Citation: | Shuyu Jin, Xiang Wu, Yungui Liu, Yanfei Zhang, Chao Wang. Structural Stability of Natural Magnesiochromite at High-Temperature-Pressure Conditions. Journal of Earth Science, 2024, 35(4): 1196-1203. doi: 10.1007/s12583-022-1798-7 |
The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation, but the maximum depth is still an open issue. Here, we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2 450 K. The results have shown that spinel-type magnesiochromite first decomposes into corundum-type 'Cr2O3' + B1-type 'MgO' at 11–14 GPa and 1 250–1 450 K, then modified ludwigite (mLd)-type 'Mg2Cr2O5'+ corundum-type 'Cr2O3' at 14.3–20.5 GPa and 1 300–2 000 K, and finally CaTi2O4-type phase at 24.5 GPa. During the quenching procession from high-temperature-pressure conditions, the mLd-type phase appeared again and was kept at ambient conditions. We also obtained the isothermal equation states of spinel-type and CaTi2O4-type phases, revealing the composition effect on their elasticities. Based on the updated results, we propose chromitites could not experience pressure exceeding ~14.3 GPa (approximate maximum depth ~400 km) in the subduction-recycling genesis model.
Akaogi, M., Hamada, Y., Suzuki, T., et al., 1999. High Pressure Transitions in the System MgAl2O4-CaAl2O4: A New Hexagonal Aluminous Phase with Implication for the Lower Mantle. Physics of the Earth and Planetary Interiors, 115(1): 67–77. https://doi.org/10.1016/S0031-9201(99)00076-X |
Akaogi, M., Kawahara, A., Kojitani, H., et al., 2018. High-Pressure Phase Transitions in MgCr2O4·Mg2SiO4 Composition: Reactions between Olivine and Chromite with Implications for Ultrahigh-Pressure Chromitites. American Mineralogist, 103(1): 161–170. https://doi.org/10.2138/am-2018-6135 |
Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2 |
Angel, R. J., Alvaro, M., Gonzalez-Platas, J., 2014. EosFit7c and a Fortran Module (Library) for Equation of State Calculations. Zeitschrift Für Kristallographie-Crystalline Materials, 229(5): 405–419. https://doi.org/10.1515/zkri-2013-1711 |
Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3): 303–310. https://doi.org/10.1016/S0743-9547(97)00015-9 |
Arai, S., 2013. Conversion of Low-Pressure Chromitites to Ultrahigh-Pressure Chromitites by Deep Recycling: A Good Inference. Earth and Planetary Science Letters, 379: 81–87. https://doi.org/10.1016/j.epsl.2013.08.006 |
Arai, S., Ahmed, A. H., 2018. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. In: Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier, Amsterdam. 139–157. |
Arai, S., Miura, M., 2015. Podiform Chromitites do Form beneath Mid-Ocean Ridges. Lithos, 232: 143–149. https://doi.org/10.1016/j.lithos.2015.06.015 |
Borisova, A. Y., Ceuleneer, G., Kamenetsky, V. S., et al., 2012. A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-Hosted Inclusions. Journal of Petrology, 53(12): 2411–2440. https://doi.org/10.1093/petrology/egs054 |
Chen, M., Shu, J. F., Mao, H. K., 2008. Xieite, a New Mineral of High-Pressure FeCr2O4 Polymorph. Chinese Science Bulletin, 53(21): 3341–3345. https://doi.org/10.1007/s11434-008-0407-1 |
Chen, M., Shu, J. F., Mao, H. K., et al., 2003. Natural Occurrence and Synthesis of Two New Postspinel Polymorphs of Chromite. Proceedings of the National Academy of Sciences, 100(25): 14651–14654. https://doi.org/10.1073/pnas.2136599100 |
Enomoto, A., Kojitani, H., Akaogi, M., et al., 2009. High-Pressure Transitions in MgAl2O4 and a New High-Pressure Phase of Mg2Al2O5. Journal of Solid State Chemistry, 182(2): 389–395. https://doi.org/10.1016/j.jssc.2008.11.015 |
Fei, Y. W., 1995. Thermal Expansion. In: Ahrens, T. J., ed., Mineral Physics and Crystallography, A Handbook of Physical Constants. Am Geophys Union, Washington, D. C. |
Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9182–9186. https://doi.org/10.1073/pnas.0609013104 |
González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba): Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2): 101–121. https://doi.org/10.1016/j.lithos.2011.01.016 |
Gonzalez-Platas, J., Alvaro, M., Nestola, F., et al., 2016. EosFit7-GUI: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. Journal of Applied Crystallography, 49(4): 1377–1382. https://doi.org/10.1107/s1600576716008050 |
Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655–684. https://doi.org/10.1093/petrology/egw011 |
Hammersley, A. P., 2016. FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization Program. Journal of Applied Crystallography, 49(2): 646–652. https://doi.org/10.1107/S1600576716000455 |
Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65–77. https://doi.org/10.1180/minmag.1997.061.404.07 |
Howell, D., Griffin, W. L., Yang, J. S., et al., 2015. Diamonds in Ophiolites: Contamination or a New Diamond Growth Environment? Earth and Planetary Science Letters, 430: 284–295. https://doi.org/10.1016/j.epsl.2015.08.023 |
Ishii, T., Criniti, G., Bykova, E., et al., 2021. High-Pressure Syntheses and Crystal Structure Analyses of a New Low-Density CaFe2O4-Related and CaTi2O4-Type MgAl2O4 Phases. American Mineralogist, 106(7): 1105–1112. https://doi.org/10.2138/am-2021-7619 |
Ishii, T., Kojitani, H., Fujino, K., et al., 2015. High-Pressure High-Temperature Transitions in MgCr2O4 and Crystal Structures of New Mg2Cr2O5 and Post-Spinel MgCr2O4 Phases with Implications for Ultrahigh-Pressure Chromitites in Ophiolites. American Mineralogist, 100(1): 59–65. https://doi.org/10.2138/am-2015-4818 |
Ishii, T., Kojitani, H., Tsukamoto, S., et al., 2014. High-Pressure Phase Transitions in FeCr2O4 and Structure Analysis of New Post-Spinel FeCr2O4 and Fe2Cr2O5 Phases with Meteoritical and Petrological Implications. American Mineralogist, 99(8/9): 1788–1797. https://doi.org/10.2138/am.2014.4736 |
Jin, Z. M., Bai, Q., Kohlstedt, D. L., et al., 1996. Experimental Study on the Relationship of Partial Melting in the Upper Mantle to Chromite Pre-Concentration. Geological Review, 42(5): 424–429 (in Chinese with English Abstract) |
Kojitani, H., Hisatomi, R., Akaogi, M., 2007. High-Pressure Phase Relations and Crystal Chemistry of Calcium Ferrite-Type Solid Solutions in the System MgAl2O4-Mg2SiO4. American Mineralogist, 92(7): 1112–1118. https://doi.org/10.2138/am.2007.2255 |
Kusky, T., Wang, L., Robinson, P. T., et al., 2021. Ultra-High Pressure Inclusion in Archean Ophiolitic Podiform Chromitite in Mélange Block Suggests Deep Subduction on Early Earth. Precambrian Research, 362: 106318. https://doi.org/10.1016/j.precamres.2021.106318 |
Kyono, A., Gramsch, S. A., Yamanaka, T., et al., 2012. The Influence of the Jahn-Teller Effect at Fe2+ on the Structure of Chromite at High Pressure. Physics and Chemistry of Minerals, 39(2): 131–141. https://doi.org/10.1007/s00269-011-0468-6 |
Levy, D., Diella, V., Dapiaggi, M., et al., 2004. Equation of State, Structural Behaviour and Phase Diagram of Synthetic MgFe2O4, as a Function of Pressure and Temperature. Physics and Chemistry of Minerals, 31(2): 122–129. https://doi.org/10.1007/s00269-004-0380-4 |
Levy, D., Pavese, A., Hanfland, M., 2000. Phase Transition of Synthetic Zinc Ferrite Spinel (ZnFe2O4) at High Pressure, from Synchrotron X-Ray Powder Diffraction. Physics and Chemistry of Minerals, 27(9): 638–644. https://doi.org/10.1007/s002690000117 |
Lian, D. Y., Yang, J. S., 2019. Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle. Engineering, 5(3): 406–420. https://doi.org/10.1016/j.eng.2019.02.006 |
McGowan, N. M., Griffin, W. L., González-Jiménez, J. M., et al., 2015. Tibetan Chromitites: Excavating the Slab Graveyard. Geology, 43(2): 179–182. https://doi.org/10.1130/g36245.1 |
Pagé, P., Barnes, S. J., 2009. Using Trace Elements in Chromite to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104(7): 997–1018. https://doi.org/10.2113/econgeo.104.7.997 |
Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al., 2008. Advanced Flat Top Laser Heating System for High Pressure Research at GSECARS: Application to the Melting Behavior of Germanium. High Pressure Research, 28(3): 225–235. https://doi.org/10.1080/08957950802050718 |
