Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 4
Aug 2023
Turn off MathJax
Article Contents
Jibin Han, Hongchen Jiang, Jiubo Liu, Jianxin Xu, Wenhua Han, Haiyun Zhang. Source Analysis of Lithium Deposit in Dong-Xi-Taijinaier Salt Lake of Qaidam Basin, Qinghai-Tibet Plateau. Journal of Earth Science, 2023, 34(4): 1083-1094. doi: 10.1007/s12583-022-1802-2
Citation: Jibin Han, Hongchen Jiang, Jiubo Liu, Jianxin Xu, Wenhua Han, Haiyun Zhang. Source Analysis of Lithium Deposit in Dong-Xi-Taijinaier Salt Lake of Qaidam Basin, Qinghai-Tibet Plateau. Journal of Earth Science, 2023, 34(4): 1083-1094. doi: 10.1007/s12583-022-1802-2

Source Analysis of Lithium Deposit in Dong-Xi-Taijinaier Salt Lake of Qaidam Basin, Qinghai-Tibet Plateau

doi: 10.1007/s12583-022-1802-2
More Information
  • Corresponding author: Jibin Han, jbhan@isl.ac.cn; Hongchen Jiang, jiangh@cug.edu.cn
  • Received Date: 12 Apr 2022
  • Accepted Date: 28 Oct 2022
  • Available Online: 01 Aug 2023
  • Issue Publish Date: 30 Aug 2023
  • The Dong-Xi-Taijinaier Salt Lake (DXTSL) of Qaidam Basin is known as one of rich lithium reserves in China. However, the source of lithium deposits in this region remains unclear. The hydrochemistry and lithium isotopes (δ7Li) of water and solid samples along the Nalenggele River catchment were studied in combination with rock leaching experiments. The results showed the hot springs in the upstream contained high content of lithium and ratio of Li × 1 000/total dissolved solids (1.5–3.5), but the lower δ7Li values (4.33‰–11.59‰), meaning that it is one important lithium sources. The leaching experiments by the rich-lithium volcanic rocks (average content of 474.7 mg/kg) showed that under temperature of 20–80 ℃ and long time duration (24–96 h), the concentration of lithium released by leaching of the sampled volcanic rocks increased from 0.58 to 1.49 mg/L, with the leaching rate decreasing from 0.024 to 0.015 mg/(L·h) and the corresponding lithium release rate increasing from 29% to 74%. Calculation based on water-salt balance showed that the total amount of lithium contribution from hydrothermal fluids and volcanic rock weathering is about 4.99 and 0.29 Mt since 13.1 ka, respectively. Therefore, hot springs and leaching of volcanic rocks are main contributors to lithium deposit in DXTSL.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S2, Table S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1802-2.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • An, F. Y., Zhang, X. Y., Cheng, X. L., et al., 2021. The Spatial-Temporal Variation of Weathering and Migration of Salt Forming Elements in Potassium-Rich Granites of Golmud River Catchment. Acta Petrologica et Mineralogica, 40(1): 14–26 (in Chinese with English Abstract)
    Bolan, N., Hoang, S. A., Tanveer, M., et al., 2021. From Mine to Mind and Mobiles-Lithium Contamination and Its Risk Management. Environmental Pollution (Barking, Essex: 1987), 290: 118067. https://doi.org/10.1016/j.envpol.2021.118067
    Cabello, J., 2021. Lithium Brine Production, Reserves, Resources and Exploration in Chile: an Updated Review. Ore Geology Reviews, 128: 103883. https://doi.org/10.1016/j.oregeorev.2020.103883
    Chang, Q. F., Lai, Z. P., An, F. Y., et al., 2017. Chronology for Terraces of the Nalinggele River in the North Qinghai-Tibet Plateau and Implications for Salt Lake Resource Formation in the Qaidam Basin. Quaternary International, 430: 12–20. https://doi.org/10.1016/j.quaint.2016.02.022
    Chapela Lara, M., Buss, H. L., Pogge von Strandmann, P. A. E., et al., 2017. The Influence of Critical Zone Processes on the Mg Isotope Budget in a Tropical, Highly Weathered Andesitic Catchment. Geochimica et Cosmochimica Acta, 202: 77–100. https://doi.org/10.1016/j.gca.2016.12.032
    Cigolini, C., Laiolo, M., Ulivieri, G., et al., 2013. Radon Mapping, Automatic Measurements and Extremely High 222Rn Emissions during the 2002–2007 Eruptive Scenarios at Stromboli Volcano. Journal of Volcanology and Geothermal Research, 264: 49–65. https://doi.org/10.1016/j.jvolgeores.2013.07.011
    D'Alessandro, W., Parello, F., 1997. Soil Gas Prospection of He, 222Rn and CO2: Vulcano Porto Area, Aeolian Islands, Italy. Applied Geochemistry, 12(2): 213–224. https://doi.org/10.1016/s0883-2927(96)00066-2
    Dellinger, M., Gaillardet, J., Bouchez, J., et al., 2015. Riverine Li Isotope Fractionation in the Amazon River Basin Controlled by the Weathering Regimes. Geochimica et Cosmochimica Acta, 164: 71–93. https://doi.org/10.1016/j.gca.2015.04.042
    Edmond, J. M., Measures, C., McDuff, R. E., et al., 1979. Ridge Crest Hydrothermal Activity and the Balances of the Major and Minor Elements in the Ocean: The Galapagos Data. Earth and Planetary Science Letters, 46(1): 1–18. https://doi.org/10.1016/0012-821x(79)90061-x
    Feng, Z. G., Liu, X. Z., Han, S. L., et al., 2018. Study on Geochemical Behavior of High Field Strength Elements during Weathering of Carbonate Rocks: Evidence from Leaching Experiment on Carbonate Rock. Carsologica Sinica, 37(3): 315–329
    Godfrey, L. V., Chan, L. H., Alonso, R. N., et al., 2013. The Role of Climate in the Accumulation of Lithium-Rich Brine in the Central Andes. Applied Geochemistry, 38: 92–102. https://doi.org/10.1016/j.apgeochem.2013.09.002
    Gou, L. F., Jin, Z. D., He, M. Y., 2017. Using Lithium Isotopes Traces Continental Weathering: Progresses and Challenges. Journal of Earth Environment, 8(2): 89–102 (in Chinese with English Abstract)
    Gou, L. F., Jin, Z. D., Pogge von Strandmann, P. A. E., et al., 2019. Li Isotopes in the Middle Yellow River: Seasonal Variability, Sources and Fractionation. Geochimica et Cosmochimica Acta, 248: 88–108. https://doi.org/10.1016/j.gca.2019.01.007
    Gourcerol, B., Gloaguen, E., Melleton, J., et al., 2019. Re-Assessing the European Lithium Resource Potential ― A Review of Hard-Rock Resources and Metallogeny. Ore Geology Reviews, 109: 494–519. https://doi.org/10.1016/j.oregeorev.2019.04.015
    Han, G., Han, J. B., Liu, J. B., et al., 2020. Variation Characteristics of LiCl Deposit under Condition of Mining in East Taijinaier Salt Lake, Qaidam Basin. Inorganic Chemicals Industry, 52(12): 17–22 (in Chinese with English Abstract)
    Han, J. B., Xu, J. X., Hussain, S. A., et al., 2021. Origin of Boron in the Gas Hure Salt Lake of Northwestern Qaidam Basin, China: Evidence from Hydrochemistry and Boron Isotopes. Acta Geologica Sinica: English Edition, 95(2): 531–540. https://doi.org/10.1111/1755-6724.14377
    Han, J. B., Xu, J. X., Wang, G. Q., et al., 2017. The Material Sources and It's Hydraulic Migration in the Gas Hure Salt Lake, Qaidam Basin, China. Journal of Lake Science, 29(6): 1551–1560 (in Chinese with English Abstract) doi: 10.18307/2017.0627
