Citation: | Zhijie Jia, Jianbing Peng, Quanzhong Lu, Penghui Ma, Jianwei Qiao, Feiyong Wang, Mingdong Zang, Yang Liu, Junyan Zhao, Fengji Zhu. A Comprehensive Method for the Risk Assessment of Ground Fissures: Case Study of the Eastern Weihe Basin. Journal of Earth Science, 2023, 34(6): 1892-1907. doi: 10.1007/s12583-022-1799-6 |
Ground fissures are influenced by the coupling of geological factors and human activities. They threaten the safety of infrastructure and restrict town planning in many areas in China. One of the area most severely affected by ground fissures is the Weihe Basin in North China, which has the most extensive distribution of ground fissures and all the elements that control their occurrence, providing an ideal study area for the study of ground fissures. In this study, we took the eastern Weihe Basin as the study area and determined the distribution and hazard characteristics of ground fissures via field investigation. Based on the analytic hierarchy process, we propose a multi-level, comprehensive method for evaluating the hazards of ground fissures. This method considers the geological background, development status, and triggering factors of ground fissures, including all nine currently known assessment indices of ground fissures. We used judgment matrices to rank the constructed ground fissure assessment index system at the single and total levels and quantified the nine assessment indices of ground fissures according to the field survey data. Finally, we plotted the ground fissure risk zoning map and evaluated the ground fissure risk at the study area. Our findings indicated that the proposed method could facilitate ground fissure hazard assessment and prediction and provide support for hazard prevention and urban/rural planning.
Ayalew, L., Yamagishi, H., Reik, G., 2004. Ground Cracks in Ethiopian Rift Valley: Facts and Uncertainties. Engineering Geology, 75(3/4): 309–324. https://doi.org/10.1016/j.enggeo.2004.06.018 |
Budhu, M., 2011. Earth Fissure Formation from the Mechanics of Groundwater Pumping. International Journal of Geomechanics, 11(1): 1–11. https://doi.org/10.1061/(asce)gm.1943-5622.0000060 |
Carpenter, M. C., 1993. Earth-Fissure Movements Associated with Fluctuations in Ground-Water Levels near the Picacho Mountains, South-Central Arizona, 1980-84. The U. S. Geological Survey, Washington, DC |
Chae, B. G., Park, H. J., Catani, F., et al., 2017. Landslide Prediction, Monitoring and Early Warning: A Concise Review of State-of-the-Art. Geosciences Journal, 21(6): 1033–1070. https://doi.org/10.1007/s12303-017-0034-4 |
Chen, M. Y., Wang, S. J., Huang, K. X., et al., 1998. Cenozoic Composite Extensional Tectonic System in Eastern Weibei, Shaanxi. J Geol Min Res North China, 3: 6–14 (in Chinese with English Abstract) |
Choubin, B., Mosavi, A., Alamdarloo, E. H., et al., 2019. Earth Fissure Hazard Prediction Using Machine Learning Models. Environmental Research, 179: 108770. https://doi.org/10.1016/j.envres.2019.108770 |
Conway, B. D., 2016. Land Subsidence and Earth Fissures in South-Central and Southern Arizona, USA. Hydrogeology Journal, 24(3): 649–655. https://doi.org/10.1007/s10040-015-1329-z |
Fergason, K. C., Rucker, M. L., Panda, B. B., 2015. Methods for Monitoring Land Subsidence and Earth Fissures in the Western USA. Proceedings of the International Association of Hydrological Sciences, 372: 361–366. https://doi.org/10.5194/piahs-372-361-2015 |
Fu, B. J., Wang, S., Liu, Y., et al., 2017. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 45: 223–243. https://doi.org/10.1146/annurev-earth-063016-020552 |
Gaur, V. P., Kar, S. K., Srivastava, M., 2015. Development of Ground Fissures: a Case Study from Southern Parts of Uttar Pradesh, India. Journal of the Geological Society of India, 86(6): 671–678. https://doi.org/10.1007/s12594-015-0359-4 |
Geng, D. Y., Li, Z. S., 2000. Ground Fissure Hazards in USA and China. Acta Seismologica Sinica, 13(4): 466–476. https://doi.org/10.1007/s11589-000-0029-4 |
Guo, H. P., Zhang, Z. C., Cheng, G. M., et al., 2015. Groundwater-Derived Land Subsidence in the North China Plain. Environmental Earth Sciences, 74(2): 1415–1427. https://doi.org/10.1007/s12665-015-4131-2 |
He, Z. T., Ma, B. Q., Long, J. Y., et al., 2017. Recent Ground Fissures in the Hetao Basin, Inner Mongolia, China. Geomorphology, 295: 102–114. https://doi.org/10.1016/j.geomorph.2017.07.008 |
Holzer, T. L., 1984. Ground Failure Induced by Ground-Water Withdrawal from Unconsolidated Sediment. Reviews in Engineering Geology. 6: 67–106. https://doi.org/10.1130/reg6-p67 |
Holzer, T. L., Johnson, A. I., 1985. Land Subsidence Caused by Ground Water Withdrawal in Urban Areas. GeoJournal, 11(3): 245–255. https://doi.org/10.1007/bf00186338 |
Jia, Z. J., Lu, Q. Z., Peng, J. B., et al., 2020a. Analysis and Comparison of Two Types of Ground Fissures in Dali County in the Weihe Basin, China. Environmental Earth Sciences, 79(1): 1–15. https://doi.org/10.1007/s12665-019-8783-1 |
Jia, Z. J., Peng, J. B., Lu, Q. Z., et al., 2020b. Characteristics and Genesis Mechanism of Ground Fissures in Taiyuan Basin, Northern China. Engineering Geology, 275: 105783. https://doi.org/10.1016/j.enggeo.2020.105783 |
Jia, Z. J., Peng, J. B., Lu, Q. Z., et al., 2022. Formation Mechanism of Ground Fissures Originated from the Hanging Wall of Normal Fault: A Case in Fen-Wei Basin, China. Journal of Earth Science, 33(2): 482–492. https://doi.org/10.1007/s12583-021-1508-x |
Jia, Z. J., Qiao, J. W., Peng, J. B., et al., 2021. Formation of Ground Fissures with Synsedimentary Characteristics: A Case Study in the Linfen Basin, Northern China. Journal of Asian Earth Sciences, 214: 104790. https://doi.org/10.1016/j.jseaes.2021.104790 |
Jin, W. Z., Luo, Z. J., Wu, X. H., 2016. Sensitivity Analysis of Related Parameters in Simulation of Land Subsidence and Ground Fissures Caused by Groundwater Exploitation. Bulletin of Engineering Geology and the Environment, 75(3): 1143–1156. https://doi.org/10.1007/s10064-016-0897-z |
Kayastha, P., Dhital, M. R., De Smedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for Landslide Susceptibility Mapping: A Case Study from the Tinau Watershed, West Nepal. Computers & Geosciences, 52: 398–408. https://doi.org/10.1016/j.cageo.2012.11.003 |
Lee, C. F., Zhang, J. M., Zhang, Y. X., 1996. Evolution and Origin of the Ground Fissures in Xian, China. Engineering Geology, 43(1): 45–55. https://doi.org/10.1016/0013-7952(95)00088-7 |
Li, D., Han, P., Xue, T., et al., 2019. Variation Characteristics of Precipitation in Dali County and the Influence on Agriculture Production. Shaanxi Journal of Agricultural Sciences, 65(3): 67–71 (in Chinese with English Abstract) |
