Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 1
Feb 2024
Turn off MathJax
Article Contents
Zhuang Li, Chunjing Wei, Chuan Yang, Xi Zhang. A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes. Journal of Earth Science, 2024, 35(1): 29-40. doi: 10.1007/s12583-023-1807-5
Citation: Zhuang Li, Chunjing Wei, Chuan Yang, Xi Zhang. A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes. Journal of Earth Science, 2024, 35(1): 29-40. doi: 10.1007/s12583-023-1807-5

A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes

doi: 10.1007/s12583-023-1807-5
More Information
  • Corresponding author: Zhuang Li, lizhuangcc@pku.edu.cn; Chuan Yang, yangchuan@pku.edu.cn
  • Received Date: 02 Sep 2022
  • Accepted Date: 27 Dec 2022
  • Available Online: 01 Mar 2024
  • Issue Publish Date: 29 Feb 2024
  • The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth's evolution. To provide important insights into the issues, we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes, and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei, North China Craton. U-Pb isotopic dating using the LA-ICP-MS on zircons reveals that the basalts in eastern Hebei erupted at ca. 2.48–2.51 Ga and subsequently experienced multiple regional metamorphic events at 2 477 and 1 798 Ma, respectively. The metamorphosed basalts are featured by low SiO2, MgO, K2O + Na2O, and high FeO contents, endowed with the subalkaline and high-Fe tholeiitic affinities. The radiogenic initial Nd and Hf isotope values and correlations among V, Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution. They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents, indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S4) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1807-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
    Anhaeusser, C. R., 2014. Archaean Greenstone Belts and Associated Granitic Rocks―A Review. Journal of African Earth Sciences, 100: 684–732. https://doi.org/10.1016/j.jafrearsci.2014.07.019
    Arndt, N. T., 1991. High Ni in Archean Tholeiites. Tectonophysics, 187(4): 411–419. https://doi.org/10.1016/0040-1951(91)90479-c
    Bai, X., Liu, S. W., Guo, R. R., et al., 2016. A Neoarchean Arc-Back-Arc System in Eastern Hebei, North China Craton: Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of Dioritic-Tonalitic-Trondhjemitic-Granodioritic (DTTG) Gneisses and Felsic Paragneisses. Precambrian Research, 273: 90–111. https://doi.org/10.1016/j.precamres.2015.12.003
    Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188–1214. https://doi.org/10.1016/j.gca.2005.11.008
    Cabanis, B., Lecolle, M., 1989. Le Diagramme La/10-Y/15-Nb/8: Un Outil Pour la Discrimination des Series Volcaniques et en Evidence des méLange et/ot de Vontamination Crustale. Comptes Rendus de l'Académie des Sciences, Série II, 309(20): 2023–2029
    Campbell, I. H., Griffiths, R. W., Hill, R. I., 1989. Melting in an Archaean Mantle Plume: Heads It's Basalts, Tails It's Komatiites. Nature, 339(6227): 697–699. https://doi.org/10.1038/339697a0
    Collins, W. J., Van Kranendonk, M. J., Teyssier, C., 1998. Partial Convective Overturn of Archaean Crust in the East Pilbara Craton, Western Australia: Driving Mechanisms and Tectonic Implications. Journal of Structural Geology, 20(9/10): 1405–1424. https://doi.org/10.1016/S0191-8141(98)00073-X
    Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: a Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4): 97–108. https://doi.org/10.1016/S0012-821X(98)00178-2
    Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes?. Lithos, 79(3/4): 491–504. https://doi.org/10.1016/j.lithos.2004.09.014