    Han, J. B., Xu, J. X., Yi, L., et al., 2022. Seasonal Interaction of River Water-Groundwater-Salt Lake Brine and Its Influence on Water-Salt Balance in the Nalenggele River Catchment in Qaidam Basin, NW China. Journal of Earth Science, 33(5): 1298–1308. https://doi.org/10.1007/s12583-022-1731-0
    He, M. Y., Luo, C. G., Yang, H. J., et al., 2020. Sources and a Proposal for Comprehensive Exploitation of Lithium Brine Deposits in the Qaidam Basin on the Northern Tibetan Plateau, China: Evidence from Li Isotopes. Ore Geology Reviews, 117: 103277. https://doi.org/10.1016/j.oregeorev.2019.103277
    Henchiri, S., Clergue, C., Dellinger, M., et al., 2014. The Influence of Hydrothermal Activity on the Li Isotopic Signature of Rivers Draining Volcanic Areas. Procedia Earth and Planetary Science, 10: 223–230. https://doi.org/10.1016/j.proeps.2014.08.026
    Hu, D. S., 1997. Geochemical Characteristics of the Water Body in the Hoh Xil Region Lakes. Oceanologic et Limnologica Sinica, 28(2): 153–164 (in Chinese with English Abstract)
    Huh, Y., Chan, L. H., Zhang, L. B., et al., 1998. Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget. Geochimica et Cosmochimica Acta, 62(12): 2039–2051. https://doi.org/10.1016/S0016-7037(98)00126-4
    Ji, T. T., Jiang, X. W., Gou, L. F., et al., 2022. Behaviors of Lithium and Its Isotopes in Groundwater with Different Concentrations of Dissolved CO2. Geochimica et Cosmochimica Acta, 326: 313–327. https://doi.org/10.1016/j.gca.2022.03.038
    Jiang, D. H., Liu, J. Z., Ding, L., 2008. Geochemistry and Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Hoh Xil Area, Northern Tibet Plateau. Acta Petrologica Sinica, 24(2): 279–290 (in Chinese with English Abstract)
    Jin, C. S., Liu, Q. S., Liang, W. T., et al., 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and Its Tectonic Implications for India-Eurasia Collision and Tibetan Plateau Deformation. Earth and Planetary Science Letters, 486: 41–53. https://doi.org/10.1016/j.epsl.2018.01.010
    Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and other Deposits. Ore Geology Reviews, 48: 55–69. https://doi.org/10.1016/j.oregeorev.2012.05.006
    Klinger, Y., Michel, R., King, G. C. P., 2006. Evidence for an Earthquake Barrier Model from Mw∼7.8 Kokoxili (Tibet) Earthquake Slip-Distribution. Earth and Planetary Science Letters, 242(3/4): 354–364. https://doi.org/10.1016/j.epsl.2005.12.003
    Li, B. Y., Pan, B. T., Gao, H. S., 2002. A Planation Surface and Ages of Volcanic Rocks in Eastern Hoh Xil, Qinghai-Tibetan Plateau. Quaternary Sciences, 22(5): 397–405 (in Chinese with English Abstract)
    Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64–79. https://doi.org/10.1016/j.gca.2018.08.021
    Li, J. P., Chen, H. Y., Zhang, T., et al., 2019. Experimental Studies of Interaction between Brine and Andesitic Rocks at Low Temperature and Pressure Condition in Shallow Crust and Geological Implications. Geochimica, 48(5): 468–482 (in Chinese with English Abstract)
    Li, J. S., Ling, Z. Y., Shan, F. S., et al., 2019. Hydrogen, Oxygen and Strontium Isotopes' Indication on Origin of Lithium-Rich Salt Lakes in Eastern Kunlun Mountains. Wetland Science, 17(4): 391–398 (in Chinese with English Abstract)
    Li, Q. K., 2020. Multi-Index Study on the Source, Migration and Enrichment of Lithium in the Nalenggele River Drainage and Terminal Lakes: [Dissertation]. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining (in Chinese with English Abstract)
