Citation: | Pan Tang, Juxing Tang, Bin Lin, Aorigele Zhou, Faqiao Li, Xiang Fang, Jing Qi, Mengdie Wang, Yan Xiong, