Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
José Ivan Morales-Arredondo, María A. Armienta Hernández, Eduardo A. Lugo-Dorantes, Fátima Juárez-Aparicio, Francisco Romero, Zaknite I. Flores-Ocampo. Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico. Journal of Earth Science, 2024, 35(6): 2099-2118. doi: 10.1007/s12583-022-1790-2
Citation: José Ivan Morales-Arredondo, María A. Armienta Hernández, Eduardo A. Lugo-Dorantes, Fátima Juárez-Aparicio, Francisco Romero, Zaknite I. Flores-Ocampo. Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico. Journal of Earth Science, 2024, 35(6): 2099-2118. doi: 10.1007/s12583-022-1790-2

Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico

doi: 10.1007/s12583-022-1790-2
More Information
  • Corresponding author: José Ivan Morales-Arredondo, ivanma@igeofisica.unam.mx
  • Received Date: 06 Jul 2022
  • Accepted Date: 14 Nov 2022
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Several aquifers located in North-Central Mexico have natural arsenic (As) concentrations higher than those allowed by national and international regulations; these aquifers are usually located in fractured volcanic environments that interact with sedimentary basins and have a carbonate basement. In this study, an evaluation of As in volcanic and sedimentary rocks collected at 13 sampling sites along the Sierra de Codornices (Guanajuato State, Central Mexico) was carried out. These geologic materials are representative of the dominant hydrogeologic environment. The As content is disseminated in volcanic rocks and the highest contents were obtained in felsic rocks; this information served to identify the hydrogeochemical processes related to the mobilization and transport of arsenic in the aquifer. The mobilization of As is a product of the dissolution of volcanic glass, a process involved in the alkaline desorption that occurs on As-containing mineral surfaces and possibly by the dissolution/desorption of Fe minerals and some clays, all these processes may be accelerated by the geothermal characteristics of the groundwater in the study area.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM Tables S1-S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1790-2.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adriano, D. C., 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer-Verlag, New York
    Aguillón-Robles, A., Aranda-Gómez, J. J., Solorio-Munguía, J. G., 1994. Geology and Tectonics of a Set of Middle Oligocene rhyolite Domes in the Southern State of San Luis Potosi, Mexico. Revista Mexicana de Ciencias Geológicas, 11(1): 29-42
    Alvarado, H. M., Yañez, C. F. M., 1993. Informe Final de los Depósitos de Alunita Proyecto Comonfort, Municipios de Comonfort y Juventino Rosas, Gto, Archivo Técnico. Consejo de Recursos Minerales. 1-140.https://mapserver.sgm.gob.mx/ArchivoTecnico/ https://mapserver.sgm.gob.mx/ArchivoTecnico/
    Appelo, C. A. J., Postma, D., 2005. Geochemistry, Groundwater and Pollution. Balkema, Rotterdam. https://doi.org/10.1002/esp.3290200510
