Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Guoliang Du, Yongshuang Zhang, Zhihua Yang, Ying Yuan, Dongyan Sun, Ling Zou. Rapid Assessment of the Co-seismic Landslide Hazard Triggered by the 2022 Ms 6.8 Luding Earthquake. Journal of Earth Science, 2025, 36(6): 2627-2641. doi: 10.1007/s12583-023-1846-y
Citation: Guoliang Du, Yongshuang Zhang, Zhihua Yang, Ying Yuan, Dongyan Sun, Ling Zou. Rapid Assessment of the Co-seismic Landslide Hazard Triggered by the 2022 Ms 6.8 Luding Earthquake. Journal of Earth Science, 2025, 36(6): 2627-2641. doi: 10.1007/s12583-023-1846-y

Rapid Assessment of the Co-seismic Landslide Hazard Triggered by the 2022 Ms 6.8 Luding Earthquake

doi: 10.1007/s12583-023-1846-y
More Information
  • Corresponding author: Yongshuang Zhang, zhys100@hotmail.com; Zhihua Yang, yangzh99@163.com
  • Received Date: 20 Feb 2023
  • Accepted Date: 27 Jun 2023
  • Issue Publish Date: 30 Dec 2025
  • Co-seismic landslides are a critical secondary hazard of earthquakes in mountainous regions and are driven by a combination of seismic, geological, and geomorphic properties of both the earthquake source and the affected hill slopes. On Sept. 5, 2022, an Ms 6.8 earthquake hit Luding County, Sichuan Province, China, inducing numerous co-seismic landslides. The epicenter was situated in the Xianshuihe fault zone, one of the most active intracontinental faults in the world. Although the Newmark displacement model is a widely-used and straightforward approach for assessing the hazard of co-seismic landslides, it does not account for other factors such as slope aspect, elevation, slope curvature, distance to rivers, and seismic intensity. To address this limitation, we integrated the Newmark displacement model with the analytical hierarchy process, developing a more comprehensive model for assessing the co-seismic landslide hazard in the Luding Earthquake-hit area, where the terrain and clouds prevent the timely collection of co-seismic landslide data. The proposed model considers the physical mechanisms and seismic, geological, and geomorphic factors underlying landslides, making it a more comprehensive tool for conducting rapid co-seismic landslide hazard assessment. The proposed model is expected to facilitate the reduction of co- seismic landslide disasters and the development of preventative measures in steep and complex mountainous regions.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Chang, S. B., Zhang, S. M., Xiang, B., 2007. Engineering Geology Manual of China (Fourth Edition). China Architecture and Building Press, Beijing (in Chinese)
    Das, S., Sarkar, S., Kanungo, D. P., 2022. GIS-Based Landslide Susceptibility Zonation Mapping Using the Analytic Hierarchy Process (AHP) Method in Parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(4): 234. https://doi.org/10.1007/s10661-022-09851-7
    Dreyfus, D., Rathje, E. M., Jibson, R. W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41–54. https://doi.org/10.1016/j.enggeo.2013.05.015
    Du, G. L., Zhang, Y. S., Yang, Z. H., et al., 2017. Estimation of Seismic Landslide Hazard in the Eastern Himalayan Syntaxis Region of Tibetan Plateau. Acta Geologica Sinica—English Edition, 91(2): 658–668. https://doi.org/10.1111/1755-6724.13124
    Du, G. L., Zhang, Y. S., Yang, Z. H., et al., 2019. Landslide Susceptibility Mapping in the Region of Eastern Himalayan Syntaxis, Tibetan Plateau, China: A Comparison between Analytical Hierarchy Process Information Value and Logistic Regression-Information Value Methods. Bulletin of Engineering Geology and the Environment, 78(6): 4201–4215. https://doi.org/10.1007/s10064-018-1393-4
    Du, G. L., Zhang, Y. S., Zou, L., et al., 2022. Co-Seismic Landslide Hazard Assessment of the 2017 Ms 6.9 Milin Earthquake, Tibet, China, Combining the Logistic Regression-Information Value and Newmark Displacement Models. Bulletin of Engineering Geology and the Environment, 81(10): 446. https://doi.org/10.1007/s10064-022-02901-x
    Fan, W., Wei, X. S., Cao, Y. B., et al., 2017. Landslide Susceptibility Assessment Using the Certainty Factor and Analytic Hierarchy Process. Journal of Mountain Science, 14(5): 906–925. https://doi.org/10.1007/s11629-016-4068-2
    Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of Ms 6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504–1516. https://doi.org/10.13544/j.cnki.jeg.2022-0665 (in Chinese with English Abstract)
