Citation: | Mu Liu, R. Paul Philp. Utilization of Pyrrolic Compounds as Indicators of Secondary Migration for Woodford Oils in the Anadarko Basin, Oklahoma, USA. Journal of Earth Science, 2024, 35(5): 1499-1512. doi: 10.1007/s12583-023-1811-9 |
Migration pathways and distances of the oils in reservoir are thought to affect the distribution of pyrrolic compounds such as carbazole, its alkyl derivatives (alkylated carbazoles) and benzocarbazoles, although other factors, including maturity and depositional environments may also affect the distribution of these organic nitrogen compounds. In this study, 14 oil samples produced from conventional reservoirs in Pauls Valley, south Oklahoma were investigated using organic geochemical techniques. The sterane and hopane fingerprints suggest that most of the oils were sourced from the Devonian Woodford shale. Maturity parameters consistently indicate that the maturity level of the studied samples are all of similar maturity (
Allen, R. W., 2000. Complex Structural Features of the Ardmore Basin. Shale Shaker, 51(1–3): 11–21 |
Bakel, A. J., Philp, R. P., 1990. The Distribution and Quantitation of Organonitrogen Compounds in Crude Oils and Rock Pyrolysates. Organic Geochemistry, 16(1/2/3): 353–367. https://doi.org/10.1016/0146-6380(90)90054-4 |
Bakr, M. M. Y., Wilkes, H., 2002. The Influence of Facies and Depositional Environment on the Occurrence and Distribution of Carbazoles and Benzocarbazoles in Crude Oils: A Case Study from the Gulf of Suez, Egypt. Organic Geochemistry, 33(5): 561–580. https://doi.org/10.1016/s0146-6380(02)00016-5 |
Bechtel, A., Gratzer, R., Linzer, H. G., et al., 2013. Influence of Migration Distance, Maturity and Facies on the Stable Isotopic Composition of Alkanes and on Carbazole Distributions in Oils and Source Rocks of the Alpine Foreland Basin of Austria. Organic Geochemistry, 62: 74–85. https://doi.org/10.1016/j.orggeochem.2013.07.008 |
Bennett, B., Olsen, S. D., 2007. The Influence of Source Depositional Conditions on the Hydrocarbon and Nitrogen Compounds in Petroleum from Central Montana, USA. Organic Geochemistry, 38(6): 935–956. https://doi.org/10.1016/j.orggeochem.2007.01.004 |
Brown, T. C., Kenig, F., 2004. Water Column Structure during Deposition of Middle Devonian-Lower Mississippian Black and Green/Gray Shales of the Illinois and Michigan Basins: A Biomarker Approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1/2): 59–85. https://doi.org/10.1016/j.palaeo.2004.08.004 |
Campbell, J. A., Northcutt, R. A., 2001. Petroleum Systems of Sedimentary Basins in Oklahoma. Oklahoma Geological Survey Circular, 106(1): 1–5 |
Cardott, B. J., Landis, C. R., Curtis, M. E., 2015. Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway. International Journal of Coal Geology, 139: 106–113. https://doi.org/10.1016/j.coal.2014.08.012 |
Chen, Z. H., Yang, Y. M., Wang, T. G., et al., 2017. Dibenzothiophenes in Solid Bitumens: Use of Molecular Markers to Trace Paleo-Oil Filling Orientations in the Lower Cambrian Reservoir of the Moxi-Gaoshiti Bulge, Sichuan Basin, Southern China. Organic Geochemistry, 108: 94–112. https://doi.org/10.1016/j.orggeochem.2017.03.013 |
Clark, J., Philp, R., 1989. Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Basin, Alberta. Bulletin of Canadian Petroleum Geology, 37(4): 401–416. https://doi.org/10.35767/gscpgbull.37.4.401 |
Clegg, H., Wilkes, H., Horsfield, B., 1997. Carbazole Distributions in Carbonate and Clastic Source Rocks. Geochimica et Cosmochimica Acta, 61(24): 5335–5345. https://doi.org/10.1016/s0016-7037(97)00304-9 |
Clegg, H., Wilkes, H., Oldenburg, T., et al., 1998. Influence of Maturity on Carbazole and Benzocarbazole Distributions in Crude Oils and Source Rocks from the Sonda de Campeche, Gulf of Mexico. Organic Geochemistry, 29(1/2/3): 183–194. https://doi.org/10.1016/s0146-6380(98)00181-8 |