    Aranda-Gómez, J. J., Levresse, G., 2013. Active Sinking at the Bottom of the Rincón de Parangueo Maar (Guanajuato, México) and Its Probable Relation with Subsidence Faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana, 65(1): 169-188. https://doi.org/10.18268/bsgm2013v65n1a13
    Aribam, B., Alam, W., Thokchom, B., 2021. Chapter 8 Water, Arsenic, and Climate Change. In: Thokchom, B., Qiu, P. P., Singh, P., et al., eds., Water Conservation in the Era of Global Climate Change. Elsevier. 167-190. https://doi.org/10.1016/b978-0-12-820200-5.00003-8
    Armienta, M. A., Segovia, N., 2008. Arsenic and Fluoride in the Groundwater of Mexico. Environmental Geochemistry and Health, 30(4): 345-353. https://doi.org/10.1007/s10653-008-9167-8
    Arellano, A. R. V., Pantoja, J., Ledesma, O., 1960. Yacimientos de Minerales no Metálicos de la Región de Nautla, Municipio de Comonfort, Guanajuato. Informe Técnico Consejo de Recursos Naturales no Renovables. 1-39https://mapserver.sgm.gob.mx/ArchivoTecnico/
    Asere, T. G., Verbeken, K., Tessema, D. A., et al., 2017. Adsorption of As(Ⅲ) versus As(Ⅴ) from Aqueous Solutions by Cerium-Loaded Volcanic Rocks. Environmental Science and Pollution Research, 24(25): 20446-20458. https://doi.org/10.1007/s11356-017-9692-z
    AWWA, APHA, WWF, 2005. Standard Methods for the Examination of Water and Wastewater. American Public health Association, The American Water Works Association, Association Water Environment Federation, Washington, D. C. https://www.awwa.org/Store/Product-Details/productId/65266295
    Báez-Pérez, A., Huerta, M. E., Velázquez, G. J., et al., 2011. Acumulación y Flujo de Carbono en Vertisoles Cultivados en Labranza de Conservación. In: Paz, F. Y., Cuevas, R. M., eds., Estado actual del Conocimiento del ciclo del Carbono y sus Interacciones en México. Síntesis a 2011 del Programa Mexicano del Carbono. Instituto Nacional de Ecología. México. D. F. 204-211
    Barranquero, R. S., Varni, M., Vega, M., et al., 2017. Arsenic, Fluoride and other Trace Elements in the Argentina Pampean Plain. Geologica Acta, 15: 187-200. https://doi.org/10.1344/geologicaacta2017.15.3.3
    Brueseke, M. E., Callicoat, J. S., Hames, W., et al., 2014. Mid-Miocene Rhyolite Volcanism in Northeastern Nevada: The Jarbidge Rhyolite and Its Relationship to the Cenozoic Evolution of the Northern Great Basin (USA). Geological Society of America Bulletin, 126(7/8): 1047-1067. https://doi.org/10.1130/b30736.1
    Bundschuh, J., Litter, M. I., Parvez, F., et al., 2012. One Century of Arsenic Exposure in Latin America: A Review of History and Occurrence from 14 Countries. Science of the Total Environment, 429: 2-35. https://doi.org/10.1016/j.scitotenv.2011.06.024
    Bundschuh, J., Schneider, J., Alam, M. A., et al., 2021. Seven Potential Sources of Arsenic Pollution in Latin America and Their Environmental and Health Impacts. Science of the Total Environment, 780: 146274. https://doi.org/10.1016/j.scitotenv.2021.146274
    Cardona, A., Banning, A., Carrillo-Rivera, J. J., et al., 2018. Natural Controls Validation for Handling Elevated Fluoride Concentrations in Extraction Activated Tóthian Groundwater Flow Systems: San Luis Potosí, Mexico. Environmental Earth Sciences, 77(4): 121. https://doi.org/10.1007/s12665-018-7273-1
    Castellazzi, P., Arroyo-Domínguez, N., Martel, R., et al., 2016. Land Subsidence in Major Cities of Central Mexico: Interpreting InSAR-Derived Land Subsidence Mapping with Hydrogeological Data. International Journal of Applied Earth Observation and Geoinformation, 47: 102-111. https://doi.org/10.1016/j.jag.2015.12.002
    Carrera-Hernández, J. J., Carreón-Freyre, D., Cerca-Martínez, M., et al., 2016. Groundwater Flow in a Transboundary Fault-Dominated Aquifer and the Importance of Regional Modeling: The Case of the City of Querétaro, Mexico. Hydrogeology Journal, 24(2): 373-393. https://doi.org/10.1007/s10040-015-1363-x
    Chen, H. R., Zhang, D. R., Li, Q., et al., 2022. Release and Fate of as Mobilized via Bio-Oxidation of Arsenopyrite in Acid Mine Drainage: Importance of As/Fe/S Speciation and As(Ⅲ) Immobilization. Water Research, 223: 118957. https://doi.org/10.1016/j.watres.2022.118957
    Clark, I., 2015. Groundwater Geochemistry and Isotopes. CRC Press. 456. https://doi. org/10.1201/b18347 doi: 10.1201/b18347
    del Río Varela, P., Nieto-Samaniego, Á. F., Alaniz-Álvarez, S. A., et al., 2020. Geología y Estructura de Las Sierras de Guanajuato y Codornices, Mesa Central, México. Boletín de la Sociedad Geológica Mexicana, 72(1). https://doi. org/10.18268/bsgm2020v72n1a071019 doi: 10.18268/bsgm2020v72n1a071019
    Corbett, G., Leach, T., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists, Special Publication No. 6
    De Pablo, L., Doval, M., La Iglesia, A., Soriano, J., 2014. CaK-Clinoptilolite, KNa-Chabazite, KNa-Heulandite, KNA-Errionite and Na-Phillipsite from Tuffaceous Rocks, Province of the Mesa Central, Mexico. Revista Mexicana de Ciencias Geológicas, 31(1): 116-126
    Elders, W. A., Nielson, D. L., Schiffman, P., et al., 2014. Hydrothermal Alteration and the Geochemical Evolution of Volcanic Geothermal Systems. Geothermics, 53: 134-153. https://doi.org/10.1016/j.geothermics.2014.05.011
    Esteller, M. V., Domínguez-Mariani, E., Garrido, S. E., et al., 2015. Groundwater Pollution by Arsenic and other Toxic Elements in an Abandoned Silver Mine, Mexico. Environmental Earth Sciences, 74(4): 2893-2906. https://doi.org/10.1007/s12665-015-4315-9
    Fan, Q., Wang, L., Fu, Y., et al., 2023. Iron Redox Cycling in Layered Clay Minerals and Its Impact on Contaminant Dynamics: A Review. Science of the Total Environment, 855: 159003. 10.1016/j. scitotenv. 2022.159003 doi: 10.1016/j.scitotenv.2022.159003
    Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1/2/3/4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
    Gan, Y., Robinson, C., Harris, B., et al., 2014. Microbially Mediated Redox Cycling of Arsenic in Groundwater: Insights from Experimental Studies and Thermodynamic Modeling. Environmental Science & Technology, 48(22): 13791-13798. https://doi.org/10.1021/es503623s
    García-Vallés, M., Martínez-Manent, S., Fernández-Turiel, J. L., et al., 2015. Mineralogical Indicators of Hydrothermal Alteration in Volcanic Rocks: The Case of Tridymite, Kaolinite, and Alunite Assemblages. Applied Geochemistry, 59: 72-83
    Guo, W., Wu, N., Zeng, J., et al., 2013. Influence of Microbial Degradation of Organic Matter on δ¹³C of Dissolved Inorganic Carbon in Groundwater Systems. Environmental Earth Sciences, 70(5): 2147-2158. https://doi.org/10.1007/s12665-013-2326-8
    Hansel, C. M., Benner, S. G., Fendorf, S., 2015. Microbial and Geochemical Controls on Arsenic and Iron Transformations in Sediments. Geobiology, 13(3): 191-207. https://doi.org/10.1111/gbi.12119
    Hoffmann, T. D., Reeksting, B. J., Gebhard, S., 2021. Bacteria-Induced Mineral Precipitation: a Mechanistic Review. Microbiology, 167(4): 001049. https://doi.org/10.1099/mic.0.001049
    Huizar-Alvarez, R., Mitre-Salazar, L. M., Marín-Córdova, S., et al., 2011. Subsidence in Celaya, Guanajuato, Central Mexico: Implications for Groundwater Extraction and the Neotectonic Regime. Geofísica Internacional, 50(3): 255-270. https://doi.org/10.22201/igeof.00167169p.2011.50.3.225
    Juárez-Aparicio, F., 2019. Evaluación de Rocas Calizas del Bajío Guanajuatense en la Remoción de Arsénico y Fluoruro en el agua Subterránea. Tesis Maestría, UNAM. 113
    Johannesson, K. H., Tang, J. W., 2009. Conservative Behavior of Arsenic and other Oxyanion-Forming Trace Elements in an Oxic Groundwater Flow System. Journal of Hydrology, 378(1/2): 13-28. https://doi.org/10.1016/j.jhydrol.2009.09.003
    Keating, E. H., Newell, D. L., Viswanathan, H., et al., 2013. CO2/Brine Transport into Shallow Aquifers along Fault Zones. Environmental Science & Technology, 47(1): 290-297. https://doi.org/10.1021/es301495x
    Komorowicz, I., Barałkiewicz, D., 2011. Arsenic and Its Speciation in Water Samples by High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry: Last Decade Review. Talanta, 84(2): 247-261. https://doi.org/10.1016/j.talanta.2010.10.065
    Landa-Arreguín, J. F. A., Villanueva-Estrada, R. E., Rodríguez-Díaz, A. A., et al., 2021. Evidence of a New Geothermal Prospect in the Northern-Central Trans-Mexican Volcanic Belt: Rancho Nuevo, Guanajuato, Mexico. Journal of Iberian Geology, 47: 713-732. https://doi.org/10.1007/s41513-021-00173-0
    Liu, H. Y., Xue, Y. Y., Yang, T. G., et al., 2022. Fluid-Rock Interactions at Shallow Depths in Subduction Zone: Insights from Trace Elements and B Isotopic Composition of Metabasites from the Mariana Forearc. Lithos, 422/423: 106730. https://doi.org/10.1016/j.lithos.2022.106730
    Liu, Z. W., Cui, P. X., Cui, X. C., et al., 2022. Prediction of CO2 Solubility in NaCl Brine under Geological Conditions with an Improved Binary Interaction Parameter in the Søreide-Whitson Model. Geothermics, 105: 102544. https://doi.org/10.1016/j.geothermics.2022.102544
    López-Alvis, J., Carrera-Hernández, J. J., Levresse, G., et al., 2019. Assessment of Groundwater Depletion Caused by Excessive Extraction through Groundwater Flow Modeling: The Celaya Aquifer in Central Mexico. Environmental Earth Sciences, 78(15): 482. https://doi.org/10.1007/s12665-019-8497-4
    López, R. E., 1957. Estudio Fotogeológico de la Región de Neutla-Comonfort, Gto. Informe Técnico Consejo de Recursos Naturales no Renovables. 1-8. https://mapserver.sgm.gob.mx/ArchivoTecnico/
    Mandal, B. K., Suzuki, K. T., 2002. Arsenic around the World: A Review. Talanta, 58(1): 201-235. https://doi.org/10.1016/s0039-9140(02)00268-0
    Masuda, H., 2018. Arsenic Cycling in the Earth's Crust and Hydrosphere: Interaction between Naturally Occurring Arsenic and Human Activities. Progress in Earth and Planetary Science, 5(1): 68. https://doi.org/10.1186/s40645-018-0224-3
    Mai, C., Guo, Q., Yuan, X., et al., 2014. Effects of Microbial Activity on the δ¹³C of Dissolved Inorganic Carbon and Carbonate Precipitation in Karst Waters. Environmental Earth Sciences, 71(2): 817-829. https://doi.org/10.1007/s12665-013-2486-6
    Mao, X. M., Dong, Y. Q., He, Y. Y., et al., 2022. The Effect of Granite Fracture Network on Silica-Enriched Groundwater Formation and Geothermometers in Low-Temperature Hydrothermal System. Journal of Hydrology, 609: 127720. https://doi.org/10.1016/j.jhydrol.2022.127720
    Mengelle-López, J. J., Canet, C., Prol-Ledesma, R. M., et al., 2013. Secuencia Vulcano-Sedimentaria La Esperanza (Cretácico Inferior) al Norte de Guanajuato, México: Importancia en la Exploración de Sulfuros Masivos Vulcanogénicos Secuencia Vulcano-Sedimentaria La Esperanza (Cretácico Inferior) al Norte de Guanajuato, México: Importancia en la exploración de Sulfuros Masivos Vulcanogénicos. Boletín de la Sociedad Geológica Mexicana, 65(3): 511-525. https://doi.org/10.18268/bsgm2013v65n3a6
    Morales-Arredondo, I., Rodríguez, R., Armienta, M. A., et al., 2016. The Origin of Groundwater Arsenic and Fluorine in a Volcanic Sedimentary Basin in Central Mexico: A Hydrochemistry Hypothesis. Hydrogeology Journal, 24: 1029-1044. https://doi.org/10.1007/s10040-015-1357-8
    Morales-Arredondo, J. I., Armienta Hernández, M. A., Hernández-Mendiola, E., et al., 2018a. Hydrochemical Behavior of Uranium and Thorium in Rock and Groundwater Samples from Southeastern of El Bajío Guanajuatense, Guanajuato, Mexico. Environmental Earth Sciences, 77: 567. https://doi.org/10.1007/s12665-018-7749-z
    Morales-Arredondo, J. I., Esteller-Alberich, M. V., Armienta Hernández, M. A., et al., 2018b. Characterizing the Hydrogeochemistry of Two Low-Temperature Thermal Systems in Central Mexico. Journal of Geochemical Exploration, 185: 93-104. https://doi.org/10.1016/j.gexplo.2017.11.006
    Morales-Arredondo, J. I., Armienta Hernández, M. A., Ortega-Gutiérrez, J. E., et al., 2020a. Evaluation of the Carbon Dioxide Behavior in a Thermal Aquifer Located at Central Mexico and Its Relation to Silicate Weathering. International Journal of Environmental Science and Technology, 17(7): 3411-3430. https://doi.org/10.1007/s13762-020-02683-3
    Morales-Arredondo, I., Flores-Ocampo, I. Z., Armienta, M. A., et al., 2020b. Identificación de Las Fuentes de Nitratos Mediante Métodos Hidrogeoquímicos E Isotópicos En El Agua Subterránea Del Bajío Guanajuatense. Geofísica Internacional, 59(3): 169-194. https://doi.org/10.22201/igeof.00167169p.2020.59.3.2093
    Morales-Arredondo, J. I., Hernandez, M. A. A., Juárez-Aparicio, F., et al., 2022. Use of δ18O, δ13C and B to Identify Hydrogeochemical Processes Related to Contamination in an Aquifer Located in Central Mexico. Acta Geochimica, 41: 367-392. https://doi.org/10.1007/s11631-021-00519-6.
    Morales-Arredondo, J. I., Hernández M. A. A., Lugo-Dorantes, A. E., et al., 2023. Fluoride Presence in Drinking Water along the Southeastern Part of El Bajio Guanajuatense, Guanajuato, Mexico: Sources and Health Effects. Environmental Geochemistry and Health, 45: 3715-3742. https://doi.org/10.1007/s10653-022-01426-2
    Morales-Simfors, N., Bundschuh, J., 2022. Arsenic-Rich Geothermal Fluids as Environmentally Hazardous Materials—A Global Assessment. Science of the Total Environment, 817: 152669. https://doi.org/10.1016/j.scitotenv.2021.152669
    Moran-Ramírez, J., Morales-Arredondo, J. I., Armienta-Hernández, M. A., et al., 2020. Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Science, 31(5): 1007-1015. https://doi.org/10.1007/s12583-020-1294-x
    Nicolli, H. B., Bundschuh, J., Blanco, M. D. C., et al., 2012. Arsenic and Associated Trace-Elements in Groundwater from the Chaco-Pampean Plain, Argentina: Results from 100 Years of Research. Science of the Total Environment, 429: 36-56. https://doi.org/10.1016/j.scitotenv.2012.04.048
    Nieto-Samaniego, A. F., Ojeda-García, A. C., Alaniz-Álvarez, S. A., et al., 2012. Geología de la Región de Salamanca, Guanajuato, México. Boletín de la Sociedad Geológica Mexicana, 64(3): 411-425 doi: 10.18268/BSGM2012v64n3a10
    NOM-127-SSA1-1994-2000, 2000. Norma Oficial Mexicana 'Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el aguapara su potabilización'. México D. F. http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=22/11/2000
    NOM-230-SSA1-2002, 2002. Norma Oficial Mexicana, Salud ambiental. Agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo in. http://www.salud.gob.mx/unidades/cdi/nom/230ssa102.html
    Pérez-Venzor, J. A., Aranda-Gómez, J. J., McDowell, F., et al., 1996. Geology of the Palo Huérfano Volcano, Guanajuato, Mexico. National Autonomous University of Mexico, Institute of Geology, 13(2): 174-183
    Pi, K. F., Markelova, E., Zhang, P., et al., 2019. Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. Environmental Science & Technology, 53(18): 10897-10905. https://doi.org/10.1021/acs.est.9b03188
    Quicksall, A. N., Bostick, B. C., Sampson, M. L., 2008. Linking Organic Matter Deposition and Iron Mineral Transformations to Groundwater Arsenic Levels in the Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3088-3098. https://doi.org/10.1016/j.apgeochem.2008.06.027
    Rendón, C. F., 1958. Reconocimiento de Algunos Yacimientos de Minerales Poco Conocidos en el Municipio de Comonfort, Estado de Guanajuato, Archivo Técnico. Consejo de Recursos Naturales no Renovables. 1-42. https://mapserver.sgm.gob.mx/ArchivoTecnico/
    Savoie, C. B. Y., 2013. Arsenic Mobility and Compositional Variability in High-Silica Ash Flow Tuffs: [Dissertation]. Department of Geology, Portland State University, Portland. 10.15760/etd.1012
    Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
    Sø, H. U., Postma, D., Jakobsen, R., et al., 2008. Sorption and Desorption of Arsenate and Arsenite on Calcite. Geochimica et Cosmochimica Acta, 72(24): 5871-5884. https://doi.org/10.1016/j.gca.2008.09.023
    Sosa, A., Armienta, M. A., Aguayo, A., et al., 2020. Evaluation of the Influence of Main Groundwater Ions on Arsenic Removal by Limestones through Column Experiments. Science of the Total Environment, 727: 138459. https://doi.org/10.1016/j.scitotenv.2020.138459
    Stewart, C., Damby, D. E., Tomašek, I., et al., 2020. Assessment of Leachable Elements in Volcanic Ashfall: A Review and Evaluation of a Standardized Protocol for Ash Hazard Characterization. Journal of Volcanology and Geothermal Research, 392: 106756. https://doi.org/10.1016/j.jvolgeores.2019.106756
    Stollenwerk, K. G., 2003. Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption. In: Welch, A. H., Stollenwerk, K. G., eds., Arsenic in Ground Water: Geochemistry and Occurence. Kluwer Academic Publishers, Norwell, MA, Boston