    Gallen, S. F., Clark, M. K., Godt, J. W., et al., 2017. Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal. Tectonophysics, 714: 173–187. https://doi.org/10.1016/j.tecto.2016.10.031
    García-Rodríguez, M. J., Malpica, J. A., 2010. Assessment of Earthquake-Triggered Landslide Susceptibility in El Salvador Based on an Artificial Neural Network Model. Natural Hazards and Earth System Sciences, 10(6): 1307–1315. https://doi.org/10.5194/nhess-10-1307-2010
    Gupta, K., Satyam, N., 2022. Co-Seismic Landslide Hazard Assessment of Uttarakhand State (India) Based on the Modified Newmark Model. Journal of Asian Earth Sciences: X, 8(1): 100120. https://doi.org/10.1016/j.jaesx.2022.100120
    Huang, Y. D., Xie, C. C., Li, T., et al., 2023. An Open-Accessed Inventory of Landslides Triggered by the Ms 6.8 Luding Earthquake, China on September 5, 2022. Earthquake Research Advances, 3(1): 100181. https://doi.org/10.1016/j.eqrea.2022.100181
    Hsieh, S. Y., Lee, C. T., 2011. Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(1/2): 34–42. https://doi.org/10.1016/j.enggeo.2010.12.006
    Jia, Z. J., Peng, J. B., Lu, Q. Z., et al., 2023. A Comprehensive Method for the Risk Assessment of Ground Fissures: Case Study of the Eastern Weihe Basin. Journal of Earth Science, 34(6): 1892–1907. https://doi.org/10.1007/s12583-022-1799-6
    Jibson, R. W., Harp, E. L., Michael, J. A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3/4): 271–289. https://doi.org/10.1016/s0013-7952(00)00039-9
    Jibson, R. W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2/3/4): 209–218. https://doi.org/10.1016/j.enggeo.2007.01.013
    Kayastha, P., Dhital, M. R., De Smedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for Landslide Susceptibility mapping: A Case Study from the Tinau Watershed, West Nepal. Computers & Geosciences, 52: 398–408. https://doi.org/10.1016/j.cageo.2012.11.003
    Keefer, D. K., 2002. Investigating Landslides Caused by Earthquakes—A Historical Review. Surveys in Geophysics, 23(6): 473–510. https://doi.org/10.1023/a:1021274710840
    Kumar, A., Sharma, R. K., Bansal, V. K., 2018. Landslide Hazard Zonation Using Analytical Hierarchy Process along National Highway-3 in Mid Himalayas of Himachal Pradesh, India. Environmental Earth Sciences, 77(20): 719. https://doi.org/10.1007/s12665-018-7896-2
    Lee, S., Pradhan, B., 2007. Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslides, 4(1): 33–41. https://doi.org/10.1007/s10346-006-0047-y
    Lee, S. T., Yu, T. T., Peng, W. F., et al., 2010. Incorporating the Effects of Topographic Amplification in the Analysis of Earthquake-Induced Landslide Hazards Using Logistic Regression. Natural Hazards and Earth System Sciences, 10(12): 2475–2488. https://doi.org/10.5194/nhess-10-2475-2010
    Li, C., Su, L. J., 2021. Influence of Critical Acceleration Model on Assessments of Potential Earthquake-Induced Landslide Hazards in Shimian County, Sichuan Province, China. Landslides, 18(5): 1659–1674. https://doi.org/10.1007/s10346-020-01578-1
    Li, Y. W., Xu, L. R., Zhang, L. L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5): 1960–1976. https://doi.org/10.3799/dqkx.2022.224 (In Chinese with English Abstract)
    Mankelow, J. M., Murphy, W., 1998. Using GIS in the Probabilistic Assessment of Earthquake Triggered Landslide Hazards. Journal of Earthquake Engineering, 2(4): 593–623. https://doi.org/10.1080/13632469809350336
    Ma, S. Y., Xu, C., 2019. Assessment of Co-Seismic Landslide Hazard Using the Newmark Model and Statistical Analyses: A Case Study of the 2013 Lushan, China, Mw 6.6 Earthquake. Natural Hazards, 96(1): 389–412. https://doi.org/10.1007/s11069-018-3548-9
    Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark's Method and Stochastic Ground Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323. https://doi.org/10.1016/s0267-7261(98)00048-7
    Ministry of Housing and Urban-Rural Development of the People's Republic of China, Ministry of Water Resources of the People's Republic of China, 2014. Standard for Engineering Classification of Rock Masses, GB 50218–2014. China Planning Press, Beijing. 1–84 (in Chinese)
    Mondal, S., Maiti, R., 2013. Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) Model in Landslide Susceptibility Mapping of Shiv-Khola Watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4): 200–212. https://doi.org/10.1007/s13753-013-0021-y
    Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2): 139–160. https://doi.org/10.1680/geot.1965.15.2.139