    Cook, Y. A., Sanislav, I. V., Hammerli, J., et al., 2016. A Primitive Mantle Source for the Neoarchean Mafic Rocks from the Tanzania Craton. Geoscience Frontiers, 7(6): 911–926. https://doi.org/10.1016/j.gsf.2015.11.008
    Duan, Z. Z., Wei, C. J., Li, Z., 2019. Metamorphic P-T Paths and Zircon U-Pb Ages of Paleoproterozoic Metabasic Dykes in Eastern Hebei and Northern Liaoning: Implications for the Tectonic Evolution of the North China Craton. Precambrian Research, 326: 124–141. https://doi.org/10.1016/j.precamres.2017.11.001
    Flowers, R. M., Schmitt, A. K., Grove, M., 2010. Decoupling of U-Pb Dates from Chemical and Crystallographic Domains in Granulite Facies Zircon. Chemical Geology, 270(1/2/3/4): 20–30. https://doi.org/10.1016/j.chemgeo.2009.11.002
    Fu, J. H., Liu, S. W., Sun, G. Z., et al., 2021. Two Contrasting Neoarchean Metavolcanic Rock Suites in Eastern Hebei and Their Geodynamic Implications for the Northern North China Craton. Gondwana Research, 95: 45–71. https://doi.org/10.1016/j.gr.2021.02.023
    Geng, Y. S., Liu, F. L., Yang, C. H., 2010. Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication. Acta Geologica Sinica: English Edition, 80(6): 819–833. https://doi.org/10.1111/j.1755-6724.2006.tb00305.x
    Guo, R. R., Liu, S. W., Santosh, M., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopes of Metavolcanics from Eastern Hebei Reveal Neoarchean Subduction Tectonics in the North China Craton. Gondwana Research, 24(2): 664–686. https://doi.org/10.1016/j.gr.2012.12.025
    Guo, R. R., Liu, S. W., Wyman, D., et al., 2015. Neoarchean Subduction: A Case Study of Arc Volcanic Rocks in Qinglong-Zhuzhangzi Area of the Eastern Hebei Province, North China Craton. Precambrian Research, 264: 36–62. https://doi.org/10.1016/j.precamres.2015.04.007
    Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): Q02006. https://doi.org/10.1029/2006gc001390
    Hokada, T., Horie, K., Satish-Kumar, M., et al., 2013. An Appraisal of Archaean Supracrustal Sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India. Precambrian Research, 227: 99–119. https://doi.org/10.1016/j.precamres.2012.04.006
    Hollings, P., Wyman, D. A., Kerrich, R., 1999. Komatiite-Basalt-Rhyolite Volcanic Associations in Northern Superior Province Greenstone Belts: Significance of Plume-Arc Interaction in the Generation of the Proto Continental Superior Province. Lithos, 46(1): 137–161. https://doi.org/10.1016/S0024-4937(98)00058-9
    Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13: 6450. https://doi.org/10.1038/s41467-022-34214-8
    Huang, B., Kusky, T. M., Johnson, T. E., et al., 2020. Paired Metamorphism in the Neoarchean: A Record of Accretionary-to-Collisional Orogenesis in the North China Craton. Earth and Planetary Science Letters, 543: 116355. https://doi.org/10.1016/j.epsl.2020.116355
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Kusky, T. M., Wang, J. P., Wang, L., et al., 2020. Mélanges through Time: Life Cycle of the World's Largest Archean Mélange Compared with Mesozoic and Paleozoic Subduction-Accretion-Collision Mélanges. Earth-Science Reviews, 209: 103303. https://doi.org/10.1016/j.earscirev.2020.103303
    Li, Z., Chen, B., 2014. Geochronology and Geochemistry of the Paleoproterozoic Meta-Basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 255: 653–667. https://doi.org/10.1016/j.precamres.2014.07.003
    Li, Z., Chen, B., Wei, C. J., et al., 2015. Provenance and Tectonic Setting of the Paleoproterozoic Metasedimentary Rocks from the Liaohe Group, Jiao-Liao-Ji Belt, North China Craton: Insights from Detrital Zircon U-Pb Geochronology, Whole-Rock Sm-Nd Isotopes, and Geochemistry. Journal of Asian Earth Sciences, 111: 711–732. https://doi.org/10.1016/j.jseaes.2015.06.003
