Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 1
Feb 2024
Turn off MathJax
Article Contents
Peng Feng, Lu Wang, Xiawen Li, Wenjie Ding, Zhe Chen. SS-LASS Zircon Dating Deciphering Multiple Episodes of Anatexis in a Deeply-Subducted Continental Crust: An Example from Sulu Orogen, China. Journal of Earth Science, 2024, 35(1): 85-98. doi: 10.1007/s12583-022-1797-8
Citation: Peng Feng, Lu Wang, Xiawen Li, Wenjie Ding, Zhe Chen. SS-LASS Zircon Dating Deciphering Multiple Episodes of Anatexis in a Deeply-Subducted Continental Crust: An Example from Sulu Orogen, China. Journal of Earth Science, 2024, 35(1): 85-98. doi: 10.1007/s12583-022-1797-8

SS-LASS Zircon Dating Deciphering Multiple Episodes of Anatexis in a Deeply-Subducted Continental Crust: An Example from Sulu Orogen, China

doi: 10.1007/s12583-022-1797-8
More Information
  • Corresponding author: Lu Wang, wanglu@cug.edu.cn
  • Received Date: 30 Aug 2022
  • Accepted Date: 01 Dec 2022
  • Available Online: 01 Mar 2024
  • Issue Publish Date: 29 Feb 2024
  • 'Single shot' laser-ablation split-stream (SS-LASS) technique analyzing unpolished zircon grains makes their thin rims tenable for determination, which thus offers great potential in deciphering the timing of multiple and short-lived episodes of anatexis and metamorphism in deeply-subducted continental crusts. Dominated granitic gneisses in the deeply subducted continental crust undergoing considerable fluid-melt activities persist multistage growth of zircon. Therefore, a comparative study of SS-LASS and laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) zircon dating was conducted on the granitic gneisses from the Sulu belt in this study. Zircons mostly show a core-mantle-rim structure with CL-bright rims thinner than 5 μm. For LA-ICP-MS dating, relict magmatic zircon cores yield protolith ages of ca. 756–747 Ma; whereas the dark mantles record syn-exhumation anatexis at ca. 214 Ma. By contrast, according to the U-Pb dates, trace element features, zircon crystallization temperatures and geological context, SS-LASS zircon petrochronology deciphers three episodes of anatectic events, as follows: (ⅰ) the first episode of anatexis at ca. 218–217 Ma dominated by phengite-breakdown melting, likely facilitating the exhumation of the UHP slice from mantle depth; (ⅱ) the second episode of anatexis at ca. 193–191 Ma indicating part of northern Dabie-Sulu belt was still "hot" because of buried in the thickened orogenic crust at that time; (ⅲ) the third episode of anatexis (ca. 162–161 Ma) consistent with the intrusion ages (ca. 161–141 Ma) of the Jurassic to Cretaceous granitoids in this orogen, suggesting the initial collapse of the orogenic root of the Sulu belt occurred at Late Jurassic due to the Izanagi plate initially subducting beneath the margin of Eastern Asia. This study sheds new light upon the utilization of SS-LASS petrochronology deciphering multiple anatectic events in the deeply-subducted continental crust and supports us in better understanding the tectonic evolution of Dabie-Sulu Orogen.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1797-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125–148. https://doi.org/10.1007/s00410-006-0104-5
    Brown, M., 2001. Orogeny, Migmatites and Leucogranites: A Review. Journal of Earth System Science, 110(4): 313–336. https://doi.org/10.1007/BF02702898
    Brown, M., 2005. Synergistic Effects of Melting and Deformation: An Example from the Variscan Belt, Western France. Geological Society, London, Special Publications, 243(1): 205–226. https://doi.org/10.1144/gsl.sp.2005.243.01.15
    Brown, M., Rushmer, T., 2006. Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge
    Brown, M., Solar, G. S., 1999. The Mechanism of Ascent and Emplacement of Granite Magma during Transpression: A Syntectonic Granite Paradigm. Tectonophysics, 312(1): 1–33. https://doi.org/10.1016/S0040-1951(99)00169-9
    Cesare, B., Acosta-Vigil, A., Bartoli, O., et al., 2015. What Can We Learn from Melt Inclusions in Migmatites and Granulites?. Lithos, 239: 186–216. https://doi.org/10.1016/j.lithos.2015.09.028
    Chen, R. X., Ding, B. H., Zheng, Y. F., et al., 2015. Multiple Episodes of Anatexis in a Collisional Orogen: Zircon Evidence from Migmatite in the Dabie Orogen. Lithos, 212/213/214/215: 247–265. https://doi.org/10.1016/j.lithos.2014.11.004
    Chen, R. X., Zheng, Y. F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149–176. https://doi.org/10.1016/j.jseaes.2017.04.029
    Chen, Y. X., Zheng, Y. F., Hu, Z. C., 2013a. Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks: Petrological Evidence from Granitic Gneiss in the Sulu Orogen. Lithos, 156/157/158/159: 69–96. https://doi.org/10.1016/j.lithos.2012.10.008
    Chen, Y. X., Zheng, Y. F., Hu, Z. C., 2013b. Petrological and Zircon Evidence for Anatexis of UHP Quartzite During Continental Collision in the Sulu Orogen. Journal of Metamorphic Geology, 31(4): 389-413. https://doi.org/10.1111/jmg.12026
    Cherniak, D. J., Watson, E. B., 2003. Diffusion in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113–143. https://doi.org/10.2113/0530113
    Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35: 73–110. https://doi.org/10.1146/annurev.earth.35.031306.140146
    Feng, P., Wang, L., Brown, M., et al., 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust: An Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. Geological Society of America Bulletin, 132: 1235–1256. https://doi.org/10.1130/b35210.1
    Feng, P., Wang, L., Brown, M., et al., 2021. Partial Melting of Ultrahigh-Pressure Eclogite by Omphacite-Breakdown Facilitates Exhumation of Deeply-Subducted Crust. Earth and Planetary Science Letters, 554: 116664. https://doi.org/10.1016/j.epsl.2020.116664
    Ferrero, S., Wunder, B., Walczak, K., et al., 2015. Preserved near Ultrahigh-Pressure Melt from Continental Crust Subducted to Mantle Depths. Geology, 43(5): 447–450. https://doi.org/10.1130/g36534.1
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Foster, D. A., Schafer, C., Fanning, C. M., et al., 2001. Relationships between Crustal Partial Melting, Plutonism, Orogeny, and Exhumation: Idaho-Bitterroot Batholith. Tectonophysics, 342(3/4): 313–350. https://doi.org/10.1016/S0040-1951(01)00169-X
    Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975. https://doi.org/10.1016/S0016-7037(98)00121-5
    Guo, F., Fan, W., Wang, Y., et al., 2004. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 78(3): 291–305. https://doi.org/10.1016/j.lithos.2004.05.001
    Guo, J. H., Chen, F. K., Zhang, X. M., et al., 2005. Evolution of Syn-to Post-Collisional Magmatism from North Sulu UHP Belt, Eastern China: Zircon U-Pb Geochronology. Acta Petrologica Sinica, 21: 1281–1301. https://doi.org/10.1016/j.sedgeo.2005.05.009 (in Chinese with English Abstract)
    Guo, J. H., Chen, F., Zhang, X., et al., 2001. Origin of Post-Collisional Shoshonitic Syenites and Strongly Peraluminous Rocks in Sulu UHP Belt, Eastern China: Zircon U-Pb and Petrologic-Chemical Data. Proceeding of the 8th Korea-China Joint Symposium on Crustal Evolution in Northeast Asia. Kongwon National University, Kyunju, South Korea. 126–129
    Hacker, B. R., Gerya, T. V., Gilotti, J. A., 2013. Formation and Exhumation of Ultrahigh-Pressure Terranes. Elements, 9(4): 289–293. https://doi.org/10.2113/gselements.9.4.289
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic–Early Jurassic Tectonic Unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339–13364. https://doi.org/10.1029/2000jb900039
    Hayden, L. A., Watson, E. B., 2007. Rutile Saturation in Hydrous Siliceous Melts and Its Bearing on Ti-Thermometry of Quartz and Zircon. Earth and Planetary Science Letters, 258(3/4): 561–568. https://doi.org/10.1016/j.epsl.2007.04.020
    Hermann, J., Green, D. H., 2001. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188(1/2): 149–168. https://doi.org/10.1016/S0012-821X(01)00321-1
    Hermann, J., Zheng, Y. F., Rubatto, D., 2013. Deep Fluids in Subducted Continental Crust. Elements, 9(4): 281–287. https://doi.org/10.2113/gselements.9.4.281.
    Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247–252. https://doi.org/10.2113/gselements.7.4.247
    Hu, F. F., Fan, H. R., Yang, J. H., et al., 2004. Mineralizing Age of the Rushan Lode Gold Deposit in the Jiaodong Peninsula: SHRIMP U-Pb Dating on Hydrothermal Zircon. Chinese Science Bulletin, 49(15): 1629–1636. https://doi.org/10.1007/bf03184134
    Huang, J., Zheng, Y. F., Zhao, Z. F., et al., 2006. Melting of Subducted Continent: Element and Isotopic Evidence for a Genetic Relationship between Neoproterozoic and Mesozoic Granitoids in the Sulu Orogen. Chemical Geology, 229(4): 227–256. https://doi.org/10.1016/j.chemgeo.2005.11.007
    Imayama, T., Takeshita, T., Yi, K., et al., 2012. Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya. Lithos, 134/135: 1–22. https://doi.org/10.1016/j.lithos.2011.12.004
    Kawakami, T., Yamaguchi, I., Miyake, A., et al., 2013. Behavior of Zircon in the Upper-Amphibolite to Granulite Facies Schist/Migmatite Transition, Ryoke Metamorphic Belt, SW Japan: Constraints from the Melt Inclusions in Zircon. Contributions to Mineralogy and Petrology, 165(3): 575–591. https://doi.org/10.1007/s00410-012-0824-7
    Keay, S., Lister, G., Buick, I., 2001. The Timing of Partial Melting, Barrovian Metamorphism and Granite Intrusion in the Naxos Metamorphic Core Complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 342(3/4): 275–312. https://doi.org/10.1016/S0040-1951(01)00168-8
    Korhonen, F. J., Clark, C., Brown, M., et al., 2013. How Long-Lived is Ultrahigh Temperature (UHT) Metamorphism? Constraints from Zircon and Monazite Geochronology in the Eastern Ghats Orogenic Belt, India. Precambrian Research, 234: 322–350. https://doi.org/10.1016/j.precamres.2012.12.001
    Kylander-Clark, A. R. C., Hacker, B. R., Cottle, J. M., 2013. Laser-Ablation Split-Stream ICP Petrochronology. Chemical Geology, 345: 99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019
    Labrousse, L., Duretz, T., Gerya, T., 2015. H2O-Fluid-Saturated Melting of Subducted Continental Crust Facilitates Exhumation of Ultrahigh-Pressure Rocks in Continental Subduction Zones. Earth and Planetary Science Letters, 428: 151–161. https://doi.org/10.1016/j.epsl.2015.06.016
    Labrousse, L., Jolivet, L., Agard, P., et al., 2002. Crustal-Scale Boudinage and Migmatization of Gneiss during Their Exhumation in the UHP Province of Western Norway. Terra Nova, 14(4): 263–270. https://doi.org/10.1046/j.1365-3121.2002.00422.x
    Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171–1174. https://doi.org/10.1130/g32316.1
    Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1/2): 149–159. https://doi.org/10.1016/S0012-821X(00)00374-5
    Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162/163: 157–174. https://doi.org/10.1016/j.lithos.2013.01.004
    Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2014. Dehydration and Anatexis of UHP Metagranite during Continental Collision in the Sulu Orogen. Journal of Metamorphic Geology, 32(9): 915–936. https://doi.org/10.1111/jmg.12100
    Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2016. Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China. Geological Society of America Bulletin, 128(9/10): 1521–1542. https://doi.org/10.1130/b31366.1
    Liu, F. L., Gerdes, A., Xue, H. M., 2009a. Differential Subduction and Exhumation of Crustal Slices in the Sulu HP-UHP Metamorphic Terrane: Insights from Mineral Inclusions, Trace Elements, U-Pb and Lu-Hf Isotope Analyses of Zircon in Orthogneiss. Journal of Metamorphic Geology, 27(9): 805–825. https://doi.org/10.1111/j.1525-1314.2009.00833.x
    Liu, F. L., Xue, H. M., Liu, P. H., 2009b. Partial Melting Time of Ultrahigh-Pressure Metamorphic Rocks in the Sulu UHP Terrane: Constrained by Zircon U-Pb Ages, Trace Elements and Lu-Hf Isotope Compositions of Biotite-Bearing Granite. Acta Petrologica Sinica, 25(5): 1039–1055 (in Chinese with English Abstract)