    Rajabi, A. M., Khodaparast, M., Mohammadi, M., 2022. Earthquake-Induced Landslide Prediction Using Back-Propagation Type Artificial Neural Network: Case Study in Northern Iran. Natural Hazards, 110(1): 679–694. https://doi.org/10.1007/s11069-021-04963-8
    Razifard, M., Shoaei, G., Zare, M., 2019. Application of Fuzzy Logic in the Preparation of Hazard Maps of Landslides Triggered by the Twin Ahar-Varzeghan Earthquakes (2012). Bulletin of Engineering Geology and the Environment, 78(1): 223–245. https://doi.org/10.1007/s10064-018-1235-4
    Robinson, T. R., Rosser, N. J., Densmore, A. L., et al., 2017. Rapid Post-Earthquake Modelling of Coseismic Landslide Intensity and Distribution for Emergency Response Decision Support. Natural Hazards and Earth System Sciences, 17(9): 1521–1540. https://doi.org/10.5194/nhess-17-1521-2017
    Rodríguez-Peces, M. J., García-Mayordomo, J., Azañón, J. M., et al., 2014. GIS Application for Regional Assessment of Seismically Induced Slope Failures in the Sierra Nevada Range, South Spain, along the Padul Fault. Environmental Earth Sciences, 72(7): 2423–2435. https://doi.org/10.1007/s12665-014-3151-7
    Saaty, T. L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York
    Shinoda, M., Miyata, Y., Kurokawa, U., et al., 2019. Regional Landslide Susceptibility Following the 2016 Kumamoto Earthquake Using Back-Calculated Geomaterial Strength Parameters. Landslides, 16(8): 1497–1516. https://doi.org/10.1007/s10346-019-01171-1
    Singh, K., Kumar, V., 2018. Hazard Assessment of Landslide Disaster Using Information Value Method and Analytical Hierarchy Process in Highly Tectonic Chamba Region in Bosom of Himalaya. Journal of Mountain Science, 15(4): 808–824. https://doi.org/10.1007/s11629-017-4634-2
    Wang, T., Wu, S. R., Shi, J. S., et al., 2013. Application and Validation of Seismic Landslide Displacement Analysis Based on Newmark Model: A Case Study in Wenchuan Earthquake. Acta Geologica Sinica (English Edition), 87(Suppl. 1): 393–397
    Wang, T., Wu, S. R., Shi, J. S., et al., 2018. Assessment of the Effects of Historical Strong Earthquakes on Large-Scale Landslide Groupings in the Wei River Midstream. Engineering Geology, 235: 11–19. https://doi.org/10.1016/j.enggeo.2018.01.020
    Wang, Y., Song, C. Z., Lin, Q. G., et al., 2016. Occurrence Probability Assessment of Earthquake-Triggered Landslides with Newmark Displacement Values and Logistic Regression: The Wenchuan Earthquake, China. Geomorphology, 258: 108–119. https://doi.org/10.1016/j.geomorph.2016.01.004
    Wieczorek, G. F., Wilson, R. C., Harp, E. L., 1985. Map Showing Slope Stability during Earthquakes in San Mateo County, California. USGS Res. on Mineral Resources. 110
    Xu, C., Shen, L. L., Wang, G. L., 2016. Soft Computing in Assessment of Earthquake-Triggered Landslide Susceptibility. Environmental Earth Sciences, 75(9): 767. https://doi.org/10.1007/s12665-016-5576-7
    Xu, C., Xu, X. W., Lee, Y. H., et al., 2012. The 2010 Yushu Earthquake Triggered Landslide Hazard Mapping Using GIS and Weight of Evidence Modeling. Environmental Earth Sciences, 66(6): 1603–1616. https://doi.org/10.1007/s12665-012-1624-0
    Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6
    Yiğit, A., 2020. Prediction of Amount of Earthquake-Induced Slope Displacement by Using Newmark Method. Engineering Geology, 264: 105385. https://doi.org/10.1016/j.enggeo.2019.105385
    Yin, L., Zhou, B., Ren, Z., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425–436. https://doi.org/10.3799/dqkx.2023.138 (In Chinese with English Abstract)
    Zang, M. D., Qi, S. W., Zou, Y., et al., 2020. An Improved Method of Newmark Analysis for Mapping Hazards of Coseismic Landslides. Natural Hazards and Earth System Sciences, 20(3): 713–726. https://doi.org/10.5194/nhess-20-713-2020
    Zhang, Y. S., Yang, Z. H., Guo, C. B., et al., 2017. Predicting Landslide Scenes under Potential Earthquake Scenarios in the Xianshuihe Fault Zone, Southwest China. Journal of Mountain Science, 14(7): 1262–1278. https://doi.org/10.1007/s11629-017-4363-6
    Zhao, B., Hu, K. H., Yang, Z. J., et al., 2022. Geomorphic and Tectonic Controls of Landslides Induced by the 2022 Luding Earthquake. Journal of Mountain Science, 19(12): 3323–3345. https://doi.org/10.1007/s11629-022-7732-8
    Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221–234. https://doi.org/10.1007/s12583-022-1806-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views(17) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return