    Li, Z., Wei, C. J., 2017. Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 292: 175–193. https://doi.org/10.1016/j.precamres.2017.01.014
    Li, Z., Wei, C. J., Chen, B., et al., 2020. Late Neoarchean Reworking of the Mesoarchean Crustal Remnant in Northern Liaoning, North China Craton: A U-Pb-Hf-O-Nd Perspective. Gondwana Research, 80: 350–369. https://doi.org/10.1016/j.gr.2019.10.020
    Li, Z., Wei, C. J., Chen, B., et al., 2021. U-Pb-Hf-O-Nd Isotopic and Geochemical Constraints on the Origin of Archean TTG Gneisses from the North China Craton: Implications for Crustal Growth. Precambrian Research, 354: 106078. https://doi.org/10.1016/j.precamres.2020.106078
    Li, Z., Wei, C. J., Chen, B., et al., 2022. Late Neoarchean High-Grade Regional Metamorphism in the Eastern North China Craton: New Constraints from Monazite Dating in Northern Liaoning. Precambrian Research, 373: 106625. https://doi.org/10.1016/j.precamres.2022.106625
    Li, Z., Wei, C. J., Zhang, S. W., et al., 2019. Neoarchean Granitoid Gneisses in Eastern Hebei, North China Craton: Revisited. Precambrian Research, 324: 62–85. https://doi.org/10.1016/j.precamres.2019.01.020
    Lin, S. F., Beakhouse, G. P., 2013. Synchronous Vertical and Horizontal Tectonism at Late Stages of Archean Cratonization and Genesis of Hemlo Gold Deposit, Superior Craton, Ontario, Canada. Geology, 41(3): 359–362. https://doi.org/10.1130/g33887.1
    Lodge, R. W. D., 2016. Petrogenesis of Intermediate Volcanic Assemblages from the Shebandowan Greenstone Belt, Superior Province: Evidence for Subduction during the Neoarchean. Precambrian Research, 272: 150–167. https://doi.org/10.1016/j.precamres.2015.10.018
    Manya, S., Maboko, M. A. H., 2003. Dating Basaltic Volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton Using the Sm-Nd Method: Implications for the Geological Evolution of the Tanzania Craton. Precambrian Research, 121(1/2): 35–45. https://doi.org/10.1016/S0301-9268(02)00195-X
    McKenzie, D. P., 1989. Some Remarks on the Movement of Small Melt Fractions in the Mantle. Earth and Planetary Science Letters, 95(1/2): 53–72. https://doi.org/10.1016/0012-821X(89)90167-2
    McKenzie, D. P., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625–679. https://doi.org/10.1093/petrology/29.3.625
    Middlemost, E. A., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249–281. https://doi.org/10.1086/628085
    Ning, W. B., Kusky, T. M., Wang, J. P., et al., 2020. From Subduction Initiation to Arc-Polarity Reversal: Life Cycle of an Archean Subduction Zone from the Zunhua Ophiolitic Mélange, North China Craton. Precambrian Research, 350: 105868. https://doi.org/10.1016/j.precamres.2020.105868
    Ning, W. B., Kusky, T. M., Wang, L., et al., 2022. Archean Eclogite-Facies Oceanic Crust Indicates Modern-Style Plate Tectonics. Proceedings of the National Academy of Sciences of the United States of America, 119(15): e2117529119. https://doi.org/10.1073/pnas.2117529119
    Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952–963. https://doi.org/10.1007/s12583-019-1020-8
    Nutman, A. P., Wan, Y. S., Du, L. L., et al., 2011. Multistage Late Neoarchaean Crustal Evolution of the North China Craton, Eastern Hebei. Precambrian Research, 189(1/2): 43–65. https://doi.org/10.1016/j.precamres.2011.04.005
    Peng, P., Wang, C., Wang, X. P., et al., 2015. Qingyuan High-Grade Granite-Greenstone Terrain in the Eastern North China Craton: Root of a Neoarchaean Arc. Tectonophysics, 662: 7–21. https://doi.org/10.1016/j.tecto.2015.04.013