Lin, A. M., Rao, G., Yan, B., 2015. Flexural Fold Structures and Active Faults in the Northern-Western Weihe Graben, Central China. Journal of Asian Earth Sciences, 114: 226–241. https://doi.org/10.1016/j.jseaes.2015.04.012 |
Lu, Q. Z., Liu, Y., Peng, J. B., et al., 2020. Immersion Test of Loess in Ground Fissures in Shuanghuaishu, Shaanxi Province, China. Bulletin of Engineering Geology and the Environment, 79(5): 2299–2312. https://doi.org/10.1007/s10064-019-01718-5 |
Lu, Q. Z., Qiao, J. W., Peng, J. B., et al., 2019. A Typical Earth Fissure Resulting from Loess Collapse on the Loess Plateau in the Weihe Basin, China. Engineering Geology, 259: 105189. https://doi.org/10.1016/j.enggeo.2019.105189 |
Nefeslioglu, H. A., Sezer, E. A., Gokceoglu, C., et al., 2013. A Modified Analytical Hierarchy Process (M-AHP) Approach for Decision Support Systems in Natural Hazard Assessments. Computers & Geosciences, 59: 1–8. https://doi.org/10.1016/j.cageo.2013.05.010 |
Orencio, P. M., Fujii, M., 2013. A Localized Disaster-Resilience Index to Assess Coastal Communities Based on an Analytic Hierarchy Process (AHP). International Journal of Disaster Risk Reduction, 3: 62–75. https://doi.org/10.1016/j.ijdrr.2012.11.006 |
Pacheco-Martínez, J., Hernandez-Marín, M., Burbey, T. J., et al., 2013. Land Subsidence and Ground Failure Associated to Groundwater Exploitation in the Aguascalientes Valley, México. Engineering Geology, 164: 172–186. https://doi.org/10.1016/j.enggeo.2013.06.015 |
Park, S., Choi, C., Kim, B., et al., 2013. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea. Environmental Earth Sciences, 68(5): 1443–1464. https://doi.org/10.1007/s12665-012-1842-5 |
Peng, J. B., Qiao, J. W., Leng, Y. Q., et al., 2016a. Distribution and Mechanism of the Ground Fissures in Wei River Basin, the Origin of the Silk Road. Environmental Earth Sciences, 75(8): 718. https://doi.org/10.1007/s12665-016-5527-3 |
Peng, J. B., Xu, J. S., Ma, R. Y., et al., 2016b. Characteristics and Mechanism of the Longyao Ground Fissure on North China Plain, China. Engineering Geology, 214: 136–146. https://doi.org/10.1016/j.enggeo.2016.10.008 |
Peng, J. B., Qiao, J. W., Sun, X. H., et al., 2020a. Distribution and Generative Mechanisms of Ground Fissures in China. Journal of Asian Earth Sciences, 191: 104218. https://doi.org/10.1016/j.jseaes.2019.104218 |
Peng, J. B., Sun, X. H., Lu, Q. Z., et al., 2020b. Characteristics and Mechanisms for Origin of Earth Fissures in Fenwei Basin, China. Engineering Geology, 266: 105445. https://doi.org/10.1016/j.enggeo.2019.105445 |
Peng, J. B., Wang, F. Y., Cheng, Y. X., et al., 2018. Characteristics and Mechanism of Sanyuan Ground Fissures in the Weihe Basin, China. Engineering Geology, 247: 48–57. https://doi.org/10.1016/j.enggeo.2018.10.024 |
Peng, J. B., Wang, S. K., Wang, Q. Y., et al., 2019. Distribution and Genetic Types of Loess Landslides in China. Journal of Asian Earth Sciences, 170: 329–350. https://doi.org/10.1016/j.jseaes.2018.11.015 |
Peng, J. B., Zhang, J., Su, S. R., et al., 1992. Active Faults and Geological Hazards in Weihe Basin. Northwest University Press, Xi'an. 16–44 (in Chinese with English Abstract) |
Peng, J., 2012. Ground Fissure Disaster in Xi'an. Science Press, Beijing (in Chinese) |
