Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Changbin Yan, Ziang Gao, Gongbiao Yang, Zihe Gao, Lei Huang, Jihua Yang. An Experimental-Based Model for Prediction of the Rock Mass-Related TBM Utilization by Adopting the RMR and Moisture-Dependent CAI. Journal of Earth Science, 2025, 36(2): 668-684. doi: 10.1007/s12583-022-1771-5
Citation: Changbin Yan, Ziang Gao, Gongbiao Yang, Zihe Gao, Lei Huang, Jihua Yang. An Experimental-Based Model for Prediction of the Rock Mass-Related TBM Utilization by Adopting the RMR and Moisture-Dependent CAI. Journal of Earth Science, 2025, 36(2): 668-684. doi: 10.1007/s12583-022-1771-5

An Experimental-Based Model for Prediction of the Rock Mass-Related TBM Utilization by Adopting the RMR and Moisture-Dependent CAI

doi: 10.1007/s12583-022-1771-5
More Information
  • Corresponding author: Zihe Gao, gaozihe@zzu.edu.cn
  • Received Date: 04 Apr 2022
  • Accepted Date: 17 Oct 2022
  • Issue Publish Date: 30 Apr 2025
  • To reduce the uncertainty associated with the traditional definition of tunnel boring machine (TBM) utilization (U) and achieve an effective indicator of TBM performance, a new performance indicator called rock mass-related utilization (Ur) is introduced; this variable considers only rock mass-related factors rather than all potential factors. This work aims to predict Ur by adopting the rock mass rating (RMR) and the moisture-dependent Cerchar abrasivity index (CAI). Substantial Ur, RMR and CAI data are acquired from a 31.57 km northwestern Chinese water conveyance tunnel via tunnelling field recordings, geological investigations and Cerchar abrasivity tests. The moisture dependence of the CAI is explored across four lithologies: quartz schists, granites, sandstones and metamorphic andesites. The potential influences of RMR and CAI on Ur are then investigated. As the RMR increases, Ur initially increases and then peaks at an RMR of 56 before declining. Ur appears to decline with CAI. An investigation-based relation among Ur, RMR and moisture-dependent CAI is developed for estimating Ur. The developed relation can accurately predict Ur using RMR and moisture-dependent CAI in the majority of the tunnelling cases examined. This work proposes a stable indicator of TBM performance and provided a fairly accurate prediction method for this indicator.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Alber, M. , 1996. Prediction of Penetration and Utilization for Hard Rock TBMs. In: ISRM International Symposium-EUROCK 96. International Society for Rock Mechanics and Rock Engineering, 721–725
    Alber, M. , Yaralı, O. , Dahl, F. , et al. , 2014. ISRM Suggested Method for Determining the Abrasivity of Rock by the CERCHAR Abrasivity Test. Rock Mechanics and Rock Engineering, 47(1): 261–266. https://doi.org/10.1007/s00603-013-0518-0
    Apaydin, A. , Korkmaz, N. , Ciftci, D. , 2019. Water Inflow into Tunnels: Assessment of the Gerede Water Transmission Tunnel (Turkey) with Complex Hydrogeology. Quarterly Journal of Engineering Geology and Hydrogeology, 52(3): 346–359. https://doi.org/10.1144/qjegh2017-125
    ASTM-D7625, 2010. Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method. American Society for Testing and Materials
    Abu Bakar, M. Z. , Majeed, Y. , 2020. Load-Indentation Testing to Assess Porewater Pressure Effects on Linear Drag and Disc Cutting of a Saturated Permeable Brittle Rock. Quarterly Journal of Engineering Geology and Hydrogeology, 53(1): 117–124. https://doi.org/10.1144/qjegh2018-008
    Abu Bakar(Bakar), M. Z. , Majeed, Y. , Rostami, J. , 2016. Effects of Rock Water Content on CERCHAR Abrasivity Index. Wear, 368/369: 132–145. https://doi.org/10.1016/j.wear.2016.09.007
    Barton, N. , 2000. TBM Tunnelling in Jointed and Faulted Rock. Balkema, Brookfield
    Bieniawski, Z. T. , 1989. Engineering Rock Mass Classifications. Wiley, New York
    Bilgin, N. , Balci, C. , Acaroglu, O. , et al. , 1999. The Performance Prediction of a TBM in Tuzla-Dragos Sewerage Tunnel. In: World Tunnel Congress, Challenges for the 21st Century. Balkema, 817–827
    Bruland, A. , 1998. Hard Rock Tunnel Boring: [Dissertation]. The Norwegian University of Science and Technology, Trondheim
