Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Soheila Saki, Amir Ali Tabbakh Shabani, Mingguo Zhai, Yuruo Shi, Mahmoudn Sadeghian, Xiyan Zhu, Morteza Delavari Koshan, David R. Lentzv. Zircon SHRIMP U-Pb Ages, Geochemical, and Sr-Nd Isotopic Constraints on the Petrogenesis of the Middle Eocene Calc-Alkaline Andesitic Rocks: Implications for Continental Arc Magmatism and Slab Break-off in NE Iran. Journal of Earth Science, 2024, 35(6): 1832-1848. doi: 10.1007/s12583-023-1839-x
Citation: Soheila Saki, Amir Ali Tabbakh Shabani, Mingguo Zhai, Yuruo Shi, Mahmoudn Sadeghian, Xiyan Zhu, Morteza Delavari Koshan, David R. Lentzv. Zircon SHRIMP U-Pb Ages, Geochemical, and Sr-Nd Isotopic Constraints on the Petrogenesis of the Middle Eocene Calc-Alkaline Andesitic Rocks: Implications for Continental Arc Magmatism and Slab Break-off in NE Iran. Journal of Earth Science, 2024, 35(6): 1832-1848. doi: 10.1007/s12583-023-1839-x

Zircon SHRIMP U-Pb Ages, Geochemical, and Sr-Nd Isotopic Constraints on the Petrogenesis of the Middle Eocene Calc-Alkaline Andesitic Rocks: Implications for Continental Arc Magmatism and Slab Break-off in NE Iran

doi: 10.1007/s12583-023-1839-x
More Information
  • Corresponding author: Amir Ali Tabbakh Shabani, aatshabani@khu.ac.ir
  • Received Date: 15 Nov 2022
  • Accepted Date: 13 Apr 2023
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • The Torbat-e-Heydariyeh andesitic rocks (THA) are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean (NE Iran). Columnar jointing is the most significant feature of these rocks and they also show porphyritic, vitrophyric, and vitroglomeroporphyric textures. Plagioclase, clinopyroxene, ±orthopyroxene are the major mineral phases. The SHRIMP U-Pb zircon dating yielded an age of 41.00 ± 0.69 Ma for the rocks (Middle Eocene, Bartonian). Geochemically, they are of medium- to high-K calc-alkaline affinity. Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements (LILE), such as Cs and Rb, and also depleted in high field strength elements (HFSE) and heavy rare earth elements (HREE), with prominent negative anomalies of Ti, Nb, Y, and Yb, suggesting a tectonic setting of an active continental margin. The chondrite-normalized REE diagram displays enrichment of light rare earth elements (LREE; LaN/YbN = 5.37–6.66) and small negative Eu anomalies (Eu/Eu* of 0.69–0.78). Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab, and/or subducting sediment. The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus LaN/SmN diagrams. The εNd(t) and (87Sr/86Sr)i values vary between -0.1 to +0.2 and 0.704 89 to 0.705 01, respectively, and are compatible with parental melts from subduction of the lithospheric mantle. We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle, which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting. The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.