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Liu, F. L., Robinson, P. T., Liu, P. H., 2012. Multiple Partial Melting Events in the Sulu UHP Terrane: Zircon U-Pb Dating of Granitic Leucosomes within Amphibolite and Gneiss. Journal of Metamorphic Geology, 30(8): 887–906. https://doi.org/10.1111/j.1525-1314.2012.01005.x
    Liu, F. L., Robinson, T. P., Gerdes, A., et al., 2010. Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1/2/3/4): 247–268. https://doi.org/10.1016/j.lithos.2010.03.002
    Liu, F. L., Xu, Z. Q., Xue, H. M., 2004. Tracing the Protolith, UHP Metamorphism, and Exhumation Ages of Orthogneiss from the SW Sulu Terrane (Eastern China): SHRIMP U-Pb Dating of Mineral Inclusion-Bearing Zircons. Lithos, 78(4): 411–429. https://doi.org/10.1016/j.lithos.2004.08.001
    Liu, Q., Hermann, J., Zheng, S., et al., 2020. Evidence for UHP Anatexis in the Shuanghe UHP Paragneiss from Inclusions in Clinozoisite, Garnet, and Zircon. Journal of Metamorphic Geology, 38(2): 129–155. https://doi.org/10.1111/jmg.12515
    Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3/4): 365–379. https://doi.org/10.1016/j.lithos.2008.09.004
    Liu, Y. C., Gu, X. F., Li, S. G., et al., 2011. Multistage Metamorphic Events in Granulitized Eclogites from the North Dabie Complex Zone, Central China: Evidence from Zircon U-Pb Age, Trace Element and Mineral Inclusion. Lithos, 122(1/2): 107–121. https://doi.org/10.1016/j.lithos.2010.12.005
    Nemchin, A., Giannini, L., Bodorkos, S., et al., 2001. Ostwald Ripening as a Possible Mechanism for Zircon Overgrowth Formation during Anatexis: Theoretical Constraints, a Numerical Model, and Its Application to Pelitic Migmatites of the Tickalara Metamorphics, Northwestern Australia. Geochimica et Cosmochimica Acta, 65(16): 2771–2788. https://doi.org/10.1016/S0016-7037(01)00622-6
    Ni, J. L., Liu, J. L., Tang, X. L., et al., 2016. Early Cretaceous Exhumation of the Sulu Orogenic Belt as a Consequence of the Eastern Eurasian Tectonic Extension: Insights from the Newly Discovered Wulian Metamorphic Core Complex, Eastern China. Journal of the Geological Society, 173(3): 531–549. https://doi.org/10.1144/jgs2014-122
    Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508–2518. https://doi.org/10.1039/c1ja10172b
    Rey, P. F., Teyssier, C., Whitney, D. L., 2009. The Role of Partial Melting and Extensional Strain Rates in the Development of Metamorphic Core Complexes. Tectonophysics, 477(3/4): 135–144. https://doi.org/10.1016/j.tecto.2009.03.010
    Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19–28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
    Rubatto, D., Hermann, J., Berger, A., et al., 2009. Protracted Fluid-Induced Melting during Barrovian Metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158(6): 703–722. https://doi.org/10.1007/s00410-009-0406-5
    Rubatto, D., Hermann, J., Buick, I. S., 2006. Temperature and Bulk Composition Control on the Growth of Monazite and Zircon during Low-Pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47(10): 1973–1996. https://doi.org/10.1093/petrology/egl033
    Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229–234. https://doi.org/10.2113/gselements.7.4.229
    Shi, Y. H., Wang, J., Li, Q. L., et al., 2013. The Analysis of the Temperature and Pressure Structure for Metamorphic Rocks in Dabie Collision Orogen. Chinese Science Bulletin, 58(22): 2145–2152 (in Chinese with English Abstract)
    Sizova, E., Gerya, T., Brown, M., 2012. Exhumation Mechanisms of Melt-Bearing Ultrahigh Pressure Crustal Rocks during Collision of Spontaneously Moving Plates. Journal of Metamorphic Geology, 30(9): 927–955. https://doi.org/10.1111/j.1525-1314.2012.01004.x
    Song, Y. R., Xu, H. J., Zhang, J. F., et al., 2014. Syn-Exhumation Partial Melting and Melt Segregation in the Sulu UHP Terrane: Evidences from Leucosome and Pegmatitic Vein of Migmatite. Lithos, 202/203: 55–75. https://doi.org/10.1016/j.lithos.2014.05.017