Pourghasemi, H. R., Rossi, M., 2017. Landslide Susceptibility Modeling in a Landslide Prone Area in Mazandarn Province, North of Iran: A Comparison between GLM, GAM, MARS, and M-AHP Methods. Theoretical and Applied Climatology, 130(1): 609–633. https://doi.org/10.1007/s00704-016-1919-2 |
Qiao, J. W., Peng, J. B., Deng, Y. H., et al., 2018. Earth Fissures in Qinglong Graben in Yuncheng Basin, China. Journal of Earth System Science, 127(1): 1–13. https://doi.org/10.1007/s12040-017-0912-1 |
Ramelli, A. R., dePolo, C. M., Yount, J. C., 2003. Ground Cracks Associated with the 1994 Double Spring Flat Earthquake, West-Central Nevada. Bulletin of the Seismological Society of America, 93(6): 2762–2768. https://doi.org/10.1785/0120020177 |
Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001 |
Rits, D. S., van Balen, R. T., Prins, M. A., et al., 2017. Evolution of the Alluvial Fans of the Luo River in the Weihe Basin, Central China, Controlled by Faulting and Climate Change―A Reevaluation of the Paleogeographical Setting of Dali Man Site. Quaternary Science Reviews, 166: 339–351. https://doi.org/10.1016/j.quascirev.2017.01.013 |
Roodposhti, M. S., Rahimi, S., Beglou, M. J., 2014. PROMETHEE Ⅱ and Fuzzy AHP: An Enhanced GIS-Based Landslide Susceptibility Mapping. Natural Hazards, 73(1): 77–95. https://doi.org/10.1007/s11069-012-0523-8 |
Saaty, T. L., 1977. A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15(3): 234–281 doi: 10.1016/0022-2496(77)90033-5 |
Sarkar, I., 2004. The Role of the 1999 Chamoli Earthquake in the Formation of Ground Cracks. Journal of Asian Earth Sciences, 22(5): 529–538. https://doi.org/10.1016/S1367-9120(03)00093-2 |
Sheng, Z. P., Helm, D. C., 1996. Conceptual Models for Earth Fissuring in Las Vegas Valley, Nevada, USA. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(8): A344. https://doi.org/10.1016/s0148-9062(97)87310-x |
Sheng, Z. P., Helm, D. C., Li, J., 2003. Mechanisms of Earth Fissuring Caused by Groundwater Withdrawal. Environmental and Engineering Geoscience, 9(4): 351–362. https://doi.org/10.2113/9.4.351 |
Sternai, P., Muller, V. A. P., Jolivet, L., et al., 2021. Effects of Asthenospheric Flow and Orographic Precipitation on Continental Rifting. Tectonophysics, 820: 229120. https://doi.org/10.1016/j.tecto.2021.229120 |
Sun, P., Peng, J. B., Chen, L. W., et al., 2009. Weak Tensile Characteristics of Loess in China—An Important Reason for Ground Fissures. Engineering Geology, 108(1/2): 153–159. https://doi.org/10.1016/j.enggeo.2009.05.014 |
Sun, W. Y., Shao, Q. Q., Liu, J. Y., et al., 2014. Assessing the Effects of Land Use and Topography on Soil Erosion on the Loess Plateau in China. CATENA, 121: 151–163. https://doi.org/10.1016/j.catena.2014.05.009 |
Talebian, M., Fielding, E. J., Funning, G. J., et al., 2004. The 2003 Bam (Iran) Earthquake: Rupture of a Blind Strike-Slip Fault. Geophysical Research Letters, 31(11): L11611. https://doi.org/10.1029/2004gl020058 |
Tucker, G. E., Whipple, K. X., 2002. Topographic Outcomes Predicted by Stream Erosion Models: Sensitivity Analysis and Intermodel Comparison. Journal of Geophysical Research: Solid Earth, 107(B9): ETG1-1. https://doi.org/10.1029/2001JB000162 |
Valenta, J., Verner, K., Martínek, K., et al., 2021. Ground Fissures within the Main Ethiopian Rift: Tectonic, Lithological and Piping Controls. Earth Surface Processes and Landforms, 46(15): 3158–3174. https://doi.org/10.1002/esp.5227 |