     

  • Electronic Supplementary Materials: Supplementary materials (ESI I Analytical Method and Procedure; ESM II Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1839-x.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Agard, P., Omrani, J., Jolivet, L., et al., 2011. Zagros Orogeny: A Subduction-Dominated Process. Geological Magazine, 148(5/6): 692–725. https://doi.org/10.1017/s001675681100046x
    Alaminia, Z., Karimpour, M. H., Homam, S. M., et al., 2013. The Magmatic Record in the Arghash Region (Northeast Iran) and Tectonic Implications. International Journal of Earth Sciences, 102(6): 1603–1625. https://doi.org/10.1007/s00531-013-0897-1
    Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7
    Alizadeh, E., Ghadami, G., Esmaeily, D., et al., 2018. Origin of 1.8 Ga Zircons in Post Eocene Mafic Dikes in the Roshtkhar Area, NE Iran. International Geology Review, 60(15): 1855–1882. https://doi.org/10.1080/00206814.2017.1396259
    Almasi, A., Karimpour, M. H., Arjmandzadeh, R., et al., 2019. Zircon U-Pb Geochronology, Geochemistry, Sr-Nd Isotopic Compositions, and Tectonomagmatic Implications of Nay (NE Iran) Postcollisional Intrusives in the Sabzevar Zone. Turkish Journal of Earth Sciences, 28(3): 372–397. https://doi.org/10.3906/yer-1805-36
    Aslan, Z., Erdem, D., Temizel, İ., et al., 2017. SHRIMP U-Pb Zircon Ages and Whole-Rock Geochemistry for the Şapçı Volcanic Rocks, Biga Peninsula, Northwest Turkey: Implications for Pre-Eruption Crystal-lization Conditions and Source Characteristics. International Geology Review, 59(14): 1764–1785. https://doi.org/10.1080/00206814.2017. 1295282 doi: 10.1080/00206814.2017.1295282
    Balaghi Einalou, M., Sadeghian, M., Zhai, M. G., et al., 2014. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Schists, Gneisses and Granites in Delbar Metamorphic-Igneous Complex, SE of Shahrood (Iran): Implications for Neoproterozoic Geodynamic Evolutions of Central Iran. Journal of Asian Earth Sciences, 92: 92–124. https://doi.org/10.1016/j.jseaes.2014.06.011
    Baluchi, S., 2019. Petrology, Geochemistry and Isotope Geology of Jandagh-Arusan Metamorphic-Igneous Complex: [Dissertation]. Shahrood University of Technology, Shahrood, Iran (in Persian)
    Berberian, M., King, G. C. P., 1981. Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
    Dai, F. Q., Zhao, Z. F., Dai, L. Q., et al., 2016. Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas: Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China. Journal of Petrology, 57(6): 1109–1134. https://doi.org/10.1093/petrology/egw034
    Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Defor-mation of Collisional Orogens. Earth and Planetary Science Letters, 129(1–4): 85–102. https://doi.org/10.1016/0012-821x(94)00237-s
    Deer, W. A., Howie, R. A., Zussman, J., et al., 1992. An Introduction to the Rock-Forming Minerals. Longman, London
    Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0
    Edwards, C., Menzies, M., Thirlwall, M., 1991. Evidence from Muriah, Indonesia, for the Interplay of Supra-Subduction Zone and Intraplate Processes in the Genesis of Potassic Alkaline Magmas. Journal of Petrology, 32(3): 555–592. https://doi.org/10.1093/petrology/32.3.555
    Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019. https://doi.org/10.1029/97jb00788
    Gardideh, S., Ghasemi, H., Sadeghian, M., 2018. U-Pb Age Dating on Zircon Crystals, Sr-Nd Isotope Ratios and Geochemistry of Neogene Adakitic Domes of Quchan-Esfarayen Magmatic Belt, NE Iran. Iranian Journal of Crystallography and Mineralogy, 26(2): 455–478. https://doi.org/10.29252/ijcm.26.2.455 (in Persian with English Abstract)
    Ghasemi, A., Talbot, C. J., 2006. A New Tectonic Scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6): 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