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, R. J. M., Kirkland, C. L., Clark, C., 2016. Accessories after the Facts: Constraining the Timing, Duration and Conditions of High-Temperature Metamorphic Processes. Lithos, 264: 239–257. https://doi.org/10.1016/j.lithos.2016.09.004
    Teyssier, C., Whitney, D. L., 2002. Gneiss Domes and Orogeny. Geology, 30(12): 1139. https://doi.org/10.1130/0091-7613(2002)0301139:gdao>2.0.co;2 doi: 10.1130/0091-7613(2002)0301139:gdao>2.0.co;2
    Vanderhaeghe, O., 2009. Migmatites, Granites and Orogeny: Flow Modes of Partially-Molten Rocks and Magmas Associated with Melt/Solid Segregation in Orogenic Belts. Tectonophysics, 477(3/4): 119–134. https://doi.org/10.1016/j.tecto.2009.06.021
    Vanderhaeghe, O., Teyssier, C., 2001. Partial Melting and Flow of Orogens. Tectonophysics, 342(3/4): 451–472. https://doi.org/10.1016/s0040-1951(01)00175-5
    Viete, D. R., Kylander-Clark, A. R. C., Hacker, B. R., 2015. Single-Shot Laser Ablation Split Stream (SS-LASS) Petrochronology Deciphers Multiple, Short-Duration Metamorphic Events. Chemical Geology, 415: 70–86. https://doi.org/10.1016/j.chemgeo.2015.09.013
    Wang, J. H., Sun, M., Deng, S. X., 2002. Geochronological Constraints on the Timing of Migmatization in the Dabie Shan, East-Central China. European Journal of Mineralogy, 14(3): 513–524. https://doi.org/10.1127/0935-1221/2002/0014-0513
    Wang, L., Kusky, T. M., Polat, A., et al., 2014. Partial Melting of Deeply Subducted Eclogite from the Sulu Orogen in China. Nature Communications, 5: 5604. https://doi.org/10.1038/ncomms6604
    Wang, Q. C., Ishiwatari, A., Zhοngyan, Z., et al., 1993. Coesite-Bearing Granulite Retrograded from Eclogite in Weihai, Eastern China. European Journal of Mineralogy, 5(1): 141–152. https://doi.org/10.1127/ejm/5/1/0141
    Wang, S. J., Brown, M., Wang, L., et al., 2023. Two-Stage Exhumation of Deeply Subducted Continental Crust: Insight from Zircon, Titanite, and Apatite Petrochronology, Sulu Belt of Eastern China. GSA Bulletin, 135(1/2): 48–66. https://doi.org/10.1130/b36309.1
    Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77–97. https://doi.org/10.1007/s00710-018-0636-1
    Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust: Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6): 601–629. https://doi.org/10.1111/jmg.12248
    Wang, S. J., Wang, L., Brown, M., et al., 2020a. Petrogenesis of Leucosome Sheets in Migmatitic UHP Eclogites—Evolution from Silicate-Rich Supercritical Fluid to Hydrous Melt. Lithos, 360/361: 105442. https://doi.org/10.1016/j.lithos.2020.105442
    Wang, S. J., Wang, L., Ding, Y., et al., 2020b. Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China. Journal of Earth Science, 31(6): 1200–1215. https://doi.org/10.1007/s12583-020-1070-y
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2020c. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 57(2): 249–266. https://doi.org/10.1139/cjes-2019-0003
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
    Whitney, D. L., Teyssier, C., Fayon, A. K., et al., 2003. Tectonic Controls on Metamorphism, Partial Melting, and Intrusion: Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif, Turkey. Tectonophysics, 376(1/2): 37–60. https://doi.org/10.1016/j.tecto.2003.08.009
    Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/Thinning of Sub-Continental Lithospheric Mantle under Eastern China: The Role of Water and Multiple Subduction. American Journal of Science, 310(10): 1250–1293. https://doi.org/10.2475/10.2010.03
    Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007
    Wu, Y. B., Zheng, Y. F., Zhang, S. B., et al., 2007. Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China: Constraints on Partial Melting. Journal of Metamorphic Geology, 25(9): 991–1009. https://doi.org/10.1111/j.1525-1314.2007.00738.x
