel, Focusing on Stabilization Analysis and Support Design, Iran. Engineering Geology, 108(3/4): 208–224. https://doi.org/10.1016/j.enggeo.2009.07.007 |
Rostami, J. , 1997. Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure: [Dissertation]. Colorado School of Mines, Colorado |
Rostami, J. , 2016. Performance Prediction of Hard Rock Tunnel Boring Machines (TBMS) in Difficult Ground. Tunnelling and Underground Space Technology, 57: 173–182. https://doi.org/10.1016/j.tust.2016.01.009 |
Rostami, J. , Farrokh, E. , Laughton, C. , et al. , 2014a. Advance Rate Simulation for Hard Rock TBMS. KSCE Journal of Civil Engineering, 18(3): 837–852. https://doi.org/10.1007/s12205-014-0058-5 |
Rostami, J. , Ghasemi, A. , Alavi Gharahbagh, E. , et al. , 2014b. Study of Dominant Factors Affecting Cerchar Abrasivity Index. Rock Mechanics and Rock Engineering, 47(5): 1905–1919. https://doi.org/10.1007/s00603-013-0487-3 |
Sapigni, M. , Berti, M. , Bethaz, E. , et al. , 2002. TBM Performance Estimation Using Rock Mass Classifications. International Journal of Rock Mechanics and Mining Sciences, 39(6): 771–788. https://doi.org/10.1016/s1365-1609(02)00069-2 |
Şen, Z. , Sadagah, B. H. , 2003. Modified Rock Mass Classification System by Continuous Rating. Engineering Geology, 67(3/4): 269–280. https://doi.org/10.1016/s0013-7952(02)00185-0 |
Shang, Y. J. , Xue, J. H. , Wang, S. J. , et al. , 2004. A Case History of Tunnel Boring Machine Jamming in an Inter-Layer Shear Zone at the Yellow River Diversion Project in China. Engineering Geology, 71(3/4): 199–211. https://doi.org/10.1016/s0013-7952(03)00134-0 |
Torabi, S. R. , Shirazi, H. , Hajali, H. , et al. , 2013. Study of the Influence of Geotechnical Parameters on the TBM Performance in Tehran–Shomal Highway Project Using ANN and SPSS. Arabian Journal of Geosciences, 6(4): 1215–1227. https://doi.org/10.1007/s12517-011-0415-3 |
Valle, N. D. , Fuoco, S. , Brino, G. , 2016. Detailed Tbm Boring Cycle Estimation Using Rock Mass Rating System―Part Ⅰ. In: 2nd International Conference on Tunnel Boring Machines in Difficult Grounds (TBM DiGs Istanbul). TBM DiGs, 1–26 |
Yagiz, S. , 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines: [Dissertation]. Colorado School of Mines, Colorado |
Yagiz, S. , Frough, O. , Torabi, S. R. , 2013. A Rock Mass Rating System for Predicting TBM Utilization. In: ISRM International Symposium―EUROCK 2013. International Society for Rock Mechanics and Rock Engineering, September 21, 2013, 921–925 |