van Westen, C. J., Rengers, N., Soeters, R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3): 399–419. https://doi.org/10.1023/b:nhaz.0000007097.42735.9e |
Wang, F. Y., Peng, J. B., Lu, Q. Z., et al., 2019. Mechanism of Fuping Ground Fissure in the Weihe Basin of Northwest China: Fault and Rainfall. Environmental Earth Sciences, 78(14): 407. https://doi.org/10.1007/s12665-019-8421-y |
Wang, G. Y., You, G., Shi, B., et al., 2010. Earth Fissures in Jiangsu Province, China and Geological Investigation of Hetang Earth Fissure. Environmental Earth Sciences, 60(1): 35–43. https://doi.org/10.1007/s12665-009-0167-5 |
Wang, Z. F., Cheng, W. C., Wang, Y. Q., 2018. Investigation into Geohazards during Urbanization Process of Xi'an, China. Natural Hazards, 92(3): 1937–1953. https://doi.org/10.1007/s11069-018-3280-5 |
Wu, Q., Dong, D. L., Wu, X., et al., 2001. Study on Simulation of Earth-Fissures Development and Prediction Based on GIS. Science in China Series D: Earth Sciences, 44(1): 77–84. https://doi.org/10.1007/BF02906887 |
Wu, Q., Ye, S. Y., Wu, X., et al., 2003. A Nonlinear Modeling and Forecasting System of Earth Fractures Based on Coupling of Artificial Neural Network and Geographical Information System—Exemplified by Earth Fractures in Yuci City, Shanxi, China. Environmental Geology, 45(1): 124–131. https://doi.org/10.1007/s00254-003-0865-3 |
Xu, J. S., Peng, J. B., An, H. B., 2019. Experimental Study on Su-Xi-Chang Earth Fissures Induced by Repeated Groundwater Pumping and Impounding. Geomatics, Natural Hazards and Risk, 10(1): 2051–2068. https://doi.org/10.1080/19475705.2019.1676832 |
Xu, J. S., Peng, J. B., An, H. B., et al., 2019. Paleochannel-Controlled Earth Fissures in Daming, North China Plain and Their Implication for Underground Paleogeomorphology. Geomorphology, 327: 523–532. https://doi.org/10.1016/j.geomorph.2018.11.020 |
Xu, J. S., Peng, J. B., Deng, Y. H., et al., 2018. Classification, Grading Criteria and Quantitative Expression of Earth Fissures: A Case Study in Daming Area, North China Plain. Geomatics, Natural Hazards and Risk, 9(1): 862–880. https://doi.org/10.1080/19475705.2018.1475426 |
Ye, S. J., Xue, Y. Q., Wu, J. C., et al., 2016. Progression and Mitigation of Land Subsidence in China. Hydrogeology Journal, 24(3): 685–693. https://doi.org/10.1007/s10040-015-1356-9 |
Yoshimatsu, H., Abe, S., 2006. A Review of Landslide Hazards in Japan and Assessment of Their Susceptibility Using an Analytical Hierarchic Process (AHP) Method. Landslides, 3(2): 149–158. https://doi.org/10.1007/s10346-005-0031-y |
Zang, M. D., Peng, J. B., Xu, N. X., et al., 2021. A Probabilistic Method for Mapping Earth Fissure Hazards. Scientific Reports, 11(1): 1–15. https://doi.org/10.1038/s41598-021-87995-1 |
Zhang, J., Zhang, Q., Zhao, C. Y., et al., 2011. The Sensitivity Evaluation of Ground Fissures in Yuncheng, Shanxi, China with GIS and AHP Method. In 19th International Conference on Geoinformatics, June 24–26, 2011. Shanghai. IEEE, |
Zhang, Y., Xue, Y. Q., Wu, J. C., et al., 2008. Land Subsidence and Earth Fissures Due to Groundwater Withdrawal in the Southern Yangtse Delta, China. Environmental Geology, 55(4): 751–762. https://doi.org/10.1007/s00254-007-1028-8 |