Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Shuyu Jin, Xiang Wu, Yungui Liu, Yanfei Zhang, Chao Wang. Structural Stability of Natural Magnesiochromite at High-Temperature-Pressure Conditions. Journal of Earth Science, 2024, 35(4): 1196-1203. doi: 10.1007/s12583-022-1798-7
Citation: Shuyu Jin, Xiang Wu, Yungui Liu, Yanfei Zhang, Chao Wang. Structural Stability of Natural Magnesiochromite at High-Temperature-Pressure Conditions. Journal of Earth Science, 2024, 35(4): 1196-1203. doi: 10.1007/s12583-022-1798-7

Structural Stability of Natural Magnesiochromite at High-Temperature-Pressure Conditions

doi: 10.1007/s12583-022-1798-7
More Information
  • Corresponding author: Xiang Wu, wuxiang@cug.edu.cn
  • Received Date: 26 Aug 2022
  • Accepted Date: 30 Nov 2022
  • Available Online: 16 Aug 2024
  • Issue Publish Date: 30 Aug 2024
  • The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation, but the maximum depth is still an open issue. Here, we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2 450 K. The results have shown that spinel-type magnesiochromite first decomposes into corundum-type 'Cr2O3' + B1-type 'MgO' at 11–14 GPa and 1 250–1 450 K, then modified ludwigite (mLd)-type 'Mg2Cr2O5'+ corundum-type 'Cr2O3' at 14.3–20.5 GPa and 1 300–2 000 K, and finally CaTi2O4-type phase at 24.5 GPa. During the quenching procession from high-temperature-pressure conditions, the mLd-type phase appeared again and was kept at ambient conditions. We also obtained the isothermal equation states of spinel-type and CaTi2O4-type phases, revealing the composition effect on their elasticities. Based on the updated results, we propose chromitites could not experience pressure exceeding ~14.3 GPa (approximate maximum depth ~400 km) in the subduction-recycling genesis model.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1798-7.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Akaogi, M., Hamada, Y., Suzuki, T., et al., 1999. High Pressure Transitions in the System MgAl2O4-CaAl2O4: A New Hexagonal Aluminous Phase with Implication for the Lower Mantle. Physics of the Earth and Planetary Interiors, 115(1): 67–77. https://doi.org/10.1016/S0031-9201(99)00076-X
    Akaogi, M., Kawahara, A., Kojitani, H., et al., 2018. High-Pressure Phase Transitions in MgCr2O4·Mg2SiO4 Composition: Reactions between Olivine and Chromite with Implications for Ultrahigh-Pressure Chromitites. American Mineralogist, 103(1): 161–170. https://doi.org/10.2138/am-2018-6135
    Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2
    Angel, R. J., Alvaro, M., Gonzalez-Platas, J., 2014. EosFit7c and a Fortran Module (Library) for Equation of State Calculations. Zeitschrift Für Kristallographie-Crystalline Materials, 229(5): 405–419. https://doi.org/10.1515/zkri-2013-1711
    Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3): 303–310. https://doi.org/10.1016/S0743-9547(97)00015-9
    Arai, S., 2013. Conversion of Low-Pressure Chromitites to Ultrahigh-Pressure Chromitites by Deep Recycling: A Good Inference. Earth and Planetary Science Letters, 379: 81–87. https://doi.org/10.1016/j.epsl.2013.08.006
    Arai, S., Ahmed, A. H., 2018. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. In: Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier, Amsterdam. 139–157. https://doi.org/10.1016/b978-0-12-811159-8.00006-8
    Arai, S., Miura, M., 2015. Podiform Chromitites do Form beneath Mid-Ocean Ridges. Lithos, 232: 143–149. https://doi.org/10.1016/j.lithos.2015.06.015
    Borisova, A. Y., Ceuleneer, G., Kamenetsky, V. S., et al., 2012. A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-Hosted Inclusions. Journal of Petrology, 53(12): 2411–2440. https://doi.org/10.1093/petrology/egs054
    Chen, M., Shu, J. F., Mao, H. K., 2008. Xieite, a New Mineral of High-Pressure FeCr2O4 Polymorph. Chinese Science Bulletin, 53(21): 3341–3345. https://doi.org/10.1007/s11434-008-0407-1
    Chen, M., Shu, J. F., Mao, H. K., et al., 2003. Natural Occurrence and Synthesis of Two New Postspinel Polymorphs of Chromite. Proceedings of the National Academy of Sciences, 100(25): 14651–14654. https://doi.org/10.1073/pnas.2136599100
    Enomoto, A., Kojitani, H., Akaogi, M., et al., 2009. High-Pressure Transitions in MgAl2O4 and a New High-Pressure Phase of Mg2Al2O5. Journal of Solid State Chemistry, 182(2): 389–395. https://doi.org/10.1016/j.jssc.2008.11.015
    Fei, Y. W., 1995. Thermal Expansion. In: Ahrens, T. J., ed., Mineral Physics and Crystallography, A Handbook of Physical Constants. Am Geophys Union, Washington, D. C.
    Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9182–9186. https://doi.org/10.1073/pnas.0609013104
    González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba): Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2): 101–121. https://doi.org/10.1016/j.lithos.2011.01.016
    Gonzalez-Platas, J., Alvaro, M., Nestola, F., et al., 2016. EosFit7-GUI: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. Journal of Applied Crystallography, 49(4): 1377–1382. https://doi.org/10.1107/s1600576716008050
    Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655–684. https://doi.org/10.1093/petrology/egw011
    Hammersley, A. P., 2016. FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization Program. Journal of Applied Crystallography, 49(2): 646–652. https://doi.org/10.1107/S1600576716000455
    Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65–77. https://doi.org/10.1180/minmag.1997.061.404.07
    Howell, D., Griffin, W. L., Yang, J. S., et al., 2015. Diamonds in Ophiolites: Contamination or a New Diamond Growth Environment? Earth and Planetary Science Letters, 430: 284–295. https://doi.org/10.1016/j.epsl.2015.08.023
    Ishii, T., Criniti, G., Bykova, E., et al., 2021. High-Pressure Syntheses and Crystal Structure Analyses of a New Low-Density CaFe2O4-Related and CaTi2O4-Type MgAl2O4 Phases. American Mineralogist, 106(7): 1105–1112. https://doi.org/10.2138/am-2021-7619
    Ishii, T., Kojitani, H., Fujino, K., et al., 2015. High-Pressure High-Temperature Transitions in MgCr2O4 and Crystal Structures of New Mg2Cr2O5 and Post-Spinel MgCr2O4 Phases with Implications for Ultrahigh-Pressure Chromitites in Ophiolites. American Mineralogist, 100(1): 59–65. https://doi.org/10.2138/am-2015-4818
    Ishii, T., Kojitani, H., Tsukamoto, S., et al., 2014. High-Pressure Phase Transitions in FeCr2O4 and Structure Analysis of New Post-Spinel FeCr2O4 and Fe2Cr2O5 Phases with Meteoritical and Petrological Implications. American Mineralogist, 99(8/9): 1788–1797. https://doi.org/10.2138/am.2014.4736
    Jin, Z. M., Bai, Q., Kohlstedt, D. L., et al., 1996. Experimental Study on the Relationship of Partial Melting in the Upper Mantle to Chromite Pre-Concentration. Geological Review, 42(5): 424–429 (in Chinese with English Abstract)
    Kojitani, H., Hisatomi, R., Akaogi, M., 2007. High-Pressure Phase Relations and Crystal Chemistry of Calcium Ferrite-Type Solid Solutions in the System MgAl2O4-Mg2SiO4. American Mineralogist, 92(7): 1112–1118. https://doi.org/10.2138/am.2007.2255
    Kusky, T., Wang, L., Robinson, P. T., et al., 2021. Ultra-High Pressure Inclusion in Archean Ophiolitic Podiform Chromitite in Mélange Block Suggests Deep Subduction on Early Earth. Precambrian Research, 362: 106318. https://doi.org/10.1016/j.precamres.2021.106318
    Kyono, A., Gramsch, S. A., Yamanaka, T., et al., 2012. The Influence of the Jahn-Teller Effect at Fe2+ on the Structure of Chromite at High Pressure. Physics and Chemistry of Minerals, 39(2): 131–141. https://doi.org/10.1007/s00269-011-0468-6
    Levy, D., Diella, V., Dapiaggi, M., et al., 2004. Equation of State, Structural Behaviour and Phase Diagram of Synthetic MgFe2O4, as a Function of Pressure and Temperature. Physics and Chemistry of Minerals, 31(2): 122–129. https://doi.org/10.1007/s00269-004-0380-4
    Levy, D., Pavese, A., Hanfland, M., 2000. Phase Transition of Synthetic Zinc Ferrite Spinel (ZnFe2O4) at High Pressure, from Synchrotron X-Ray Powder Diffraction. Physics and Chemistry of Minerals, 27(9): 638–644. https://doi.org/10.1007/s002690000117
    Lian, D. Y., Yang, J. S., 2019. Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle. Engineering, 5(3): 406–420. https://doi.org/10.1016/j.eng.2019.02.006
    McGowan, N. M., Griffin, W. L., González-Jiménez, J. M., et al., 2015. Tibetan Chromitites: Excavating the Slab Graveyard. Geology, 43(2): 179–182. https://doi.org/10.1130/g36245.1
    Pagé, P., Barnes, S. J., 2009. Using Trace Elements in Chromite to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104(7): 997–1018. https://doi.org/10.2113/econgeo.104.7.997
    Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al., 2008. Advanced Flat Top Laser Heating System for High Pressure Research at GSECARS: Application to the Melting Behavior of Germanium. High Pressure Research, 28(3): 225–235. https://doi.org/10.1080/08957950802050718
    Robinson, P. T., Bai, W. J., Malpas, J., et al., 2004. Ultra-High Pressure Minerals in the Luobusa Ophiolite, Tibet, and Their Tectonic Implications. Geological Society, London, Special Publications, 226(1): 247–271. https://doi.org/10.1144/gsl.sp.2004.226.01.14
    Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2): 486–506. https://doi.org/10.1016/j.gr.2014.06.003
    Rollinson, H., Adetunji, J., 2013. Mantle Podiform Chromitites do not Form beneath Mid-Ocean Ridges: A Case Study from the Moho Transition Zone of the Oman Ophiolite. Lithos, 177: 314–327. https://doi.org/10.1016/j.lithos.2013.07.004
    Rui, H. C., Jiao, J. G., Xia, M. Z., et al., 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3): 476–493. https://doi.org/10.1007/s12583-019-1227-8
    Satsukawa, T., Griffin, W. L., Piazolo, S., et al., 2015. Messengers from the Deep: Fossil Wadsleyite-Chromite Microstructures from the Mantle Transition Zone. Scientific Reports, 5: 16484. https://doi.org/10.1038/srep16484
    Sirotkina, E. A., Bobrov, A. V., Bindi, L. C., et al., 2018. Chromium-Bearing Phases in the Earth's Mantle: Evidence from Experiments in the Mg2SiO4-MgCr2O4 System at 10–24 GPa and 1 600 ℃. American Mineralogist, 103(1): 151–160. https://doi.org/10.2138/am-2018-6264
    Wu, Y., Xu, M. J., Jin, Z. M., et al., 2016. Experimental Constraints on the Formation of the Tibetan Podiform Chromitites. Lithos, 245: 109–117. https://doi.org/10.1016/j.lithos.2015.08.005
    Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2018. Origin and Significance of Diamonds and Other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10(1): 142–155. https://doi.org/10.1130/l607.1
    Xiong, F. H., Zoheir, B., Robinson, P. T., et al., 2020. Genesis of the Ray-Iz Chromitite, Polar Urals: Inferences to Mantle Conditions and Recycling Processes. Lithos, 374/375: 105699. https://doi.org/10.1016/j.lithos.2020.105699
    Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 1–22. https://doi.org/10.1007/s00410-017-1364-y
    Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109(3/4): 314–322. https://doi.org/10.1016/j.lithos.2008.05.003
    Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 35(10): 875–878. https://doi.org/10.1130/g23766a.1
    Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites. Elements, 10(2): 127–130. https://doi.org/10.2113/gselements.10.2.127
    Yang, J. S., Wu, W. W., Lian, D. Y., et al., 2021. Peridotites, Chromitites and Diamonds in Ophiolites. Nature Reviews Earth & Environment, 2(3): 198–212. https://doi.org/10.1038/s43017-020-00138-4
    Yong, W. J., Botis, S., Shieh, S. R., et al., 2012. Pressure-Induced Phase Transition Study of Magnesiochromite (MgCr2O4) by Raman Spectroscopy and X-Ray Diffraction. Physics of the Earth and Planetary Interiors, 196/197: 75–82. https://doi.org/10.1016/j.pepi.2012.02.011
    Zhang, R. Y., Yang, J. S., Ernst, W. G., et al., 2016. Discovery of in situ Super-Reducing, Ultrahigh-Pressure Phases in the Luobusa Ophiolitic Chromitites, Tibet: New Insights into the Deep Upper Mantle and Mantle Transition Zone. American Mineralogist, 101(6): 1285–1294. https://doi.org/10.2138/am-2016-5436
    Zhang, Y. F., Jin, Z. M., Griffin, W. L., et al., 2017. High-Pressure Experiments Provide Insights into the Mantle Transition Zone History of Chromitite in Tibetan Ophiolites. Earth and Planetary Science Letters, 463: 151–158. https://doi.org/10.1016/j.epsl.2017.01.036
    Zhang, Y. F., Wang, C., Jin, Z. M., et al., 2018. High-Pressure Phase Transitions of Natural Chromitite from Tibetan Ophiolites. Lithos, 320/321: 20–27. https://doi.org/10.1016/j.lithos.2018.08.038
    Zhao, Y. G., Zhang, Y. F., Wang, C., et al., 2020. Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions. Journal of Earth Science, 31(4): 709–722. https://doi.org/10.1007/s12583-020-1291-0
    Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262–283. https://doi.org/10.1016/j.gr.2013.12.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(97) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return