Clifford, D. J., Clayton, J. L., Sinninghe Damsté, J. S., 1998. 2, 3, 6-/3, 4, 5-Trimethyl Substituted Diaryl Carotenoid Derivatives (Chlorobiaceae) in Petroleums of the Belarussian Pripyat River Basin. Organic Geochemistry, 29(5/6/7): 1253–1267. https://doi.org/10.1016/s0146-6380(98)00086-2 |
Connock, G. T., Nguyen, T. X., Philip, R. P., 2018. The Development and Extent of Photic-Zone Euxinia Concomitant with Woodford Shale Deposition. AAPG Bulletin, 102(6): 959–986. https://doi.org/10.1306/0726171602017224 |
Duan, Y., Yuan, Y. D., Qian, R. R., 2013. Migration Features of Crude Oil in Fluvial Deposits of Maling Oilfield in Ordos Basin, China. Organic Geochemistry, 58: 78–85. https://doi.org/10.1016/j.orggeochem.2013.02.011 |
Gaswirth, S. B., Higley, D. K., 2013. Petroleum System Analysis of the Hunton Group in West Edmond Field, Oklahoma. AAPG Bulletin, 97(7): 1163–1179. https://doi.org/10.1306/12031212075 |
Goossens, H., de Leeuw, J. W., Schenck, P. A., et al., 1984. Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils. Nature, 312(5993): 440–442. https://doi.org/10.1038/312440a |
Hallmann, C. O. E., Arouri, K. R., McKirdy, D. M., et al., 2007. Temporal Resolution of an Oil Charging History—A Case Study of Residual Oil Benzocarbazoles from the Gidgealpa Field. Organic Geochemistry, 38(9): 1516–1536. https://doi.org/10.1016/j.orggeochem.2007.05.006 |
Higley, D. K., 2011. Undiscovered Petroleum Resources for the Woodford Shale and Thirteen Finger Limestone-Atoka Shale Assessment Units, Anadarko Basin. Geological Survey Open File Report 2011: 1242, 3rd sheet |
Horsfield, B., Clegg, H., Wilkes, H., et al., 1998. Maturity Control of Carbazole Distributions in Petroleum Systems. Naturwissenschaften, 85: 233–237. https://doi.org/10.1007/s001140050489 |
Huang, H. P., Bowler, B. F. J., Zhang, Z. W., et al., 2003. Influence of Biodegradation on Carbazole and Benzocarbazole Distributions in Oil Columns from the Liaohe Basin, NE China. Organic Geochemistry, 34(7): 951–969. https://doi.org/10.1016/s0146-6380(03)00033-0 |
Huang, W. Y., Meinschein, W. G., 1979. Sterols as Ecological Indicators. Geochimica et Cosmochimica Acta, 43(5): 739–745. https://doi.org/10.1016/0016-7037(79)90257-6 |
Hwang, R. J., Heidrick, T., Mertani, B., et al., 2002. Correlation and Migration Studies of North Central Sumatra Oils. Organic Geochemistry, 33(12): 1361–1379. https://doi.org/10.1016/s0146-6380(02)00104-3 |
Jiang, C., Huang, H. P., Li, Z., et al., 2022. A Novel Redox Indicator Based on Relative Abundances of C31 and C32 Homohopanes in the Eocene Lacustrine Dongying Depression, East China. Petroleum Science, 19(4): 1494–1504. https://doi.org/10.1016/j.petsci.2022.01.019 |
Jones, P. J., Philp, R. P., 1990. Oils and Source Rocks from Pauls Valley, Anadarko Basin, Oklahoma, U.S.A. Applied Geochemistry, 5(4): 429–448. https://doi.org/10.1016/0883-2927(90)90019-2 |
Koopmans, M. P., Köster, J., van Kaam-Peters, H. M. E., et al., 1996. Diagenetic and Catagenetic Products of Isorenieratene: Molecular Indicators for Photic Zone Anoxia. Geochimica et Cosmochimica Acta, 60(22): 4467–4496. https://doi.org/10.1016/s0016-7037(96)00238-4 |
Krooss, B. M., Brothers, L., Engel, M. H., 1991. Geochromatography in Petroleum Migration: A Review. Geological Society, London, Special Publications, 59(1): 149–163. https://doi.org/10.1144/gsl.sp.1991.059.01.11 |
Larter, S. R., Bowler, B. F. J., Li, M., et al., 1996. Molecular Indicators of Secondary Oil Migration Distances. Nature, 383(6601): 593–597. https://doi.org/10.1038/383593a0 |