    Li, Q. K., Fan, Q. S., Wang, J. P., et al., 2019. Hydrochemistry, Distribution and Formation of Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan Plateau. Minerals, 9(9): 528. https://doi.org/10.3390/min9090528
    Li, R. J., Wang, W. H., Wang, Y. Y., et al., 2021. Novel Ionic Liquid as Co-Extractant for Selective Extraction of Lithium Ions from Salt Lake Brines with High Mg/Li Ratio. Separation and Purification Technology, 277: 119471. https://doi.org/10.1016/j.seppur.2021.119471
    Lin, A. M., Guo, J. M., Fu, B. H., 2004. Co-Seismic Mole Track Structures Produced by the 2001 Ms 8.1 Central Kunlun Earthquake, China. Journal of Structural Geology, 26(8): 1511–1519. https://doi.org/10.1016/j.jsg.2004.01.005
    Liu, C. H., Li, J. H., Cui, X., et al., 2016. Geological Heritage of Hoh Xil in Qinghai and Its Tectonic Evolution. Geology in China, 43(6): 2202–2215 (in Chinese with English Abstract)
    Liu, H. L., Wang, X. Q., Zhang, B. M., et al., 2020. Concentration and Distribution of Lithium in Catchment Sediments of China: Conclusions from the China Geochemical Baselines Project. Journal of Geochemical Exploration, 215: 106540. https://doi.org/10.1016/j.gexplo.2020.106540
    Liu, Z. F., Wang, C. S., 2001. Depositional Environment of the Tertiary Fenghuoshan Group in the Hoh Xil Basin, Northern Tibetan Plateau. Acta Sedimentologica Sinica, 19(1): 28–36 (in Chinese with English Abstract)
    López Steinmetz, R. L., Salvi, S., 2021. Brine Grades in Andean Salars: When Basin Size Matters a Review of the Lithium Triangle. Earth-Science Reviews, 217: 103615. https://doi.org/10.1016/j.earscirev.2021.103615
    Millot, R., Vigier, N., Gaillardet, J., 2010. Behaviour of Lithium and Its Isotopes during Weathering in the Mackenzie Basin, Canada. Geochimica et Cosmochimica Acta, 74(14): 3897–3912. https://doi.org/10.1016/j.gca.2010.04.025
    Moravec, B. G., Keifer, V., Root, R. A., et al., 2021. Experimental Weathering of a Volcaniclastic Critical Zone Profile: Key Role of Colloidal Constituents in Aqueous Geochemical Response. Chemical Geology, 559: 119886. https://doi.org/10.1016/j.chemgeo.2020.119886
    Moriguti, T., Nakamura, E., 1998. High-Yield Lithium Separation and the Precise Isotopic Analysis for Natural Rock and Aqueous Samples. Chemical Geology, 145(1/2): 91–104. https://doi.org/10.1016/S0009-2541(97)00163-0
    Munk, L. A., Boutt, D. F., Hynek, S. A., et al., 2018. Hydrogeochemical Fluxes and Processes Contributing to the Formation of Lithium-Enriched Brines in a Hyper-Arid Continental Basin. Chemical Geology, 493: 37–57. https://doi.org/10.1016/j.chemgeo.2018.05.013
    Owen, L. A., Finkel, R. C., Ma, H. Z., et al., 2006. Late Quaternary Landscape Evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A Framework for Examining the Links between Glaciation, Lake Level Changes and Alluvial Fan Formation. Quaternary International, 154/155: 73–86. https://doi.org/10.1016/j.quaint.2006.02.008
    Pang, X. P., 2009. A Study of the Hot Springs Water Chemistry and Sinter Deposition in the Bukedaban, Hoh Xil Region, Qinghai: [Dissertation]. Chinese Academy of Sciences, Xining (in Chinese with English Abstract)
    Pistiner, J. S., Henderson, G. M., 2003. Lithium-Isotope Fractionation during Continental Weathering Processes. Earth and Planetary Science Letters, 214(1/2): 327–339. https://doi.org/10.1016/S0012-821X(03)00348-0