    Cardu, M. , Oreste, P. , Cicala, T. , 2009. Analysis of the Tunnel Boring Machine Advancement on the Bologna-Florence Railway Link. American Journal of Engineering and Applied Sciences, 2(2): 416–420. https://doi.org/10.3844/ajeassp.2009.416.420
    Delisio, A. , Zhao, J. , 2014. A New Model for TBM Performance Prediction in Blocky Rock Conditions. Tunnelling and Underground Space Technology, 43: 440–452. https://doi.org/10.1016/j.tust.2014.06.004
    Einstein, H. H. , 1996. Risk and Risk Analysis in Rock Engineering. Tunnelling and Underground Space Technology, 11(2): 141–155. https://doi.org/10.1016/0886-7798(96)00014-4
    Farrokh, E. , 2018. Introducing Hard Rock TBMS’ Downtime Analysis Model with Reference to Past Case Histories’ Data. Journal of Mining and Environment, 9: 457–472
    Farrokh, E. , Rostami, J. , Laughton, C. , 2011. Analysis of Unit Supporting Time and Support Installation Time for Open TBMS. Rock Mechanics and Rock Engineering, 44(4): 431–445. https://doi.org/10.1007/s00603-011-0135-8
    Frough, O. , Torabi, S. R. , 2013. An Application of Rock Engineering Systems for Estimating TBM Downtimes. Engineering Geology, 157: 112–123. https://doi.org/10.1016/j.enggeo.2013.02.003
    Frough, O. , Torabi, S. R. , Yagiz, S. , 2015. Application of RMR for Estimating Rock-Mass–Related TBM Utilization and Performance Parameters: A Case Study. Rock Mechanics and Rock Engineering, 48(3): 1305–1312. https://doi.org/10.1007/s00603-014-0619-4
    Frough, O. , Khetwal, A. , Rostami, J. , 2019. Predicting TBM Utilization Factor Using Discrete Event Simulation Models. Tunnelling and Underground Space Technology, 87: 91–99. https://doi.org/10.1016/j.tust.2019.01.017
    Gong, Q. M. , Lu, J. W. , Wei, J. Z. , et al. , 2018. Study on Estimation and Prediction of TBM Utilization Rate Using Rock Mass Rating (RMR). Construction Technology, 47(5): 92–98, 127 (in Chinese with English Abstract) doi: 10.3969/j.issn.1009-4539.2018.05.025
    Han, L. , Wang, L. , Zhang, W. G. , 2020. Quantification of Statistical Uncertainties of Rock Strength Parameters Using Bayesian-Based Markov Chain Monte Carlo Method. IOP Conference Series: Earth and Environmental Science, 570(3): 032051. https://doi.org/10.1088/1755-1315/570/3/032051
    Han, L. , Wu, C. , Zhang, W. G. , et al. , 2022. Estimation of Compressibility of Bukit Timah Granitic Residual Soils in Singapore and Variability Analysis. International Journal of Geotechnical Engineering, 16(3): 327–342. https://doi.org/10.1080/19386362.2021.1968649
    Hamidi, J. K. , Shahriar, K. , Rezai, B. , et al. , 2010. Performance Prediction of Hard Rock TBM Using Rock Mass Rating (RMR) System. Tunnelling and Underground Space Technology, 25(4): 333–345. https://doi.org/10.1016/j.tust.2010.01.008
    Hassanpour, J. , Rostami, J. , Zhao, J. , 2011. A New Hard Rock TBM Performance Prediction Model for Project Planning. Tunnelling and Underground Space Technology, 26(5): 595–603. https://doi.org/10.1016/j.tust.2011.04.004
    Jenni, J. P. , Balissat, M. , 1979. Rock Testing Methods Performed to Predict the Utilization Possibilities of a Tunnel Boring Machine. In: 4th ISRM Congress. International Society for Rock Mechanics and Rock Engineering, Montreux
    Kahraman, S. , 2002. Correlation of TBM and Drilling Machine Performances with Rock Brittleness. Engineering Geology, 65(4): 269–283. https://doi.org/10.1016/s0013-7952(01)00137-5
    Kim, T. , 2004. Development of a Fuzzy Logic-Based Utilization Predictor Model for Hard Rock Tunnel Boring Machines: [Dissertation]. Colorado School of Mines, Colorado
    Koor, N. P. , 2018. What Lies Beneath? A Decade of Underground Construction in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 51: 301–310. https://doi.org/10.1144/qjegh201-081
    Linde-Arias, E. , Harris, D. , Ghail, R. , 2018. Engineering Geology and Tunnelling in the Limmo Peninsula, East London. Quarterly Journal of Engineering Geology and Hydrogeology, 51: 23–30
    Liu, Q. S. , Liu, J. P. , Pan, Y. C. , et al. , 2017. A Wear Rule and Cutter Life Prediction Model of a 20-In. TBM Cutter for Granite: A Case Study of a Water Conveyance Tunnel in China. Rock Mechanics and Rock Engineering, 50(5): 1303–1320. https://doi.org/10.1007/s00603-017-1176-4