Li, L., Philip, R. P., Nguyen, T. X., 2017. Origin and History of the Oils in the Lawton Oil Field, Southwestern Oklahoma. AAPG Bulletin, 101(2): 205–232. https://doi.org/10.1306/07251615167 |
Li, M. W., Fowler, M. G., Obermajer, M., et al., 1999. Geochemical Characterisation of Middle Devonian Oils in NW Alberta, Canada: Possible Source and Maturity Effect on Pyrrolic Nitrogen Compounds. Organic Geochemistry, 30(9): 1039–1057. https://doi.org/10.1016/s0146-6380(99)00049-2 |
Li, M. W., Larter, S. R., Stoddart, D., et al., 1992. Liquid Chromatographic Separation Schemes for Pyrrole and Pyridine Nitrogen Aromatic Heterocycle Fractions from Crude Oils Suitable for Rapid Characterization of Geochemical Samples. Analytical Chemistry, 64(13): 1337–1344. https://doi.org/10.1021/ac00037a007 |
Li, M. W., Larter, S. R., Stoddart, D., et al., 1995. Fractionation of Pyrrolic Nitrogen Compounds in Petroleum during Migration: Derivation of Migration-Related Geochemical Parameters. Geological Society, London, Special Publications, 86(1): 103–123. https://doi.org/10.1144/gsl.sp.1995.086.01.09 |
Liu, M., Ji, C. J., Hu, H. W., et al., 2021. Variations in Microbial Ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from Biomarker and Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 580: 110626. https://doi.org/10.1016/j.palaeo.2021.110626 |
Liu, M., Sun, P., Them, T. R., et al., 2020. Organic Geochemistry of a Lacustrine Shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China. Global and Planetary Change, 191: 103214. https://doi.org/10.1016/j.gloplacha.2020.103214 |
Liu, W., Liu, M., Yang, T., et al., 2022. Organic Matter Accumulations in the Santonian-Campanian (Upper Cretaceous) Lacustrine Nenjiang Shale (K2n) in the Songliao Basin, NE China: Terrestrial Responses to OAE3? International Journal of Coal Geology, 260: 104069. https://doi.org/10.1016/j.coal.2022.104069 |
Macko, S. A., Quick, R. S., 1986. A Geochemical Study of Oil Migration at Source Rock Reservoir Contacts: Stable Isotopes. Organic Geochemistry, 10(1/2/3): 199–205. https://doi.org/10.1016/0146-6380(86)90023-9 |
Mitchell, A., Hazell, L., Webb, K., 1990. Wettability Determination: Pore Surface Analysis, SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers 20505. |
Moldowan, J. M., Wolfgang, K. S., Emilio, J. G., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69(8): 1255–1268. https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d |
Osuji, L., Antia, B., 2005. Geochemical Implication of some Chemical Fossils as Indicators of Petroleum Source Rocks. Journal of Applied Sciences and Environmental Management, 9(1): 45–49 |
Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224–236. https://doi.org/10.1016/0264-8172(88)90003-7 |
Radke, M., Welte, D. H., 1981. The Methylphenanthrene Index (Mpi): A Maturity Parameter Based on Aromatic Hydrocarbons. Advances in Organic Geochemistry, 83(1): 504–512. https://doi.org/10.1016/0146-6380(86)90008-2 |
Rascoe Jr., B., Hyne, N. J., 1988. Petroleum Geology of the Mid-Continent. Tulsa Geological Society Special Publication, 3: 162 |
Rechlin, K. J., 2005. Reservoir Quality of the Frisco Formation, Hunton Group, Seminole County, Oklahoma. Shale Shaker, 55(6): 163–174 |
Romero, A. M., Philp, R. P., 2012. Organic Geochemistry of the Woodford Shale, Southeastern Oklahoma: How Variable can Shales be? AAPG Bulletin, 96(3): 493–517. https://doi.org/10.1306/08101110194 |
Seifert, W. K., Michael Moldowan, J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. https://doi.org/10.1016/0016-7037(78)90219-3 |
Seifert, W. K., Moldowan, J. M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261–290 |
Shanmugam, G., 1985. Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia. AAPG Bulletin, 69: 1241–1254. https://doi.org/10.1306/ad462bc3-16f7-11d7-8645000102c1865d |