    Xie, L. W., Zhang, Y. B., Zhang, H. H., et al., 2008. In situ Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Chinese Science Bulletin, 53(10): 1565–1573. https://doi.org/10.1007/s11434-008-0086-y
    Xu, H. J., Ye, K., Song, Y. R., et al., 2013a. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16–37. https://doi.org/10.1016/j.chemgeo.2013.01.002
    Xu, H. J., Song, Y. R., Ye, K., 2013b. Partial Melting Time of the Sulu UHP Terrane: Constraints from Zircon U-Pb Age, Trace Element and Lu-Hf Isotope Composition of Leucosome in Rongcheng Granitic Gneiss. Acta Petrologica Sinica, 29(5): 1594–1606. https://doi.org/10.2110/palo.2012.p12-129r (in Chinese with English Abstract)
    Xu, H. J., Zhang, J. F., Wang, Y. F., et al., 2016. Late Triassic Alkaline Complex in the Sulu UHP Terrane: Implications for Post-Collisional Magmatism and Subsequent Fractional Crystallization. Gondwana Research, 35: 390–410. https://doi.org/10.1016/j.gr.2015.05.017
    Yang, J. H., Chung, S. L., Wilde, S. A., et al., 2005. Petrogenesis of Post-Orogenic Syenites in the Sulu Orogenic Belt, East China: Geochronological, Geochemical and Nd-Sr Isotopic Evidence. Chemical Geology, 214(1/2): 99–125. https://doi.org/10.1016/j.chemgeo.2004.08.053
    Yao, Y. P., Ye, K., Liu, J. B., et al., 2000. A Transitional Eclogite- to High Pressure Granulite-Facies Overprint on Coesite-Eclogite at Taohang in the Sulu Ultrahigh-Pressure Terrane, Eastern China. Lithos, 52(1/2/3/4): 109–120. https://doi.org/10.1016/S0024-4937(99)00087-0
    Ye, K., Yao, Y. P., Katayama, I., et al., 2000. Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 52(1/2/3/4): 157–164. https://doi.org/10.1016/S0024-4937(99)00089-4
    Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100–118. https://doi.org/10.1016/j.chemgeo.2007.10.003
    Zhang, G. B., Zhang, L. F., Christy, A. G., et al., 2014. Differential Exhumation and Cooling History of North Qaidam UHP Metamorphic Rocks, NW China: Constraints from Zircon and Rutile Thermometry and U-Pb Geochronology. Lithos, 205: 15–27. https://doi.org/10.1016/j.lithos.2014.06.018
    Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3/4): 512–536. https://doi.org/10.1016/j.lithos.2010.08.005
    Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone: A Comprehensive Review. Gondwana Research, 16(1): 1–26. https://doi.org/10.1016/j.gr.2009.03.008
    Zhao, R., Wang, Q. F., Liu, X. F., et al., 2016. Architecture of the Sulu Crustal Suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic Granitoids. Lithos, 266/267: 348–361. https://doi.org/10.1016/j.lithos.2016.10.018
    Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295–1318. https://doi.org/10.1007/s11430-009-0134-8
    Zhao, Z. F., Zheng, Y. F., Chen, Y. X., et al., 2017. Partial Melting of Subducted Continental Crust: Geochemical Evidence from Synexhumation Granite in the Sulu Orogen. GSA Bulletin, 129(11/12): 1692–1707. https://doi.org/10.1130/b31675.1
    Zhao, Z. F., Zheng, Y. F., Zhang, J., et al., 2012. Syn-Exhumation Magmatism during Continental Collision: Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen. Chemical Geology, 328: 70–88. https://doi.org/10.1016/j.chemgeo.2011.11.002
    Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145–4165. https://doi.org/10.1016/j.gca.2004.01.007
    Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378–400. https://doi.org/10.1016/j.epsl.2005.09.025
    Zheng, Y. F., Xia, Q. X., Chen, R. X., et al., 2011. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth-Science Reviews, 107(3/4): 342–374. https://doi.org/10.1016/j.earscirev.2011.04.004
    Zhu, R. X., Zhang, H. F., Zhu, G., et al., 2017. Craton Destruction and Related Resources. International Journal of Earth Sciences, 106(7): 2233–2257. https://doi.org/10.1007/s00531-016-1441-x
    Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120(3/4): 490–510. https://doi.org/10.1016/j.lithos.2010.09.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(72) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return