    Ghasemi, H., Rezaei-Kahkhaei, M., 2015. Petrochemistry and Tectonic Setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) Rocks, NE Iran. Mineralogy and Petrology, 109(2): 235–252. https://doi.org/10.1007/s00710-014-0353-3
    Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin. 390
    Gill, R., 2010. Igneous Rocks and Processes a Practical Guide. Department of Earth Sciences. Royal Holloway University of London, London. 472
    Gudnason, J., Holm, P. M., Søager, N., et al., 2012. Geochronology of the Late Pliocene to Recent Volcanic Activity in the Payenia Back-Arc Volcanic Province, Mendoza Argentina. Journal of South American Earth Sciences, 37: 191–201. https://doi.org/10.1016/j.jsames.2012. 02.003 doi: 10.1016/j.jsames.2012.02.003
    Hanson, G. N., 1980. Rare Earth Elements in Petrogenetic Studies of Igneous Systems. Annual Review of Earth and Planetary Sciences, 8: 371–406. https://doi.org/10.1146/annurev.ea.08.050180.002103
    He, H. Y., Wang, T. T., Zhang, Y. Q., 2021. Early Cretaceous Magmatism of the Southern Qiangtang Terrane and Its Tectonic Significance. IOP Conference Series: Earth and Environmental Science, 734(1): 012031. https://doi.org/10.1088/1755-1315/734/1/012031
    Hetényi, G., Taisne, B., Garel, F., et al., 2012. Scales of Columnar Jointing in Igneous Rocks: Field Measurements and Controlling Factors. Bulletin of Volcanology, 74(2): 457–482. https://doi.org/10.1007/s00445-011-0534-4
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Jamshidi, K., Ghasemi, H., Miao, L. C., et al., 2018. Adakite Magmatism within the Sabzevar Ophiolite Zone, NE Iran: U-Pb Geochronology and Sr-Nd Isotopic Evidences. Geopersia, 8(1): 111–131. https://doi.org/10.22059/geope.2017.242944.648352
    Jamshidi, K., Ghasemi, H., Miao, L., 2015. U-Pb Age Dating and Determination of Source Region Composition of Post Ophiolite Adakitic Domes of Sabzevar. Iranian Journal of Petrology, 6: 121–139 (in Persian with English Abstract)
    Jamshidi, K., Ghasemi, H., Sadeghian, M., 2014. Petrology and Geochemistry of the Sabzevar Post-Ophiolitic High Silica Adakitic Rocks. Petrology, 5: 51–68 (in Persian with English Abstract)
    Kazemi, Z., Ghasemi, H., Tilhac, R., et al., 2019. Late Cretaceous Subduction-Related Magmatism on the Southern Edge of Sabzevar Basin, NE Iran. Journal of the Geological Society, 176(3): 530–552. https://doi.org/10.1144/jgs2018-076
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 749–806. https://doi.org/10.1016/b978-0-08-095975-7.00323-5
    Kholghi Khasraghi, M. H., 1996. 1 : 100 000 Geological Map of the Torbat-e-Heydarieh. Geological Survey of Iran Publications (in Persian)
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
    Liu, K., Wilde, S. A., Zhang, J. J., et al., 2020. Zircon U-Pb Dating and Whole-Rock Geochemistry of Volcanic Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Mudanjiang and Paleo-Pacific Oceans from the Jurassic to Cretaceous. Geological Journal, 55(3): 1866–1889. https://doi.org/10.1002/gj.3623
    Ludwig, K. R., 2001. SQUID 1.02: A User's Manual. Berkeley Geochronology Center, Special Publication, 2: 1–19
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 70
    Malekzadeh Shafaroudi, A., Karimpour, M. H., Golmohammadi, A., 2013. Zircon U-Pb Geochronology and Petrology of Intrusive Rocks in the C-North and Baghak Districts, Sangan Iron Mine, NE Iran. Journal of Asian Earth Sciences, 64: 256–271. https://doi.org/10.1016/j.jseaes. 2012.12.028 doi: 10.1016/j.jseaes.2012.12.028
    Mohammadi Khalfeh Louie, F., 2015. Geochemistry and Petrogenesis of Plio-Quaternary Rocks in Fadiyeh Region: [Dissertation]. Damghan University, Damghan, Iran (in Persian)
    Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. Mineralogical Magazine, 52(367): 535–550. https://doi.org/10.1180/minmag.1988.052.367.15
    Pang, K. N., Chung, S. L., Zarrinkoub, M. H., et al., 2013. Eocene–Oligocene Post-Collisional Magmatism in the Lut-Sistan Region, Eastern Iran: Magma Genesis and Tectonic Implications. Lithos, 180/181: 234–251. https://doi.org/10.1016/j.lithos.2013.05.009