Still, W. C., Kahn, M., Mitra, A., 1978. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. The Journal of Organic Chemistry, 43(14): 2923–2925. https://doi.org/10.1021/jo00408a041 |
Summons, R. E., Powell, T. G., 1987. Identification of Aryl Isoprenoids in Source Rocks and Crude Oils: Biological Markers for the Green Sulphur Bacteria. Geochimica et Cosmochimica Acta, 51(3): 557–566. https://doi.org/10.1016/0016-7037(87)90069-x |
Sun, P., Cai, C. F., Tang, Y. J., et al., 2020. A New Approach to Investigate Effects of Biodegradation on Pyrrolic Compounds by Using a Modified Manco Scale. Fuel, 265: 116937. https://doi.org/10.1016/j.fuel.2019.116937 |
Tegelaar, E. W., Matthezing, R. M., Jansen, J. B. H., et al., 1989. Possible Origin of N-Alkanes in High-Wax Crude Oils. Nature, 342(6249): 529–531. https://doi.org/10.1038/342529a0 |
Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence. Springer-Verlag. Berlin Heidelberg, 89–112 |
Visher, G. S., Saitta, S., Phares, R. S., 1971. Pennsylvanian Delta Patterns and Petroleum Occurrences in Eastern Oklahoma. AAPG Bulletin, 55(8): 1206–1230. https://doi.org/10.1306/819a3cd4-16c5-11d7-8645000102c1865d |
Volkman, J. K., 2005. Sterols and other Triterpenoids: Source Specificity and Evolution of Biosynthetic Pathways. Organic Geochemistry, 36(2): 139–159. https://doi.org/10.1016/j.orggeochem.2004.06.013 |
Wang, H. D., Philp, R. P., 1997. Geochemical Study of Potential Source Rocks and Crude Oils in the Anadarko Basin, Oklahoma. AAPG Bulletin, 81(2): 249–275. https://doi.org/10.1306/522b42fd-1727-11d7-8645000102c1865d |
Wang, N., Xu, Y. H., Wang, F. L., et al., 2022. Identification and Geochemical Significance of Unusual C24 Tetracyclic Terpanes in Shahejie Formation Source Rocks in the Bozhong Subbasin, Bohai Bay Basin. Petroleum Science, 19(5): 1993–2003. https://doi.org/10.1016/j.petsci.2022.03.025 |
Wang, T. G., Li, S. M., Zhang, S. C., 2004. Oil Migration in the Lunnan Region, Tarim Basin, China Based on the Pyrrolic Nitrogen Compound Distribution. Journal of Petroleum Science and Engineering, 41(1/2/3): 123–134. https://doi.org/10.1016/s0920-4105(03)00148-7 |
Wang, T., David, J., 2019. Deep Resistivity "Turnover" Effect at Oil Generation "Peak" in the Woodford Shale, Anadarko Basin, USA. Petroleum Science, 16(5): 972–980. https://doi.org/10.1007/s12182-019-00370-8 |
Wang, T., Philp, R. P., 2019. Oil Families and Inferred Source Rocks of the Woodford–Mississippian Tight Oil Play in Northcentral Oklahoma. AAPG Bulletin, 103(4): 871–903. https://doi.org/10.1306/09181818049 |
Yamamoto, M., 1992. Fractionation of Azaarenes during Oil Migration. Organic Geochemistry, 19(4/5/6): 389–402. https://doi.org/10.1016/0146-6380(92)90007-k |
Yang, Y. L., Arouri, K., 2016. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways. Scientific Reports, 6: 23066. https://doi.org/10.1038/srep23066 |
Zhang, C. M., Zhang, Y. Q., Zhang, M., et al., 2008. Carbazole Distributions in Rocks from Non-Marine Depositional Environments. Organic Geochemistry, 39(7): 868–878. https://doi.org/10.1016/j.orggeochem.2008.03.011 |
Zhou, S. Q., Huang, H. P., 2010. Applicability of Carbazole Migration Indices in Continental Rift Basins: A Case Study of Western Lujiapu Depression in Kailu Basin, NE China. Acta Geologica Sinica-English Edition, 84(3): 632–642. https://doi.org/10.1111/j.1755-6724.2010.00162.x |
Zhu, Q., Money, S. L., Russell, A. E., et al., 1997. Determination of the Fate of Nitrogen Functionality in Carbonaceous Materials during Pyrolysis and Combustion Using X-Ray Absorption near Edge Structure Spectroscopy. Langmuir, 13(7): 2149–2157. https://doi.org/10.1021/la961027s |