Robinson, P. T., Bai, W. J., Malpas, J., et al., 2004. Ultra-High Pressure Minerals in the Luobusa Ophiolite, Tibet, and Their Tectonic Implications. Geological Society, London, Special Publications, 226(1): 247–271. https://doi.org/10.1144/gsl.sp.2004.226.01.14 |
Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2): 486–506. https://doi.org/10.1016/j.gr.2014.06.003 |
Rollinson, H., Adetunji, J., 2013. Mantle Podiform Chromitites do not Form beneath Mid-Ocean Ridges: A Case Study from the Moho Transition Zone of the Oman Ophiolite. Lithos, 177: 314–327. https://doi.org/10.1016/j.lithos.2013.07.004 |
Rui, H. C., Jiao, J. G., Xia, M. Z., et al., 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3): 476–493. https://doi.org/10.1007/s12583-019-1227-8 |
Satsukawa, T., Griffin, W. L., Piazolo, S., et al., 2015. Messengers from the Deep: Fossil Wadsleyite-Chromite Microstructures from the Mantle Transition Zone. Scientific Reports, 5: 16484. https://doi.org/10.1038/srep16484 |
Sirotkina, E. A., Bobrov, A. V., Bindi, L. C., et al., 2018. Chromium-Bearing Phases in the Earth's Mantle: Evidence from Experiments in the Mg2SiO4-MgCr2O4 System at 10–24 GPa and 1 600 ℃. American Mineralogist, 103(1): 151–160. https://doi.org/10.2138/am-2018-6264 |
Wu, Y., Xu, M. J., Jin, Z. M., et al., 2016. Experimental Constraints on the Formation of the Tibetan Podiform Chromitites. Lithos, 245: 109–117. https://doi.org/10.1016/j.lithos.2015.08.005 |
Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2018. Origin and Significance of Diamonds and Other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10(1): 142–155. https://doi.org/10.1130/l607.1 |
Xiong, F. H., Zoheir, B., Robinson, P. T., et al., 2020. Genesis of the Ray-Iz Chromitite, Polar Urals: Inferences to Mantle Conditions and Recycling Processes. Lithos, 374/375: 105699. https://doi.org/10.1016/j.lithos.2020.105699 |
Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 1–22. https://doi.org/10.1007/s00410-017-1364-y |
Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109(3/4): 314–322. https://doi.org/10.1016/j.lithos.2008.05.003 |
Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 35(10): 875–878. https://doi.org/10.1130/g23766a.1 |
Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites. Elements, 10(2): 127–130. https://doi.org/10.2113/gselements.10.2.127 |
Yang, J. S., Wu, W. W., Lian, D. Y., et al., 2021. Peridotites, Chromitites and Diamonds in Ophiolites. Nature Reviews Earth & Environment, 2(3): 198–212. https://doi.org/10.1038/s43017-020-00138-4 |
Yong, W. J., Botis, S., Shieh, S. R., et al., 2012. Pressure-Induced Phase Transition Study of Magnesiochromite (MgCr2O4) by Raman Spectroscopy and X-Ray Diffraction. Physics of the Earth and Planetary Interiors, 196/197: 75–82. https://doi.org/10.1016/j.pepi.2012.02.011 |
Zhang, R. Y., Yang, J. S., Ernst, W. G., et al., 2016. Discovery of in situ Super-Reducing, Ultrahigh-Pressure Phases in the Luobusa Ophiolitic Chromitites, Tibet: New Insights into the Deep Upper Mantle and Mantle Transition Zone. American Mineralogist, 101(6): 1285–1294. https://doi.org/10.2138/am-2016-5436 |
Zhang, Y. F., Jin, Z. M., Griffin, W. L., et al., 2017. High-Pressure Experiments Provide Insights into the Mantle Transition Zone History of Chromitite in Tibetan Ophiolites. Earth and Planetary Science Letters, 463: 151–158. https://doi.org/10.1016/j.epsl.2017.01.036 |
Zhang, Y. F., Wang, C., Jin, Z. M., et al., 2018. High-Pressure Phase Transitions of Natural Chromitite from Tibetan Ophiolites. Lithos, 320/321: 20–27. https://doi.org/10.1016/j.lithos.2018.08.038 |
Zhao, Y. G., Zhang, Y. F., Wang, C., et al., 2020. Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions. Journal of Earth Science, 31(4): 709–722. https://doi.org/10.1007/s12583-020-1291-0 |
Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262–283. https://doi.org/10.1016/j.gr.2013.12.011 |