Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 3
Jun 2024
Turn off MathJax
Article Contents
Hua Li, Ming Wang, Jiqing Li, Haikui Tong, Jiaxiang Dong, Minggang Tian, Xiaolin Chen, Leguang Li, Ting Xie, Xiong Li, Yuying Che. Geochemistry and Zircon U-Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh-Pressure Metamorphic Belt, Northern Qaidam Basin. Journal of Earth Science, 2024, 35(3): 866-877. doi: 10.1007/s12583-022-1791-1
Citation: Hua Li, Ming Wang, Jiqing Li, Haikui Tong, Jiaxiang Dong, Minggang Tian, Xiaolin Chen, Leguang Li, Ting Xie, Xiong Li, Yuying Che. Geochemistry and Zircon U-Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh-Pressure Metamorphic Belt, Northern Qaidam Basin. Journal of Earth Science, 2024, 35(3): 866-877. doi: 10.1007/s12583-022-1791-1

Geochemistry and Zircon U-Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh-Pressure Metamorphic Belt, Northern Qaidam Basin

doi: 10.1007/s12583-022-1791-1
More Information
  • Corresponding author: Ming Wang, qhddywangming@163.com
  • Received Date: 21 Sep 2022
  • Accepted Date: 26 Nov 2022
  • Issue Publish Date: 30 Jun 2024
  • The Hardawu granites in the eastern segment of the ultrahigh-pressure metamorphic belt, the northern Qaidam Basin, were studied by whole-rock major and trace elements and in-situ zircon U-Pb geochronology and Hf isotopes to discuss the petrogenesis and tectonic evolution. Geochronological results show that the granites have a crystallization age of 401 ± 3 Ma, suggesting that they were formed in the Early Devonian. The granites have SiO2 contents of 75.32 wt.%–76.05 wt.%, total alkali contents of 8.23 wt.%–8.36 wt.%, and K2O/Na2O ratios of 1.62–1.91. They were rich in K2O, poor in TiO2, MnO, MgO, and P2O5, and have A/CNK values of 1.05–1.07, Rittmann index δ values of 2.05–2.14, and differentiation index (DI) values of 92.85–94.18. They are high potassium calc-alkaline, weak-peraluminum, and highly differentiated I-type granites. The granites also show enrichment of large ion lithophile elements (LILE) such as Rb, Ba, and Th, and depletion of high field strength elements (HFSE) such as Nb, Ta, and Ti. The total REE concentrations range from 169 ppm to 232 ppm, with enrichments of light rare earth elements and negative Eu anomalies (δEu = 0.39–0.55). The zircon εHf(t) values range from -0.65 to -2.29, and the two-stage model ages (tDM2) changed within a small range of 1.44 to 1.54 Ga, indicating that the magma of the Hardawu granites was originated from the partial melting of Mesoproterozoic lower crustal materials. Combined with previous studies, we suggest that the Hardawu granites were formed in the extensional tectonic setting after the collision between the Qaidam Block and the central and southern Qilian Block in the Early Devonian.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8
    Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223–240. https://doi.org/10.1016/j.jseaes.2017.09.009
    Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    Chen, X. H., Yi, A., Gehrels, G., et al., 2011. Chemical Geodynamics of Granitic Magmatism in the Basement of the Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 82(2): 157–171 (in Chinese with English Abstract)
    Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Ex-humation. Lithos, 136/137/138/139: 187–200. https://doi.org/10.1016/j.lithos.2011.11.006
    Dong, Z. C., Gu, P. Y., Chen, R. M., et al., 2015. Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai. Earth Science, 40(1): 130–144. https://doi.org/10.3799/dqkx.2015.009 (in Chinese with English Abstract)
    Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Chara-cteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67–81. https://doi.org/10.1144/gsl.sp.1986.019.01.04
    He, X. Y., Yang, X. K., Wang, Y., et al., 2020. Petrology, Geochemistry and Zircon U-Pb Geochronology of the Chaidamushan Granite from the Southern Margin of Qilianshan. Acta Geologica Sinica, 94(4): 1248–1263 (in Chinese with English Abstract)
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h
    Jia, Q. Z., Du, Y. L., Zhao, Z. J., et al., 2013. Zircon LA-MC-ICPMS U-Pb Dating and Geochemical Characteristics of the Plagiogranite Porphyry from Tanjianshan Gold Ore District in North Margin of Qaidam Basin. Geological Science and Technology Information, 32(1): 87–93 (in Chinese with English Abstract)
    Ju, J. B., Chen, Z. X., Sun, Y. G., et al., 1999. 1 : 50 000 Regional Geological Survey Report: J47 E 021009 Chachaxiangka Farm and J47 E 021010 Qulu. Qinghai Regional Geological Survey Brigade, Xining (in Chinese)
    King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U Pb Zircon, Geochemical and Sr Nd Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, Z. H., Li, B. L., Li, P., et al., 2020. Zircon U-Pb Geochronology, Geochemistry, and Hf Isotope of the Granite Porphyry in the Dushugou Gold Deposit, Tanjianshan Area, North Qaidam. Acta Geologica Sinica, 94(12): 3625–3642 (in Chinese with English Abstract)
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Lu, S. N., Wang, H. C., Li, H. K., et al., 2002. Redefinition the Dakendaban Group on the Northern Margin of the Qaidam Basin. Geological Bulletin of China, 21(1): 19–23 (in Chinese with English Abstract)
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Micro-soft Excel. Berkeley Geochronology Center, California, Berkeley. 39
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Middlemost, E. K., 1985. Magmas and Magmatic Rocks. Longman, London. 266
    Pan, L., Zhou, B., Lu, L., et al., 2021. Geochemistry, Zircon U-Pb Chronology, Lu-Hf Isotopic Compositions and Geological Significance of the Hangmuduo Granite in Riduo Area of Eastern Gangdise Belt. Northwestern Geology, 54(4): 59–81. https://doi.org/10.19751/j.cnki.61-1149/p.2021.04.005 (in Chinese with English Abstract)
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contri-butions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Qian, B., Zhang, Z. W., Lü, P. R., et al., 2018. Petrogenesis and Geodynamics Processes of Early Paleozoic Niubiziliang High-Mg Diorites in West Segment of North Qaidam, Qinghai. Earth Science, 43(12): 4375–4389. https://doi.org/10.3799/dqkx.2018.176 (in Chinese with English Abstract)
    Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825–828. https://doi.org/10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2
    Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41–59. https://doi.org/10.1007/bf00311184
    Shi, R. D., Yang, J. S., Wu, C. L., 2004. Island Arc Volcanic Rocks in the North Qaidam Early Paleozoic Ultrahigh-Pressure Metamorphic Belt, Northwest China. Acta Geologica Sinica, 78: 52–64 (in Chinese with English Abstract)
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635–661. https://doi.org/10.1007/s00410-004-0632-9
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo. 2007.11.005 doi: 10.1016/j.chemgeo.2007.11.005
    Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84. https://doi.org/10.1016/j.earscirev.2013.11.010
    Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Time Constraints on Orogenesis from Oceanic Subduction to Continental Subduction, Collision, and Exhumation: An Example from North Qilian and North Qaidam HP-UHP Belts. Acta Petrologica Sinica, 25(9): 2067–2077 (in Chinese with English Abstract)
    Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block: The Link between South China and Tarim. Precambrian Research, 220/221: 9–22. https://doi.org/10.1016/j.precamres.2012.07.007
    Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435–455. https://doi.org/10.1093/petrology/egi080
    Sun, G. C., Gao, P., Zhao, Z. F., et al., 2020. Syn-Exhumation Melting of the Subducted Continental Crust: Geochemical Evidence from Early Paleozoic Granitoids in North Qaidam, Northern Tibet. Lithos, 374: 105707. https://doi.org/10.1016/j.lithos.2020.105707
    Sun, L. X., Ren, B. F., Zhao, F. Q., et al., 2013. Zircon U-Pb Dating and Hf Isotopic Compositions of the Mesoporterozoic Granitic Gneiss in Xilinhot Block, Inner Mongolia. Geological Bulletin of China, 32(2/3): 327–340 (in Chinese with English Abstract)
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. 312
    Wang, H. C., Lu, S. L., Yuan, G. B., 2003. Tectonic Setting and Age of the "Tanjiangshan Group" on the Northern Margin of the Qaidam Basin. Geological Bulletin of China, 22: 487–493 (in Chinese with English Abstract)
    Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210/211: 181–198. https://doi.org/10.1016/j.lithos.2014.10.006
    Watson, E. B., Harrison, T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841–844. https://doi.org/10.1126/science.1110873
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contri-butions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369–383. https://doi.org/10.1007/bf00320972
    Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP U-Pb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt, NW China. Science China Earth Sciences, 57(12): 2945–2965. https://doi.org/10.1007/s11430-014-4958-5
    Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the in Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861–1875 (in Chinese with English Abstract)
    Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2008. Zircon SHRIMP U-Pb Dating of Granites in the Western Part of the Northern Margin of Qaidam Basin and Its Petrochemical Characteristics. Science China Earth Sciences, 38(8): 930–949 (in Chinese)
    Wu, C. L., Lei, M., Wu, D., et al., 2016. Zircon SHRIMP Dating and Genesis of Granites in Wulan Area of Northern Qaidam. Acta Geoscientica Sinica, 37(4): 493–516 (in Chinese with English Abstract)
    Wu, C. L., Wu, D., Mattinson, C., et al., 2019. Petrogenesis of Granitoids in the Wulan Area: Magmatic Activity and Tectonic Evolution in the North Qaidam, NW China. Gondwana Research, 67: 147–171. https://doi.org/10.1016/j.gr.2018.09.010
    Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Early Palaezoic Grranitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4): 1027–1044 (in Chinese with English Abstract)
    Wu, C. L., Yang, J. S., Ireland, T., et al., 2001. Zircon SHRIMP Ages of Aolaoshan Granite from the South Margin of Qilianshan and Its Geological Significance. Acta Petrologica Sinica, 17(2): 215–221 (in Chinese with English Abstract)
    Wu, C. L., Yang, J. S., Xu, Z. Q., et al., 2004. Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China. Acta Geologica Sinica, 78(5): 658–674 (in Chinese with English Abstract)
    Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Application in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)
    Wu, H. B., Wang, W. X., Zheng, C. L., et al., 2022. Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Tonalite in Saibagou Gold Deposit, the Northern Margin of Qaidam. Northwestern Geology, 55(1): 101–113. https://doi.org/10.19751/j.cnki.61-1149/p.2022.01.008 (in Chinese with English Abstract)
    Wu, S. P., 2008. Petrogenesis of Paleozoic Granitoids in the North Margin of Qaidam Basin and Their Orogenic Response: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 158 (in Chinese with English Abstract)
    Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Con-straints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589–1604 (in Chinese)
    Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014
    Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China): Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1/2): 33–57. https://doi.org/10.1016/j.precamres.2011.02.003
    Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen, NE Tibet (China): Tracing the Deep Subduction of Continental Blocks. Lithos, 155: 125–145. https://doi.org/10.1016/j.lithos.2012.08.022
    Yang, J. S., Wu, C. L., Zhang, J. X., et al., 2006. Protolith of Eclogites in the North Qaidam and Altun UHP Terrane, NW China: Earlier Oceanic Crust? Journal of Asian Earth Sciences, 28(2/3): 185–204. https://doi.org/10.1016/j.jseaes.2005.09.020
    Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378/379: 105794. https://doi.org/10.1016/j.lithos.2020.105794
    Yin, H. F., Zhang, K. X., 1998. Evolution and Characteristics of the Central Orogenic Belt. Earth ScienceJournal of China University of Geo-sciences, 23(5): 437–442 (in Chinese with English Abstract)
    Yu, S. Y., Zhang, J. X., Hou, K. J., 2011. Two Contrasting Magmatic Events in the Dulan UHP Metamorphic Terrane: Implications for Collisional Orogeny. Acta Petrologica Sinica, 27: 3335–3349 (in Chinese with English Abstract)
    Yu, S. Y., Zhang, J. X., Del Real, P. G., 2012. Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet: Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny. Gondwana Research, 21(1): 167–179. https://doi.org/10.1016/j.gr.2011.07.024
    Yu, S. Y., Zhang, J. X., Sun, D. Y., et al., 2015. Petrology, Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope of Granitic Leucosomes within Felsic Gneiss from the North Qaidam UHP Terrane: Constraints on the Timing and Nature of Partial Melting. Lithos, 218: 1–21. https://doi.org/10.1016/j.lithos.2015.01.008
    Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth Science Reviews, 191: 190–211. https://doi.org/10.1016/j.earscirev.2019.02.016
    Zhang, C., van Roermund, H., Zhang, L. F., et al., 2012. A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qaidam UHP Metamorphic Belt, Western China: In-situ EMP Monazite- and U-Pb Zircon SHRIMP Dating. Lithos, 136: 27–45. https://doi.org/10.1016/j.lithos.2011.07.024
    Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287–1300. https://doi.org/10.1127/0935-1221/2009/0021-1989
    Zhang, G. B., Zhang, L. F., Song, S. G., 2012. Ultra-High Pressure Metamorphic Belt in the Northern Margin of Qaidam Basin: Deep Subduction Process from Ocean to Mainland. Geological Journal of China Universities, 18(1): 28–40. https://doi.org/10.16108/j.issn1006-7493.2012.01.005 (in Chinese with English Abstract)
    Zhang, G. B., Ireland, T., Zhang, L. F., et al., 2016. Zircon Geochemistry of Two Contrasting Types of Eclogite: Implications for the Tectonic Evolution of the North Qaidam UHPM Belt, Northern Tibet. Gondwana Research, 35: 27–39. https://doi.org/10.1016/j.gr.2016.04.002
    Zhang, J. X., Yang, J. S., Meng, F. C., et al., 2006. U Pb Isotopic Studies of Eclogites and Their Host Gneisses in the Xitieshan Area of the North Qaidam Mountains, Western China: New Evidence for an Early Paleozoic HP UHP Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 143–150. https://doi.org/10.1016/j.jseaes.2005.09.017
    Zhang, J. X., Mattinson, C. G., Meng, F. C., et al., 2008. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Geological Society of America Bulletin, 120(5/6): 732–749. https://doi.org/10.1130/b26093.1
    Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955–978. https://doi.org/10.1111/j.1525-1314.2010.00901.x
    Zhang, J. X., Yu, S. Y., Mattinson, C. G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41: 267–289. https://doi.org/10.1016/j.gr.2015.11.009
    Zhang, Q., Pan, G. Q., Li C. D., et al., 2007. Granitic Magma Mixing versus Basaltic Magma Mixing: New Viewpoints on Granitic Magma mixing Process: Some Crucial Questions on Granite Study (1). Acta Petrologica Sinica, 23(5): 1141–1152 (in Chinese with English Abstract)
    Zhao, Z. X., Wei, J. H., Santosh, M., et al., 2018. Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt, Xitieshan Terrane, NW China. Geological Society of America Bulletin, 130(5/6): 999–1016. https://doi.org/10.1130/b31772.1
    Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150–164. https://doi.org/10.19509/j.cnki.dzkq.2020.0430 (in Chinese with English Abstract)
    Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeo-graphic Implications. Geological Society of America Bulletin, 122(7/8): 979–993. https://doi.org/10.1130/b30062.1
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290–308. https://doi.org/10.1016/j.chemgeo.2011.12.024
    Zhu, X. H., Chen, D. L., Wang, C., et al., 2015. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin. Acta Geologica Sinica, 89(2): 234–251. https://doi.org/10.19762/j.cnki.dizhixuebao.2015.02.003 (in Chinese with English Abstract)
    Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32–48. https://doi.org/10.1016/j.precamres.2016.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(70) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return