Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 5
Oct 2024
Turn off MathJax
Article Contents
Mu Liu, R. Paul Philp. Utilization of Pyrrolic Compounds as Indicators of Secondary Migration for Woodford Oils in the Anadarko Basin, Oklahoma, USA. Journal of Earth Science, 2024, 35(5): 1499-1512. doi: 10.1007/s12583-023-1811-9
Citation: Mu Liu, R. Paul Philp. Utilization of Pyrrolic Compounds as Indicators of Secondary Migration for Woodford Oils in the Anadarko Basin, Oklahoma, USA. Journal of Earth Science, 2024, 35(5): 1499-1512. doi: 10.1007/s12583-023-1811-9

Utilization of Pyrrolic Compounds as Indicators of Secondary Migration for Woodford Oils in the Anadarko Basin, Oklahoma, USA

doi: 10.1007/s12583-023-1811-9
More Information
  • Corresponding author: Mu Liu, liumu@mail.iggcas.ac.cn
  • Received Date: 14 Nov 2022
  • Accepted Date: 28 Dec 2022
  • Issue Publish Date: 30 Oct 2024
  • Migration pathways and distances of the oils in reservoir are thought to affect the distribution of pyrrolic compounds such as carbazole, its alkyl derivatives (alkylated carbazoles) and benzocarbazoles, although other factors, including maturity and depositional environments may also affect the distribution of these organic nitrogen compounds. In this study, 14 oil samples produced from conventional reservoirs in Pauls Valley, south Oklahoma were investigated using organic geochemical techniques. The sterane and hopane fingerprints suggest that most of the oils were sourced from the Devonian Woodford shale. Maturity parameters consistently indicate that the maturity level of the studied samples are all of similar maturity (Rc = ~0.7%), suggesting the distribution of the organic nitrogen organic compounds is possibly reflecting variations in relative migration distances. The distribution of alkylcarbazoles revealed a preferential enrichment during migration, with the nitrogen-shielded alkylcarbazole tending to be enriched relative to the nitrogen-semi-shielded alkylcarbozoles particularly in oils produced close to the Arbuckle uplift to the east. Correspondingly, another family of pyrrolic compounds, benzocarbazoles, whose distributions also indicated that the Pauls Valley Woodford oils came from deeper part of the Anadarko Basin as the benzo-[a]/([a]+[c])-carbazole ratios decrease eastwards. In more specific migration systems, although the pyrrolic compound indicators are potentially disturbed by the structural complexes, the general migration directions suggest that the studied oils in Pauls Valley Hunton uplift were sourced from the deep basin area, and migrate upwards in porous sediments due to the buoyancy. This study investigates the feasibility of using pyrrolic compounds to estimate relative migration distances and will aid in the interpretation of migration history by using the distribution of carbazole, alkylated carbazoles, benzocarbazoles isomers in the Anadarko and Ardmore Basin petroleum systems.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Allen, R. W., 2000. Complex Structural Features of the Ardmore Basin. Shale Shaker, 51(1–3): 11–21
    Bakel, A. J., Philp, R. P., 1990. The Distribution and Quantitation of Organonitrogen Compounds in Crude Oils and Rock Pyrolysates. Organic Geochemistry, 16(1/2/3): 353–367. https://doi.org/10.1016/0146-6380(90)90054-4
    Bakr, M. M. Y., Wilkes, H., 2002. The Influence of Facies and Depositional Environment on the Occurrence and Distribution of Carbazoles and Benzocarbazoles in Crude Oils: A Case Study from the Gulf of Suez, Egypt. Organic Geochemistry, 33(5): 561–580. https://doi.org/10.1016/s0146-6380(02)00016-5
    Bechtel, A., Gratzer, R., Linzer, H. G., et al., 2013. Influence of Migration Distance, Maturity and Facies on the Stable Isotopic Composition of Alkanes and on Carbazole Distributions in Oils and Source Rocks of the Alpine Foreland Basin of Austria. Organic Geochemistry, 62: 74–85. https://doi.org/10.1016/j.orggeochem.2013.07.008
    Bennett, B., Olsen, S. D., 2007. The Influence of Source Depositional Conditions on the Hydrocarbon and Nitrogen Compounds in Petroleum from Central Montana, USA. Organic Geochemistry, 38(6): 935–956. https://doi.org/10.1016/j.orggeochem.2007.01.004
    Brown, T. C., Kenig, F., 2004. Water Column Structure during Deposition of Middle Devonian-Lower Mississippian Black and Green/Gray Shales of the Illinois and Michigan Basins: A Biomarker Approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1/2): 59–85. https://doi.org/10.1016/j.palaeo.2004.08.004
    Campbell, J. A., Northcutt, R. A., 2001. Petroleum Systems of Sedimentary Basins in Oklahoma. Oklahoma Geological Survey Circular, 106(1): 1–5
    Cardott, B. J., Landis, C. R., Curtis, M. E., 2015. Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway. International Journal of Coal Geology, 139: 106–113. https://doi.org/10.1016/j.coal.2014.08.012
    Chen, Z. H., Yang, Y. M., Wang, T. G., et al., 2017. Dibenzothiophenes in Solid Bitumens: Use of Molecular Markers to Trace Paleo-Oil Filling Orientations in the Lower Cambrian Reservoir of the Moxi-Gaoshiti Bulge, Sichuan Basin, Southern China. Organic Geochemistry, 108: 94–112. https://doi.org/10.1016/j.orggeochem.2017.03.013
    Clark, J., Philp, R., 1989. Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Basin, Alberta. Bulletin of Canadian Petroleum Geology, 37(4): 401–416. https://doi.org/10.35767/gscpgbull.37.4.401
    Clegg, H., Wilkes, H., Horsfield, B., 1997. Carbazole Distributions in Carbonate and Clastic Source Rocks. Geochimica et Cosmochimica Acta, 61(24): 5335–5345. https://doi.org/10.1016/s0016-7037(97)00304-9
    Clegg, H., Wilkes, H., Oldenburg, T., et al., 1998. Influence of Maturity on Carbazole and Benzocarbazole Distributions in Crude Oils and Source Rocks from the Sonda de Campeche, Gulf of Mexico. Organic Geochemistry, 29(1/2/3): 183–194. https://doi.org/10.1016/s0146-6380(98)00181-8
    Clifford, D. J., Clayton, J. L., Sinninghe Damsté, J. S., 1998. 2, 3, 6-/3, 4, 5-Trimethyl Substituted Diaryl Carotenoid Derivatives (Chlorobiaceae) in Petroleums of the Belarussian Pripyat River Basin. Organic Geochemistry, 29(5/6/7): 1253–1267. https://doi.org/10.1016/s0146-6380(98)00086-2
    Connock, G. T., Nguyen, T. X., Philip, R. P., 2018. The Development and Extent of Photic-Zone Euxinia Concomitant with Woodford Shale Deposition. AAPG Bulletin, 102(6): 959–986. https://doi.org/10.1306/0726171602017224
    Duan, Y., Yuan, Y. D., Qian, R. R., 2013. Migration Features of Crude Oil in Fluvial Deposits of Maling Oilfield in Ordos Basin, China. Organic Geochemistry, 58: 78–85. https://doi.org/10.1016/j.orggeochem.2013.02.011
    Gaswirth, S. B., Higley, D. K., 2013. Petroleum System Analysis of the Hunton Group in West Edmond Field, Oklahoma. AAPG Bulletin, 97(7): 1163–1179. https://doi.org/10.1306/12031212075
    Goossens, H., de Leeuw, J. W., Schenck, P. A., et al., 1984. Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils. Nature, 312(5993): 440–442. https://doi.org/10.1038/312440a
    Hallmann, C. O. E., Arouri, K. R., McKirdy, D. M., et al., 2007. Temporal Resolution of an Oil Charging History—A Case Study of Residual Oil Benzocarbazoles from the Gidgealpa Field. Organic Geochemistry, 38(9): 1516–1536. https://doi.org/10.1016/j.orggeochem.2007.05.006
    Higley, D. K., 2011. Undiscovered Petroleum Resources for the Woodford Shale and Thirteen Finger Limestone-Atoka Shale Assessment Units, Anadarko Basin. Geological Survey Open File Report 2011: 1242, 3rd sheet
    Horsfield, B., Clegg, H., Wilkes, H., et al., 1998. Maturity Control of Carbazole Distributions in Petroleum Systems. Naturwissenschaften, 85: 233–237. https://doi.org/10.1007/s001140050489
    Huang, H. P., Bowler, B. F. J., Zhang, Z. W., et al., 2003. Influence of Biodegradation on Carbazole and Benzocarbazole Distributions in Oil Columns from the Liaohe Basin, NE China. Organic Geochemistry, 34(7): 951–969. https://doi.org/10.1016/s0146-6380(03)00033-0
    Huang, W. Y., Meinschein, W. G., 1979. Sterols as Ecological Indicators. Geochimica et Cosmochimica Acta, 43(5): 739–745. https://doi.org/10.1016/0016-7037(79)90257-6
    Hwang, R. J., Heidrick, T., Mertani, B., et al., 2002. Correlation and Migration Studies of North Central Sumatra Oils. Organic Geochemistry, 33(12): 1361–1379. https://doi.org/10.1016/s0146-6380(02)00104-3
    Jiang, C., Huang, H. P., Li, Z., et al., 2022. A Novel Redox Indicator Based on Relative Abundances of C31 and C32 Homohopanes in the Eocene Lacustrine Dongying Depression, East China. Petroleum Science, 19(4): 1494–1504. https://doi.org/10.1016/j.petsci.2022.01.019
    Jones, P. J., Philp, R. P., 1990. Oils and Source Rocks from Pauls Valley, Anadarko Basin, Oklahoma, U.S.A. Applied Geochemistry, 5(4): 429–448. https://doi.org/10.1016/0883-2927(90)90019-2
    Koopmans, M. P., Köster, J., van Kaam-Peters, H. M. E., et al., 1996. Diagenetic and Catagenetic Products of Isorenieratene: Molecular Indicators for Photic Zone Anoxia. Geochimica et Cosmochimica Acta, 60(22): 4467–4496. https://doi.org/10.1016/s0016-7037(96)00238-4
    Krooss, B. M., Brothers, L., Engel, M. H., 1991. Geochromatography in Petroleum Migration: A Review. Geological Society, London, Special Publications, 59(1): 149–163. https://doi.org/10.1144/gsl.sp.1991.059.01.11
    Larter, S. R., Bowler, B. F. J., Li, M., et al., 1996. Molecular Indicators of Secondary Oil Migration Distances. Nature, 383(6601): 593–597. https://doi.org/10.1038/383593a0
    Li, L., Philip, R. P., Nguyen, T. X., 2017. Origin and History of the Oils in the Lawton Oil Field, Southwestern Oklahoma. AAPG Bulletin, 101(2): 205–232. https://doi.org/10.1306/07251615167
    Li, M. W., Fowler, M. G., Obermajer, M., et al., 1999. Geochemical Characterisation of Middle Devonian Oils in NW Alberta, Canada: Possible Source and Maturity Effect on Pyrrolic Nitrogen Compounds. Organic Geochemistry, 30(9): 1039–1057. https://doi.org/10.1016/s0146-6380(99)00049-2
    Li, M. W., Larter, S. R., Stoddart, D., et al., 1992. Liquid Chromatographic Separation Schemes for Pyrrole and Pyridine Nitrogen Aromatic Heterocycle Fractions from Crude Oils Suitable for Rapid Characterization of Geochemical Samples. Analytical Chemistry, 64(13): 1337–1344. https://doi.org/10.1021/ac00037a007