    Liu, L. , Guo, J. , Wang, H. , 2012. Experimental Study on the Correlation between Rock Abrasiveness and Triaxial Strength of the Hanjiang-to-Weihe Water Conveyance Tunnel. Des. Hydroelectr. Power Stn., 28: 88–90 (in Chinese with English Abstract)
    Maleki, Z. , Farhadian, H. , Nikvar-Hassani, A. , 2021. Geological Hazards in Tunnelling: The Example of Gelas Water Conveyance Tunnel, Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 54(1): qjegh2019-2114. https://doi.org/10.1144/qjegh2019-114
    Moosazadeh, S. , Aghababaie, H. , Hoseinie, H. , et al. , 2018. Simulation of Tunnel Boring Machine Utilization: A Case Study. Journal of Mining and Environment, 9: 53–60
    Nelson, P. P. , O’Rourke, T. D. , Glaser, S. D. , 1985. TBM System Downtime―Causes, Frequency and Duration on Six Tunnel Projects. In: Rapid Excavation and Tunneling Conference Proceedings. Society of Mining Engineers, June 16–20, 1985, New York
    Patel, S. , Pandit, D. , 2018. Assessment of TBM’s Performance Parameters. In: The 6th International Conference on Energy, Infrastructure & Management (ICEIM-2018). ICEIM, February 15–16, 2018, Gandhinagar
    Palmström, A. , 2009. Combining the RMR, Q, and RMi Classification Systems. Tunnelling and Underground Space Technology, 24(4): 491–492. https://doi.org/10.1016/j.tust.2008.12.002
    Phillips, H. R. , Roxborough, F. F. , 1981. The Influence of Tool Material on the Wear Rate of Rock Cutting Picks. In: Proceedings of the 34th Annual Conference of Australian Institute of Metals. Australian Institute of Physics, 52–56
    Rasouli, M. , 2009. Engineering Geological Studies of the Diversion Tunnel, Focusing on Stabilization Analysis and Support Design, Iran. Engineering Geology, 108(3/4): 208–224. https://doi.org/10.1016/j.enggeo.2009.07.007
    Rostami, J. , 1997. Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure: [Dissertation]. Colorado School of Mines, Colorado
    Rostami, J. , 2016. Performance Prediction of Hard Rock Tunnel Boring Machines (TBMS) in Difficult Ground. Tunnelling and Underground Space Technology, 57: 173–182. https://doi.org/10.1016/j.tust.2016.01.009
    Rostami, J. , Farrokh, E. , Laughton, C. , et al. , 2014a. Advance Rate Simulation for Hard Rock TBMS. KSCE Journal of Civil Engineering, 18(3): 837–852. https://doi.org/10.1007/s12205-014-0058-5
    Rostami, J. , Ghasemi, A. , Alavi Gharahbagh, E. , et al. , 2014b. Study of Dominant Factors Affecting Cerchar Abrasivity Index. Rock Mechanics and Rock Engineering, 47(5): 1905–1919. https://doi.org/10.1007/s00603-013-0487-3
    Sapigni, M. , Berti, M. , Bethaz, E. , et al. , 2002. TBM Performance Estimation Using Rock Mass Classifications. International Journal of Rock Mechanics and Mining Sciences, 39(6): 771–788. https://doi.org/10.1016/s1365-1609(02)00069-2
    Şen, Z. , Sadagah, B. H. , 2003. Modified Rock Mass Classification System by Continuous Rating. Engineering Geology, 67(3/4): 269–280. https://doi.org/10.1016/s0013-7952(02)00185-0
    Shang, Y. J. , Xue, J. H. , Wang, S. J. , et al. , 2004. A Case History of Tunnel Boring Machine Jamming in an Inter-Layer Shear Zone at the Yellow River Diversion Project in China. Engineering Geology, 71(3/4): 199–211. https://doi.org/10.1016/s0013-7952(03)00134-0
    Torabi, S. R. , Shirazi, H. , Hajali, H. , et al. , 2013. Study of the Influence of Geotechnical Parameters on the TBM Performance in Tehran–Shomal Highway Project Using ANN and SPSS. Arabian Journal of Geosciences, 6(4): 1215–1227. https://doi.org/10.1007/s12517-011-0415-3
    Valle, N. D. , Fuoco, S. , Brino, G. , 2016. Detailed Tbm Boring Cycle Estimation Using Rock Mass Rating System―Part Ⅰ. In: 2nd International Conference on Tunnel Boring Machines in Difficult Grounds (TBM DiGs Istanbul). TBM DiGs, 1–26
    Yagiz, S. , 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines: [Dissertation]. Colorado School of Mines, Colorado
    Yagiz, S. , Frough, O. , Torabi, S. R. , 2013. A Rock Mass Rating System for Predicting TBM Utilization. In: ISRM International Symposium―EUROCK 2013. International Society for Rock Mechanics and Rock Engineering, September 21, 2013, 921–925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(9)

    Article Metrics

    Article views(11) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return