This research has investigated the oil content of lacustrine shale-oil systems from the Junggar Basin. Twenty-eight samples are used for different pyrolysis experiments to study the characteristics of shale oil occurrence and the difference between various evaluation methods. Additionally, the factors affecting the physical states of shale oil are discussed. Compared with the standard Rock-Eval, the two-step pyrolysis and multi-step pyrolysis can eliminate the influence of the carryover effect. Therefore, these two types of pyrolysis are used to obtain the total, free, and adsorbed oil yield of the shale. The results demonstrate that the total oil yield acquired by multi-step pyrolysis is quite similar to that obtained by two-step pyrolysis. Both of them can prevent the retained oil yield from being underestimated by more than 50%. However, the free oil yield obtained by multi-step pyrolysis is significantly higher than that obtained by two-step pyrolysis. The multi-step pyrolysis can easily exaggerate the real free oil yield in resource evaluation. Therefore, this article suggests using the two-step pyrolysis to evaluate the characteristics of petroleum in shales. Furthermore, the amount of hydrocarbons within shales is related to organic matter properties. The higher the organic matter richness, the higher the total/adsorbed oil yield within the shale before reaching the adsorption saturation. The better the kerogen type, the higher the amount of liquid hydrocarbons within shales. As the thermal evolution of shales increases, the free oil proportion and the mobility of petroleum increase. This study compared different pyrolysis methods, which provided new insight for obtaining the oil content of shales, a key parameter of shale oil resource evaluation.