    Stolze, L., Zhang, D., Guo, H. M., et al., 2019. Model-Based Interpretation of Groundwater Arsenic Mobility during in situ Reductive Transformation of Ferrihydrite. Environmental Science & Technology, 53(12): 6845-6854. https://doi.org/10.1021/acs.est.9b00527
    Streckeisen, A. L., 1967. Classification and Nomenclature of Igneous Rocks. Neues Jahrbuch für Mineralogie, 107: 2
    Tóth, J., 2009. Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization. Cambridge University Press, New York. 297
    United States Environmental Protection Agency (USEPA), 2007. Summary of Method. En method 6200 "Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment". United States Environmental Protection Agency. 3. 10.1007/bf01820841
    van Geen, A., Zheng, Y., Cheng, Z., et al., 2006. A Transect of Groundwater and Sediment Properties in Araihazar, Bangladesh: Further Evidence of Decoupling between as and Fe Mobilization. Chemical Geology, 228(1/2/3): 85-96. https://doi.org/10.1016/j.chemgeo.2005.11.024
    Verma, M. P., Izquierdo, G., Urbino, G. A., et al., 2012. Inter-Laboratory Comparison of SiO2 Analysis for Geothermal Water Chemistry. Geothermics, 44: 33-42. https://doi.org/10.1016/j.geothermics.2012.06.003
    Verma, M. P., Portugal, E., Gangloff, S., et al., 2015. Determination of the Concentration of Carbonic Species in Natural Waters: Results from a World-Wide Proficiency Test. Geostandards and Geoanalytical Research, 39(2): 233-255. https://doi.org/10.1111/j.1751-908x.2014.00306.x
    Viswanathan, H., Dai, Z. X., Lopano, C., et al., 2012. Developing a Robust Geochemical and Reactive Transport Model to Evaluate Possible Sources of Arsenic at the CO2 Sequestration Natural Analog Site in Chimayo, New Mexico. International Journal of Greenhouse Gas Control, 10: 199-214. https://doi.org/10.1016/j.ijggc.2012.06.007
    Watanabe, Y., Amitani, N., Yokoyama, T., et al., 2021. Synthesis of Mesoporous Silica from Geothermal Water. Scientific Reports, 11: 23811. https://doi.org/10.1038/s41598-021-03133-x
    Webb, C. J., Davis, A. D., 2016. Remediation of Arsenic in Drinking Water (Chapter 3). In: States, J. C., ed., Arsenic: Exposure Sources, Health Risks, and Mechanisms of Toxicity. Wiley, Hoboken. 61-80
    Wu, X. H., Burnell, S., Neil, C. W., et al., 2020. Effects of Phosphate, Silicate, and Bicarbonate on Arsenopyrite Dissolution and Secondary Mineral Precipitation. ACS Earth and Space Chemistry, 4(4): 515-525. https://doi.org/10.1021/acsearthspacechem.9b00273
    Xiao, T., Dai, Z. X., Viswanathan, H., et al., 2017. Arsenic Mobilization in Shallow Aquifers Due to CO2 and Brine Intrusion from Storage Reservoirs. Scientific Reports, 7: 2763. https://doi.org/10.1038/s41598-017-02849-z
    Xie, X. J., Wang, Y. X., Ellis, A., et al., 2013. Delineation of Groundwater Flow Paths Using Hydrochemical and Strontium Isotope Composition: a Case Study in High Arsenic Aquifer Systems of the Datong Basin, Northern China. Journal of Hydrology, 476: 87-96. https://doi.org/10.1016/j.jhydrol.2012.10.016
    Zhang, J. W., Ma, T., Feng, L., et al., 2017. Arsenic Behavior in Different Biogeochemical Zonations Approximately along the Groundwater Flow Path in Datong Basin, Northern China. Science of the Total Environment, 584/585: 458-468. https://doi.org/10.1016/j.scitotenv.2017.01.029
    Zheng, L. G., Apps, J. A., Spycher, N., et al., 2012. Geochemical Modeling of Changes in Shallow Groundwater Chemistry Observed during the MSU-ZERT CO2 Injection Experiment. International Journal of Greenhouse Gas Control, 7: 202-217. https://doi.org/10.1016/j.ijggc.2011.10.003
    Zheng, L. G., Nico, P., Spycher, N., et al., 2021. Potential Impacts of CO2 Leakage on Groundwater Quality of Overlying Aquifer at Geological Carbon Sequestration Sites: A Review and a Proposed Assessment Procedure. Greenhouse Gases: Science and Technology, 11(5): 1134-1166. https://doi.org/10.1002/ghg.2104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(31) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return