Citation: | Lu Xu, Rui Liu, Yufeng Tang, Kangbin Zhang, Liang Feng, Xiucheng Tan, Fei Liu, Dingchuan Jiang. Geochemical Characteristics of Natural Gas in the Upper Permian Reservoir of the Eastern Sichuan Basin, China: Implication of Multiple Sources Mixing. Journal of Earth Science, 2025, 36(4): 1555-1567. doi: 10.1007/s12583-023-1824-4 |
For an improved understanding of gas enrichment mechanism in the eastern Sichuan Basin, South China, twelve natural gas samples were obtained from carbonate reservoirs of the Upper Permian strata to analyze the hydrocarbon and non-hydrocarbon gas compositions, stable carbon and hydrogen isotopes ratios of hydrocarbons, and noble gas isotope ratios. The gas samples in the Upper Permian reservoirs principally consist of alkane gas with a dryness ratio ranging from 127.9 to 1 564.4. The carbon isotope ratio of methane (δ13C1) was almost constant at -34.1 to -31.3‰, but the carbon isotope ratio of ethane (δ13C2) varied from -36.6‰ to -25.8‰. The hydrogen isotope ratio of methane (δ2HC1) also displayed a wide range from -137‰ to -127‰. The large variations in the dryness ratio, δ13C2, and δ2HC1 with almost constant δ13C1 suggest the mixing of sapropelic and humic origins for hydrocarbon gases in these reservoirs. A high concentration of hydrogen sulfide (H2S) originated from the thermochemical sulfate reduction (TSR), which was positively correlated with δ13C1 (or δ13C2) in individual gas fields. TSR altered δ13C1 (or δ13C2) and resulted in the abnormal character of isotopic reversal in the individual samples. The δ13C1 (or δ13C2) in most gas samples, independent of H2S concentration, further displayed reversed carbon isotopes because of the mixture of thermogenic gases with various thermal maturity levels. The measured argon isotope ratio (40Ar/36Ar) varied from 310 to 1 225, which suggests that the oldest 320 Ma source rock age corresponds to Permian shales. The analysis of the gas origin and the identification of primary source rock have made a significant contribution to further understanding the resource potential and distribution of natural gas in the Upper Permian, and have great implications for gas exploration in the eastern Sichuan Basin.
Ballentine, C. J., Burnard, P. G., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47(1): 481–538. https://doi.org/10.2138/rmg.2002.47.12 |
Bernard, B. B., Brooks, J. M., Sackett, W. M., 1978. Light Hydrocarbons in Recent Texas Continental Shelf and Slope Sediments. Journal of Geophysical Research: Oceans, 83(C8): 4053–4061. https://doi.org/10.1029/JC083iC08p04053 |
Borjigen, T., Qin, J. Z., Fu, X. D., et al., 2014. Marine Hydrocarbon Source Rocks of the Upper Permian Longtan Formation and Their Contribution to Gas Accumulation in the Northeastern Sichuan Basin, Southwest China. Marine and Petroleum Geology, 57: 160–172. https://doi.org/10.1016/j.marpetgeo.2014.05.005 |
Cai, C. F., Li, K. K., Zhu, Y. M., et al., 2010. TSR Origin of Sulfur in Permian and Triassic Reservoir Bitumen, East Sichuan Basin, China. Organic Geochemistry, 41(9): 871–878. https://doi.org/10.1016/j.orggeochem.2010.03.009 |
Cai, C. F., Tang, Y. J., Li, K. K., et al., 2019. Relative Reactivity of Saturated Hydrocarbons during Thermochemical Sulfate Reduction. Fuel, 253: 106–113. https://doi.org/10.1016/j.fuel.2019.04.148 |
Cai, C. F., Worden, R. H., Bottrell, S. H., et al., 2003. Thermochemical Sulphate Reduction and the Generation of Hydrogen Sulphide and Thiols (Mercaptans) in Triassic Carbonate Reservoirs from the Sichuan Basin, China. Chemical Geology, 202(1/2): 39–57. https://doi.org/10.1016/S0009-2541(03)00209-2 |