    Qiu, L., Rudnick, R. L., McDonough, W. F., et al., 2009. Li and δ7Li in Mudrocks from the British Caledonides: Metamorphism and Source Influences. Geochimica et Cosmochimica Acta, 73(24): 7325–7340. https://doi.org/10.1016/j.gca.2009.08.017
    Reyes, A. G., Trompetter, W. J., 2012. Hydrothermal Water-Rock Interaction and the Redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand. Chemical Geology, 314/315/316/317: 96–112. https://doi.org/10.1016/j.chemgeo.2012.05.002
    Robinson, B. H., Yalamanchali, R., Reiser, R., et al., 2018. Lithium as an Emerging Environmental Contaminant: Mobility in the Soil-Plant System. Chemosphere, 197: 1–6. https://doi.org/10.1016/j.chemosphere.2018.01.012
    Rudnick, R. L., Tomascak, P. B., Njo, H. B., et al., 2004. Extreme Lithium Isotopic Fractionation during Continental Weathering Revealed in Saprolites from South Carolina. Chemical Geology, 212(1/2): 45–57. https://doi.org/10.1016/j.chemgeo.2004.08.008
    Su, T., Guo, M., Liu, Z., et al., 2019. Comprehensive Review of Global Lithium Resources. Journal of Salt Lake Research, 27(3): 104–111 (in Chinese with English Abstract)
    Su, X. S., Xu, W., Yang, F. T., et al., 2015. Using New Mass Balance Methods to Estimate Gross Surface Water and Groundwater Exchange with Naturally Occurring Tracer 222Rn in Data Poor Regions: A Case Study in Northwest China. Hydrological Processes, 29(6): 979–990. https://doi.org/10.1002/hyp.10208
    Sun, Y., Wang, Q., Wang, Y. H., et al., 2021. Recent Advances in Magnesium/Lithium Separation and Lithium Extraction Technologies from Salt Lake Brine. Separation and Purification Technology, 256: 117807. https://doi.org/10.1016/j.seppur.2020.117807
    Tan, H. B., Chen, J., Rao, W. B., et al., 2012. Geothermal Constraints on Enrichment of Boron and Lithium in Salt Lakes: An Example from a River-Salt Lake System on the Northern Slope of the Eastern Kunlun Mountains, China. Journal of Asian Earth Sciences, 51: 21–29. https://doi.org/10.1016/j.jseaes.2012.03.002
    Tan, H. B., Su, J. B., Xu, P., et al., 2018. Enrichment Mechanism of Li, B and K in the Geothermal Water and Associated Deposits from the Kawu Area of the Tibetan Plateau: Constraints from Geochemical Experimental Data. Applied Geochemistry, 93: 60–68. https://doi.org/10.1016/j.apgeochem.2018.04.001
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167–4178. https://doi.org/10.1016/j.gca.2004.03.031
    Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3/4): 370–379. https://doi.org/10.1016/j.chemgeo.2009.02.009
    Tian, M., 2014. Neotectonic Research of the Malan Mountain-Wuxue Mountain Areas, Hoh Xil Region, Qinghai Province: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese with English Abstract)
    Tian, S. H., Lu, N., Hou, Z. Q., et al., 2021. Lithium Isotopic Solution Analysis Using MC-ICP-MS and Its Applications. Geological Review, 67(5): 1141–1164 (in Chinese with English Abstract)
    Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1/2): 145–154. https://doi.org/10.1016/S0009-2541(99)00022-4
    Verney-Carron, A., Vigier, N., Millot, R., et al., 2015. Lithium Isotopes in Hydrothermally Altered Basalts from Hengill (SW Iceland). Earth and Planetary Science Letters, 411: 62–71. https://doi.org/10.1016/j.epsl.2014.11.047
    Vigier, N., Gislason, S. R., Burton, K. W., et al., 2009. The Relationship between Riverine Lithium Isotope Composition and Silicate Weathering Rates in Iceland. Earth and Planetary Science Letters, 287(3/4): 434–441. https://doi.org/10.1016/j.epsl.2009.08.026
    Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2020. Research and Exploration Progress on Lithium Deposits in China. China Geology, 3(1): 137–152. https://doi.org/10.31035/cg2020018
    Wu, P., 2014. Analysis of the Bayan Har's Depositional Systems and Sequence Stratigraphy in Wuxuefeng Mountains and Adjacent Area, Qinghai: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese with English Abstract)
    Xu, W., 2015. Groundwater Cycle Patterns and Its Response to Human Activities in Nalenggele Alluvial-Proluvial Plain: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)
    Ye, J. Q., 1994. Study on the Active Tectonic and Earthquake in Hoh Xil Area of Qinghai Province. Earthquake Research in Plateau, 6(2): 11–23 (in Chinese with English Abstract)
    Yoshizuka, K., Kitajou, A., Holba, M., 2006. Selective Recovery of Lithium from Seawater Using a Novel MnO2 Type Adsorbent Ⅲ - Benchmark Evaluation. Ars Separatoria Acta, 4: 512–527
    Yu, J. Q., Gao, C. L., Cheng, A. Y., et al., 2013. Geomorphic, Hydroclimatic and Hydrothermal Controls on the Formation of Lithium Brine Deposits in the Qaidam Basin, Northern Tibetan Plateau, China. Ore Geology Reviews, 50: 171–183. https://doi.org/10.1016/j.oregeorev.2012.11.001
    Zandevakili, S., Ranjbar, M., Ehteshamzadeh, M., 2014. Recovery of Lithium from Urmia Lake by a Nanostructure MnO2 Ion Sieve. Hydrometallurgy, 149: 148–152. https://doi.org/10.1016/j.hydromet.2014.08.004
    Zhan, D. P., Yu, J. Q., Gao, C. L., et al., 2009. Hydrogeochemical Conditions and Lithium Brine Fromation in the Four Salt Lakes of Qaidam Basin. Journal of Lake Science, 22(5): 783–792 (in Chinese with English Abstract)
    Zhang, J. W., Zhao, Z. Q., Yan, Y. N., et al., 2021. Lithium and Its Isotopes Behavior during Incipient Weathering of Granite in the Eastern Tibetan Plateau, China. Chemical Geology, 559: 119969 doi: 10.1016/j.chemgeo.2020.119969
    Zhang, P. X., 1987. Salt lakes of Qaidam Basin. Science Press, Beijing. 1–30 (in Chinese)
    Zhang, Y., Sun, W., Xu, R., et al., 2021. Lithium Extraction from Water Lithium Resources through Green Electrochemical-Battery Approaches: A Comprehensive Review. Journal of Cleaner Production, 285: 124905 doi: 10.1016/j.jclepro.2020.124905
    Zhao, D., Du, X. M., Wang, S. Q., et al., 2017. Research on Extraction from Salt Lake Brine with High Mg/Li Ratio. Journal of Salt Science and Chemical Industry, 16(6): 40–44 (in Chinese with English Abstract)
    Zhao, Y. J., Wang, H. Y., Li, Y., et al., 2020. An Integrated Membrane Process for Preparation of Lithium Hydroxide from High Mg/Li Ratio Salt Lake Brine. Desalination, 493: 114620
    Zhu, Y. T., Jiao, Q. X., Yi, H. S., et al., 2005. Two Periods of Cenozic Volcanic Rocks from Hoh Xil Lake Area, Qinghai. Journal of Mineral Petrol, 25(4): 23–29 (in Chinese with English Abstract)
    Zhu, Y. Z., Li, W. S., Wu, B.H., et al., 1989. New recognition on the Geology of the Yiliping lake and the East and West Taijinaier Lakes in the Qaidam Basin, Qinghai Province. Geological Review, 35(6): 558–565 (in Chinese with English Abstract)
    Zimmer, M., Erzinger, J., 2003. Continuous H2O, CO2, 222Rn and Temperature Measurements on Merapi Volcano, Indonesia. Journal of Volcanology and Geothermal Research, 125(1/2): 25–38. https://doi.org/10.1016/S0377-0273(03)00087-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(130) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return