    Li, M. W., Larter, S. R., Stoddart, D., et al., 1995. Fractionation of Pyrrolic Nitrogen Compounds in Petroleum during Migration: Derivation of Migration-Related Geochemical Parameters. Geological Society, London, Special Publications, 86(1): 103–123. https://doi.org/10.1144/gsl.sp.1995.086.01.09
    Liu, M., Ji, C. J., Hu, H. W., et al., 2021. Variations in Microbial Ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from Biomarker and Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 580: 110626. https://doi.org/10.1016/j.palaeo.2021.110626
    Liu, M., Sun, P., Them, T. R., et al., 2020. Organic Geochemistry of a Lacustrine Shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China. Global and Planetary Change, 191: 103214. https://doi.org/10.1016/j.gloplacha.2020.103214
    Liu, W., Liu, M., Yang, T., et al., 2022. Organic Matter Accumulations in the Santonian-Campanian (Upper Cretaceous) Lacustrine Nenjiang Shale (K2n) in the Songliao Basin, NE China: Terrestrial Responses to OAE3? International Journal of Coal Geology, 260: 104069. https://doi.org/10.1016/j.coal.2022.104069
    Macko, S. A., Quick, R. S., 1986. A Geochemical Study of Oil Migration at Source Rock Reservoir Contacts: Stable Isotopes. Organic Geochemistry, 10(1/2/3): 199–205. https://doi.org/10.1016/0146-6380(86)90023-9
    Mitchell, A., Hazell, L., Webb, K., 1990. Wettability Determination: Pore Surface Analysis, SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers 20505. https://doi.org/10.2118/20505-ms
    Moldowan, J. M., Wolfgang, K. S., Emilio, J. G., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69(8): 1255–1268. https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d
    Osuji, L., Antia, B., 2005. Geochemical Implication of some Chemical Fossils as Indicators of Petroleum Source Rocks. Journal of Applied Sciences and Environmental Management, 9(1): 45–49
    Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224–236. https://doi.org/10.1016/0264-8172(88)90003-7
    Radke, M., Welte, D. H., 1981. The Methylphenanthrene Index (Mpi): A Maturity Parameter Based on Aromatic Hydrocarbons. Advances in Organic Geochemistry, 83(1): 504–512. https://doi.org/10.1016/0146-6380(86)90008-2
    Rascoe Jr., B., Hyne, N. J., 1988. Petroleum Geology of the Mid-Continent. Tulsa Geological Society Special Publication, 3: 162
    Rechlin, K. J., 2005. Reservoir Quality of the Frisco Formation, Hunton Group, Seminole County, Oklahoma. Shale Shaker, 55(6): 163–174
    Romero, A. M., Philp, R. P., 2012. Organic Geochemistry of the Woodford Shale, Southeastern Oklahoma: How Variable can Shales be? AAPG Bulletin, 96(3): 493–517. https://doi.org/10.1306/08101110194
    Seifert, W. K., Michael Moldowan, J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. https://doi.org/10.1016/0016-7037(78)90219-3
    Seifert, W. K., Moldowan, J. M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261–290
    Shanmugam, G., 1985. Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia. AAPG Bulletin, 69: 1241–1254. https://doi.org/10.1306/ad462bc3-16f7-11d7-8645000102c1865d
    Still, W. C., Kahn, M., Mitra, A., 1978. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. The Journal of Organic Chemistry, 43(14): 2923–2925. https://doi.org/10.1021/jo00408a041
    Summons, R. E., Powell, T. G., 1987. Identification of Aryl Isoprenoids in Source Rocks and Crude Oils: Biological Markers for the Green Sulphur Bacteria. Geochimica et Cosmochimica Acta, 51(3): 557–566. https://doi.org/10.1016/0016-7037(87)90069-x
    Sun, P., Cai, C. F., Tang, Y. J., et al., 2020. A New Approach to Investigate Effects of Biodegradation on Pyrrolic Compounds by Using a Modified Manco Scale. Fuel, 265: 116937. https://doi.org/10.1016/j.fuel.2019.116937
    Tegelaar, E. W., Matthezing, R. M., Jansen, J. B. H., et al., 1989. Possible Origin of N-Alkanes in High-Wax Crude Oils. Nature, 342(6249): 529–531. https://doi.org/10.1038/342529a0
    Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence. Springer-Verlag. Berlin Heidelberg, 89–112
    Visher, G. S., Saitta, S., Phares, R. S., 1971. Pennsylvanian Delta Patterns and Petroleum Occurrences in Eastern Oklahoma. AAPG Bulletin, 55(8): 1206–1230. https://doi.org/10.1306/819a3cd4-16c5-11d7-8645000102c1865d
    Volkman, J. K., 2005. Sterols and other Triterpenoids: Source Specificity and Evolution of Biosynthetic Pathways. Organic Geochemistry, 36(2): 139–159. https://doi.org/10.1016/j.orggeochem.2004.06.013
    Wang, H. D., Philp, R. P., 1997. Geochemical Study of Potential Source Rocks and Crude Oils in the Anadarko Basin, Oklahoma. AAPG Bulletin, 81(2): 249–275. https://doi.org/10.1306/522b42fd-1727-11d7-8645000102c1865d
    Wang, N., Xu, Y. H., Wang, F. L., et al., 2022. Identification and Geochemical Significance of Unusual C24 Tetracyclic Terpanes in Shahejie Formation Source Rocks in the Bozhong Subbasin, Bohai Bay Basin. Petroleum Science, 19(5): 1993–2003. https://doi.org/10.1016/j.petsci.2022.03.025
    Wang, T. G., Li, S. M., Zhang, S. C., 2004. Oil Migration in the Lunnan Region, Tarim Basin, China Based on the Pyrrolic Nitrogen Compound Distribution. Journal of Petroleum Science and Engineering, 41(1/2/3): 123–134. https://doi.org/10.1016/s0920-4105(03)00148-7
    Wang, T., David, J., 2019. Deep Resistivity "Turnover" Effect at Oil Generation "Peak" in the Woodford Shale, Anadarko Basin, USA. Petroleum Science, 16(5): 972–980. https://doi.org/10.1007/s12182-019-00370-8
    Wang, T., Philp, R. P., 2019. Oil Families and Inferred Source Rocks of the Woodford–Mississippian Tight Oil Play in Northcentral Oklahoma. AAPG Bulletin, 103(4): 871–903. https://doi.org/10.1306/09181818049
    Yamamoto, M., 1992. Fractionation of Azaarenes during Oil Migration. Organic Geochemistry, 19(4/5/6): 389–402. https://doi.org/10.1016/0146-6380(92)90007-k
    Yang, Y. L., Arouri, K., 2016. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways. Scientific Reports, 6: 23066. https://doi.org/10.1038/srep23066
    Zhang, C. M., Zhang, Y. Q., Zhang, M., et al., 2008. Carbazole Distributions in Rocks from Non-Marine Depositional Environments. Organic Geochemistry, 39(7): 868–878. https://doi.org/10.1016/j.orggeochem.2008.03.011
    Zhou, S. Q., Huang, H. P., 2010. Applicability of Carbazole Migration Indices in Continental Rift Basins: A Case Study of Western Lujiapu Depression in Kailu Basin, NE China. Acta Geologica Sinica-English Edition, 84(3): 632–642. https://doi.org/10.1111/j.1755-6724.2010.00162.x
    Zhu, Q., Money, S. L., Russell, A. E., et al., 1997. Determination of the Fate of Nitrogen Functionality in Carbonaceous Materials during Pyrolysis and Combustion Using X-Ray Absorption near Edge Structure Spectroscopy. Langmuir, 13(7): 2149–2157. https://doi.org/10.1021/la961027s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(26) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return