Chen, J. P., Li, W., Ni, Y. Y., et al., 2018. The Permian Source Rocks in the Sichuan Basin and Its Natural Gas Exploration Potential (Part 1): Spatial Distribution of Source Rocks. Natural Gas Industry, 38(5): 33–45. https://doi.org/10.3787/j.issn.1000-0976.2018.05.001 (in Chinese with English Abstract) |
Chen, X., Hu, M. Y., Xu, C. H., et al., 2022. Sedimentary Architectures of Reef-Shoal Facies at the Platform Margin during Changxing Times of the Late Permian around Kaijiang-Liangping Trough in the Sichuan Basin and Their Differences. Oil & Gas Geology, 43(4): 833–844. https://doi.org/10.11743/ogg20220408 (in Chinese with English Abstract) |
Clarke, W. B., Jenkins, W. J., Top, Z., 1976. Determination of Tritium by Mass Spectrometric Measurement of 3He. The International Journal of Applied Radiation and Isotopes, 27(9): 515–522. https://doi.org/10.1016/0020-708X(76)90082-X |
Dai, J. X., Ni, Y. Y., Liu, Q. Y., et al., 2021. Sichuan Super Gas Basin in Southwest China. Petroleum Exploration and Development, 48(6): 1251–1259. https://doi.org/10.1016/S1876-3804(21)60284-7 |
Dai, J. X., Ni, Y. Y., Qin, S. F., et al., 2018. Geochemical Characteristics of Ultra-Deep Natural Gas in the Sichuan Basin, SW China. Petroleum Exploration and Development, 45(4): 619–628. https://doi.org/10.1016/S1876-3804(18)30067-3 |
Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3–12. https://doi.org/10.1016/j.orggeochem.2014.01.018 |
Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen Beneath Central South China: Evidence from Seismic-Reflection Profiling. Precambrian Research, 264: 1–10. https://doi.org/10.1016/j.precamres.2015.04.003 |
Faber, E., Gerling, P., Dumke, I., 1988. Gaseous Hydrocarbons of Unknown Origin Found While Drilling. Organic Geochemistry, 13(4/5/6): 875–879. https://doi.org/10.1016/0146-6380(88)90240-9 |
Feng, Z. Q., Dong, D. Z., Tian, J. Q., et al., 2021. Geochemical Characteristics of the Paleozoic Natural Gas in the Yichuan-Huanglong Area, Southeastern Margin of the Ordos Basin: Based on Late Gas Generation Mechanisms. Marine and Petroleum Geology, 124: 104867. https://doi.org/10.1016/j.marpetgeo.2020.104867 |
Hao, F., Guo, T. L., Zhu, Y. M., et al., 2008. Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China. AAPG Bulletin, 92(5): 611–637. https://doi.org/10.1306/01210807090 |
Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141: 154–177. https://doi.org/10.1016/j.earscirev.2014.12.001 |
He, W. G., Zhou, J. X., Yuan, K., 2018. Deformation Evolution of Eastern Sichuan-Xuefeng Fold-Thrust Belt in South China: Insights from Analogue Modelling. Journal of Structural Geology, 109: 74–85. https://doi.org/10.1016/j.jsg.2018.01.002 |
Jenden, P. D., Drazan, D. J., Kaplan, I. R., 1993. Mixing of Thermogenic Natural Gases in Northern Appalachian Basin. AAPG Bulletin, 77(6): 980–998. https://doi.org/10.1306/BDFF8DBC-1718-11D7-8645000102C1865D |
Jenden, P. D., Kaplan, I. R., Poreda, R., et al., 1988. Origin of Nitrogen-Rich Natural Gases in the California Great Valley: Evidence from Helium, Carbon and Nitrogen Isotope Ratios. Geochimica et Cosmochimica Acta, 52(4): 851–861. https://doi.org/10.1016/0016-7037(88)90356-0 |
Li, A., Shan, X. L., Luo, K. P., et al., 2021. A New Type of Unconventional Gas Reservoir from the Nodular Limestones of the Middle Permian Maokou Formation in the South-Eastern Sichuan Basin, South-West China. Geological Journal, 56(11): 5426–5439. https://doi.org/10.1002/gj.4250 |
Li, C. X., He, D. F., Lu, G., et al., 2021. Multiple Thrust Detachments and Their Implications for Hydrocarbon Accumulation in the Northeastern Sichuan Basin, Southwestern China. AAPG Bulletin, 105(2): 357–390. https://doi.org/10.1306/07272019064 |
Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling. Earth and Planetary Science Letters, 490: 170–179. https://doi.org/10.1016/j.epsl.2018.03.008 |
Li, L. G., 2011. Technical Progress and Developing Orientation in Natural Gas Exploration and Development in the Sichuan Basin. Natural Gas Industry, 31(1): 1–6, 107. https://doi.org/10.3787/j.issn.1000-0976.2011.01.001(in Chinese with English Abstract) |
Li, P. P., Hao, F., Guo, X. S., et al., 2016. Origin and Distribution of Hydrogen Sulfide in the Yuanba Gas Field, Sichuan Basin, Southwest China. Marine and Petroleum Geology, 75: 220–239. https://doi.org/10.1016/j.marpetgeo.2016.04.021 |
Li, Y. J., Xia, J. W., Li, M. L., et al., 2020. Spatial-Temporal Modelling of Oil and Gas Accumulation in Changxing Formation in the Shunan Area, Sichuan Basin. Petroleum Geology & Experiment, 42(6): 877–885. https://doi.org/10.11781/sysydz202006877 (in Chinese with English Abstract) |
Lin, X. M., Wei, Q. C., Zheng, J., et al., 2020. Analysis on Natural Gas Source of Permian Changxing Formation in Fuling Area, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(1): 28–34. https://doi.org/10.3969/j.issn.1671-9727.2020.01.03 (in Chinese with English Abstract) |
Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2013. TSR versus Non-TSR Processes and Their Impact on Gas Geochemistry and Carbon Stable Isotopes in Carboniferous, Permian and Lower Triassic Marine Carbonate Gas Reservoirs in the Eastern Sichuan Basin, China. Geochimica et Cosmochimica Acta, 100: 96–115. https://doi.org/10.1016/j.gca.2012.09.039 |
Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2014. Thermochemical Sulphate Reduction (TSR) versus Maturation and Their Effects on Hydrogen Stable Isotopes of Very Dry Alkane Gases. Geochimica et Cosmochimica Acta, 137: 208–220. https://doi.org/10.1016/j.gca.2014.03.013 |
Liu, R., Hao, F., Engelder, T., et al., 2019. Stress Memory Extracted from Shale in the Vicinity of a Fault Zone: Implications for Shale-Gas Retention. Marine and Petroleum Geology, 102: 340–349. https://doi.org/10.1016/j.marpetgeo.2018.12.047 |
Liu, R., Hao, F., Engelder, T., et al., 2020. Influence of Tectonic Exhumation on Porosity of Wufeng-Longmaxi Shale in the Fuling Gas Field of the Eastern Sichuan Basin, China. AAPG Bulletin, 104(4): 939–959. https://doi.org/10.1306/08161918071 |
Liu, R., Jiang, D. C., Zheng, J., et al., 2021a. Stress Heterogeneity in the Changning Shale-Gas Field, Southern Sichuan Basin: Implications for a Hydraulic Fracturing Strategy. Marine and Petroleum Geology, 132: 105218. https://doi.org/10.1016/j.marpetgeo.2021.105218 |
Liu, R., Wen, T., Amalberti, J., et al., 2021b. The Dichotomy in Noble Gas Signatures Linked to Tectonic Deformation in Wufeng-Longmaxi Shale, Sichuan Basin. Chemical Geology, 581: 120412. https://doi.org/10.1016/j.chemgeo.2021.120412 |
Liu, S. G., Yang, Y., Deng, B., et al., 2021. Tectonic Evolution of the Sichuan Basin, Southwest China. Earth-Science Reviews, 213: 103470. https://doi.org/10.1016/j.earscirev.2020.103470 |
Liu, W. H., Xu, Y. C., 1993. Geochemistry on Mantle-Derived Volatiles in Natural Gases from Eastern China Oil/Gas Provinces (Ⅰ)—Helium, Argon and Hydrocarbons in Mantle Volatiles. Cinese Science Bulletin, 38(9): 818–821 (in Chinese with English Abstract) |
Loegering, M., Kaminski, P., Hutchinson, I., et al., 2022. H2S Origin, Generation, and Distribution in the Etame Marin Permit, Offshore Gabon: A Three-Dimensional Migration Modeling Prediction Using Field Data. AAPG Bulletin, 106(1): 145–178. https://doi.org/10.1306/07202119094 |
Ma, Y. S., Guo, X. S., Guo, T. L., et al., 2007. The Puguang Gas Field: New Giant Discovery in the Mature Sichuan Basin, Southwest China. AAPG Bulletin, 91(5): 627–643. https://doi.org/10.1306/11030606062 |
Mankiewicz, P. J., Pottorf, R. J., Kozar, M. G., et al., 2009. Gas Geochemistry of the Mobile Bay Jurassic Norphlet Formation: Thermal Controls and Implications for Reservoir Connectivity. AAPG Bulletin, 93(10): 1319–1346. https://doi.org/10.1306/05220908171 |
Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042 |
Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. GSA Bulletin, 117(3-4): 396–410. https://doi.org/10.1130/B25407.1 |
Milkov, A. V., 2021. New Approaches to Distinguish Shale-Sourced and Coal-Sourced Gases in Petroleum Systems. Organic Geochemistry, 158: 104271. https://doi.org/10.1016/j.orggeochem.2021.104271 |
Milkov, A. V., Etiope, G., 2018. Revised Genetic Diagrams for Natural Gases Based on a Global Dataset of > 20 000 Samples. Organic Geochemistry, 125: 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 |
Milkov, A. V., Faiz, M., Etiope, G., 2020. Geochemistry of Shale Gases from around the World: Composition, Origins, Isotope Reversals and Rollovers, and Implications for the Exploration of Shale Plays. Organic Geochemistry, 143: 103997. https://doi.org/10.1016/j.orggeochem.2020.103997 |
Ozima, M., Podosek, F. A., 2001. Noble Gas Geochemistry. Cambridge University Press, Cambridge. 300 |
Prinzhofer, A. A., Huc, A. Y., 1995. Genetic and Post-Genetic Molecular and Isotopic Fractionations in Natural Gases. Chemical Geology, 126(3/4): 281–290. https://doi.org/10.1016/0009-2541(95)00123-9 |
Prinzhofer, A., Rocha Mello, M., Takaki, T., 2000. Geochemical Characterization of Natural Gas: A Physical Multivariable Approach and Its Applications in Maturity and Migration Estimates. AAPG Bulletin, 84(8): 1152–1172. https://doi.org/10.1306/A9673C66-1738-11D7-8645000102C1865D |
Qin, S. F., Yang, Y., Lyu, F., et al., 2016. The Gas Origin in Changxing-Feixianguan Gas Pools of Longgang Gasfield in Sichuan Basin. Natural Gas Geoscience, 27(1): 41–49 (in Chinese with English Abstract) |
Qiu, Z., Dou, L. R., Wu, J. F., et al., 2024. Lithofacies Palaeogeographic Evolution of the Middle Permian Sequence Stratigraphy and Its Implications for Shale Gas Exploration in the Northern Sichuan and Western Hubei Provinces. Earth Science, 49(2): 712–748 (in Chinese with English Abstract) |
Richardson, N. J., Densmore, A. L., Seward, D., et al., 2008. Extraordinary Denudation in the Sichuan Basin: Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 113(B4): B04409. https://doi.org/10.1029/2006JB004739 |
Rooney, M. A., Claypool, G. E., Chung, H. M., 1995. Modeling Thermogenic Gas Generation Using Carbon Isotope Ratios of Natural Gas Hydrocarbons. Chemical Geology, 126(3/4): 219–232. https://doi.org/10.1016/0009-2541(95)00119-0 |
Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649–661. https://doi.org/10.1016/0016-7037(80)90155-6 |
Tang, D., Zhang, Q., Wan, M. X., et al., 2011. Source Rock and Resource Potential of Upper Permian in Sichuan Basin. Natural Gas Exploration and Development, 34(3): 1–3, 7, 85. https://doi.org/10.3969/j.issn.1673-3177.2011.03.001 (in Chinese with English Abstract) |
Tilley, B., McLellan, S., Hiebert, S., et al., 2011. Gas Isotope Reversals in Fractured Gas Reservoirs of the Western Canadian Foothills: Mature Shale Gases in Disguise. AAPG Bulletin, 95(8): 1399–1422. https://doi.org/10.1306/01031110103 |
Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194–204. https://doi.org/10.1016/j.chemgeo.2012.08.002 |
Torghabeh, A. K., Kalantariasl, A., Kamali, M., et al., 2021. Reservoir Gas Isotope Fingerprinting and Mechanism for Increased H2S: An Example from Middle East Shanul Gas Field. Journal of Petroleum Science and Engineering, 199: 108325. https://doi.org/10.1016/j.petrol.2020.108325 |
Wang, X. F., Liu, W. H., Shi, B. G., et al., 2015. Hydrogen Isotope Characteristics of Thermogenic Methane in Chinese Sedimentary Basins. Organic Geochemistry, 83: 178–189. https://doi.org/10.1016/j.orggeochem.2015.03.010 |
Whiticar, M. J., 1994. Correlation of Natural Gases with Their Sources. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System—From Source to Trap. American Association of Petroleum Geologists. 261–284. |
Worden, R. H., Smalley, P. C., Oxtoby, N. H., 1995. Gas Souring by Thermochemical Sulfate Reduction at 140 ℃. AAPG Bulletin, 79(6): 854–863. https://doi.org/10.1306/8D2B1BCE-171E-11D7-8645000102C1865D |
Worden, R. H., Smalley, P. C., Oxtoby, N. H., 1996. The Effects of Thermochemical Sulfate Reduction Upon Formation Water Salinity and Oxygen Isotopes in Carbonate Gas Reservoirs. Geochimica et Cosmochimica Acta, 60(20): 3925–3931. https://doi.org/10.1016/0016-7037(96)00216-5 |
Wu, W., Cheng, P., Liu, S. Y., et al., 2023. Gas-in-Place (GIP) Variation and Main Controlling Factors for the Deep Wufeng-Longmaxi Shales in the Luzhou Area of the Southern Sichuan Basin, China. Journal of Earth Science, 34(4): 1002–1011. https://doi.org/10.1007/s12583-021-1593-x |
Wu, X. Q., Liu, Q. Y., Liu, G. X., et al., 2019. Genetic Types of Natural Gas and Gas-Source Correlation in Different Strata of the Yuanba Gas Field, Sichuan Basin, SW China. Journal of Asian Earth Sciences, 181: 103906. https://doi.org/10.1016/j.jseaes.2019.103906 |
Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3/4): 239–254. https://doi.org/10.1016/S0040-1951(02)00646-7 |
Yang, J. J., Wang, Y. G., Wang, L. S., et al., 2002. The Origin of Natural Gases and Geochemistry Characters of Changxing Reef and Feixianguan Oolitic Beach Gas Reservoirs in Eastern Sichuan Basin. Acta Sedimentologica Sinica, 20(2): 349–352 (in Chinese with English Abstract) |
Yang, M. H., Zuo, Y. H., Duan, X. G., et al., 2023. Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation. Earth Science, 48(2): 582–595 (in Chinese with English Abstract) |
Yi, Y. H., Zhu, H. T., Lu, Y. Q., et al., 2024. Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan. Earth Science, 49(12): 4546–4563 (in Chinese with English Abstract) |
Zhang, D. W., Liu, W. H., Zheng, J. J., et al., 2005. Helium and Argon Isotopic Compositions of Natural Gases in the Tazhong Area, Tarim Basin. Petroleum Exploration and Development, 32(6): 38–41 (in Chinese with English Abstract) |
Zhang, J. Y., Liu, W. H., Teng, G. E., et al., 2010. Characteristics of Natural Gas in P2ch–T1f Layers in Jiannan Gas Field and Gas Source Correlation. Natural Gas Geoscience, 21(6): 1004–1013 (in Chinese with English Abstract) |
Zhu, G. Z., 2005. Relationship between Palaeoenvironment and the Distribution of H2S in Feixianguan Formation, NE Sichuan Province. Petroleum Exploration and Development, 32(4): 65–69 (in Chinese with English Abstract) |
Zhu, Y. G., Zhang, S. C., Liang, Y. B., et al., 2006. The Characteristics of Natural Gas in the Sichuan Basin and Its Sources. Earth Science Frontiers, 13(2): 234–248 (in Chinese with English Abstract) |