    Polat, A., Herzberg, C., Münker, C., et al., 2006. Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 118(7/8): 771–784. https://doi.org/10.1130/b25845.1
    Révillon, S., Hallot, E., Arndt, N. T., et al., 2000. A Complex History for the Caribbean Plateau: Petrology, Geochemistry, and Geochronology of the Beata Ridge, South Hispaniola. The Journal of Geology, 108(6): 641–661. https://doi.org/10.1086/317953
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2
    Schulz, B., Brätz, H., Klemd, R., 2006. Host Rock Compositional Controls on Zircon Trace Element Signatures in Metabasites from the Austroalpine Basement. Geochimica et Cosmochimica Acta, 70(3): 697–710. https://doi.org/10.1016/j.gca.2005.10.001
    Song, B., Nutman, A. P., Liu, D. Y., et al., 1996. 3800 to 2500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1/2/3): 79–94. https://doi.org/10.1016/0301-9268(95)00070-4
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, M., Wang, X. L., Shu, X. J., et al., 2014. Hafnium Isotopic Heterogeneity in Zircons from Granitic Rocks: Geochemical Evaluation and Modeling of "Zircon Effect" in Crustal Anatexis. Earth and Planetary Science Letters, 389: 188–199. https://doi.org/10.1016/j.epsl.2013.12.036
    Van Kranendonk, M. J., Collins, W. J., Hickman, A., et al., 2004. Critical Tests of Vertical Vs. Horizontal Tectonic Models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Research, 131(3/4): 173–211. https://doi.org/10.1016/j.precamres.2003.12.015
    Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2011. ∼2.7 Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province): Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1/2/3/4): 169–180. https://doi.org/10.1016/j.precamres.2011.01.015
    Wan, Y. S., Zhang, Y. H., Williams, I. S., et al., 2013. Extreme Zircon O Isotopic Compositions from 3.8 to 2.5 Ga Magmatic Rocks from the Anshan Area, North China Craton. Chemical Geology, 352: 108–124. https://doi.org/10.1016/j.chemgeo.2013.06.009
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1/2): 59–75. https://doi.org/10.1130/b31479.1
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
    Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523–545. https://doi.org/10.1016/j.jseaes.2003.10.011
    Wu, K. K., Zhao, G. C., Sun, M., et al., 2013. Metamorphism of the Northern Liaoning Complex: Implications for the Tectonic Evolution of Neoarchean Basement of the Eastern Block, North China Craton. Geoscience Frontiers, 4(3): 305–320. https://doi.org/10.1016/j.gsf.2012.11.005
    Wu, M. L., Lin, S. F., Wan, Y. S., et al., 2016. Crustal Evolution of the Eastern Block in the North China Craton: Constraints from Zircon U-Pb Geochronology and Lu-Hf Isotopes of the Northern Liaoning Complex. Precambrian Research, 275: 35–47. https://doi.org/10.1016/j.precamres.2015.12.013
    Xie, Q., Kerrich, R., Fan, J., 1993. HFSE/REE Fractionations Recorded in Three Komatiite-Basalt Sequences, Archean Abitibi Greenstone Belt: Implications for Multiple Plume Sources and Depths. Geochimica et Cosmochimica Acta, 57(16): 4111–4118. https://doi.org/10.1016/0016-7037(93)90357-3
    Yang, C., Wei, C. J., 2017. Two Phases of Granulite Facies Metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from Mafic Granulites. Precambrian Research, 301: 49–64. https://doi.org/10.1016/j.precamres.2017.09.005
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 167(1/2): 125–149. https://doi.org/10.1016/j.precamres.2008.07.004
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. https://doi.org/10.1016/s0301-9268(00)00154-6
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(343) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return