    Pearce, J. A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margins. In: Hawksworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Nantwich, Shiva. 230–249
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4): 1073–1109. https://doi.org/10.1093/petrology/36.4.1073
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. In: Putirka, K. D., Tepley, F., eds., Minerals, Inclusions and Volcanic Processes. Reviews in Mineral and Geochemistry, 69: 61–120. https://doi.org/10.1515/9781501508486-004
    Ribeiro, J. M., Stern, R. J., Kelley, K. A., et al., 2013. Nature and Distribution of Slab-Derived Fluids and Mantle Sources beneath the Southeast Mariana Forearc Rift. Geochemistry, Geophysics, Geosystems, 14(10): 4585–4607. https://doi.org/10.1002/ggge.20244
    Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Harlow
    Rossetti, F., Nasrabady, M., Theye, T., et al., 2014. Adakite Differentiation and Emplacement in a Subduction Channel: The Late Paleocene Sabzevar Magmatism (NE Iran). Geological Society of America Bulletin, 126(3/4): 317–343. https://doi.org/10.1130/b30913.1
    Rossetti, F., Nasrabady, M., Vignaroli, G., et al., 2010. Early Cretaceous Migmatitic Mafic Granulites from the Sabzevar Range (NE Iran): Implications for the Closure of the Mesozoic Peri-Tethyan Oceans in Central Iran. Terra Nova, 22(1): 26–34. https://doi.org/10.1111/j.1365-3121.2009.00912.x
    Sepidbar, F., Karsli, O., Palin, R. M., et al., 2021. Cenozoic Temporal Variation of Crustal Thickness in the Urumieh-Dokhtar and Alborz Magmatic Belts, Iran. Lithos, 400/401: 106401. https://doi.org/10.1016/j.lithos.2021.106401
    Shabanian, E., Acocella, V., Gioncada, A., et al., 2012. Structural Control on Volcanism in Intraplate Post Collisional Settings: Late Cenozoic to Quaternary Examples of Iran and Eastern Turkey. Tectonics, 31(3): TC3013. https://doi.org/10.1029/2011tc003042
    Shafaii Moghadam, H., Li, Q. L., Li, X. H., et al., 2020. Neotethyan Subduction Ignited the Iran Arc and Backarc Differently. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018460. https://doi.org/10.1029/2019jb018460
    Shafaii Moghadam, H., Li, X. H., Ling, X. X., et al., 2015. Eocene Kashmar Granitoids (NE Iran): Petrogenetic Constraints from U-Pb Zircon Geochronology and Isotope Geochemistry. Lithos, 216/217: 118–135. https://doi.org/10.1016/j.lithos.2014.12.012
    Shafaii Moghadam, H., Li, X. H., Stern, R. J., et al., 2016. Age and Nature of 560–520 Ma Calc-Alkaline Granitoids of Biarjmand, Northeast Iran: Insights into Cadomian Arc Magmatism in Northern Gondwana. International Geology Review, 58(12): 1492–1509. https://doi.org/10.1080/00206814.2016.1166461
    Shahbazi, H., Sepahi, A. A., Shakouri, M. A., 2021. Zircon U-Pb Ages and Petrogenesis of the Middle Eocene Aliabad Daman Pluton, Northeast Iran: Implications for Magmatic Activity along the Doruneh Fault Zone. Arabian Journal of Geosciences, 14(3): 212. https://doi.org/10.1007/s12517-020-06437-w
    Shojaei, H., 2008. Petrology and Geochemistry of Pliocene Volcanic Rocks in Bayg Region, Northwest of Torbat Heydariyeh: [Dissertation]. Shahrood University of Technology, Shahrood, Iran (in Persian)
    Sivell, W. J., Waterhouse, J. B., 1988. Petrogenesis of Gympie Group Volcanics: Evidence for Remnants of an Early Permian Volcanic Arc in Eastern Australia. Lithos, 21(2): 81–95. https://doi.org/10.1016/0024-4937(88)90012-6
    Soltani, A., 2000. Geochemistry and Geochronology of I-Type Granitoid Rocks in the Northeastern Central Iran Plate. University of Wollongong, Australia. 319
    Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001rg000108
    Stern, R. J., Shafaii Moghadam, H., Pirouz, M., et al., 2021. The Geodynamic Evolution of Iran. Annual Review of Earth and Planetary Sciences, 49: 9–36. https://doi.org/10.1146/annurev-earth-071620-052109
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tadayon, M., Rossetti, F., Zattin, M., et al., 2019. The Long-Term Evolution of the Doruneh Fault Region (Central Iran): A Key to Understanding the Spatio-Temporal Tectonic Evolution in the Hinterland of the Zagros Convergence Zone. Geological Journal, 54(3): 1454–1479. https://doi.org/10.1002/gj.3241
    Taylor, S. R., 1964. Chondritic Earth Model. Nature, 202(4929): 281–282. https://doi.org/10.1038/202281a0
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95rg00262
    Vaezipour, M. J., Alavi Tehrani, N., 1992. 1 : 250 000 Geographical Map of Torbat-e-Heydarieh. Geological Survey of Iran Publication (in Persian)
    Verdel, C., Wernicke, B. P., Hassanzadeh, J., et al., 2011. A Paleogene Extensional Arc Flare-up in Iran. Tectonics, 30(3): TC3008. https://doi.org/10.1029/2010tc002809
    White, W. M., Dupré, B., Vidal, P., 1985. Isotope and Trace Element Geochemistry of Sediments from the Barbados Ridge-Demerara Plain Region, Atlantic Ocean. Geochimica et Cosmochimica Acta, 49(9): 1875–1886. https://doi.org/10.1016/0016-7037(85)90082-1
    Williams, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M. A., Shanks, W. C. III, Ridley, W. L., eds., Application of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. Society of Economic Geologists. 1–35. https://doi.org/10.5382/rev.07.01
    Wilson, M., Wilson, B., 1989. Igneous Petrogenesis a Global Tectonic Approach. Unwin Hyman, London. 466
    Winter, J. D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentice-Hall Inc., New Jersey. 697
    Yan, H. Y., Long, X. P., Li, J., et al., 2019. Arc Andesitic Rocks Derived from Partial Melts of Mélange Diapir in Subduction Zones: Evidence from Whole-Rock Geochemistry and Sr-Nd-Mo Isotopes of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Journal of Geophysical Research: Solid Earth, 124(1): 456–475. https://doi.org/10.1029/2018jb016545
    Younesi Mellah, A., 2016. Investigation of Isotopic Geochemistry and Mineral Chemistry of Young Volcanics in Fadiyeh Region (Northwest of Torbat-e-Heydariyeh): [Dissertation]. Damghan University, Damghan, Iran (in Persian)
    Yousefi, F., 2017. Petrogenesis and Isotope Geology of Post Eocene Intrusive Rocks of Torud—Ahmad Abad Magmatic Belt (SE of Shahrood): [Dissertation]. Shahrood University of Technology, Shahrood, Iran (in Persian)
    Yousefi, F., Mills, R. D., Sadeghian, M., et al., 2021a. Geochemical and Nd-Sr Isotopic Compositions of Hypabyssal Adakites in the Torud-Ahmad Abad Magmatic Belt, Northern Central Iran Zone: Analysis of Petrogenesis and Geodynamic Implications. Journal of Earth Science, 32(6): 1428–1444. https://doi.org/10.1007/s12583-020-1378-7
    Yousefi, F., Sadeghian, M., Lentz, D. R., et al., 2021b. Petrology, Petrogenesis, and Geochronology Review of the Cenozoic Adakitic Rocks of Northeast Iran: Implications for Evolution of the Northern Branch of Neo-Tethys. Geological Journal, 56(1): 298–315. https://doi.org/10.1002/gj.3943
    Yousefi, F., Sadeghian, M., Wanhainen, C., et al., 2017. Geochemistry, Petrogenesis and Tectonic Setting of Middle Eocene Hypabyssal Rocks of the Torud-Ahmad Abad Magmatic Belt: An Implication for Evolution of the Northern Branch of Neo-Tethys Ocean in Iran. Journal of Geochemical Exploration, 178: 1–15. https://doi.org/10.1016/j.gexplo.2017.03.008
    Zhang, L. Y., Li, S. C., Zhao, Q. Y., 2019. A Review of Research on Adakites. International Geology Review, 63(6): 1–18. https://doi.org/10.1080/00206814.2019.1702592
    Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256/257: 269–281. https://doi.org/10.1016/j.lithos.2016.04.006
    Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003
    Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views(61) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return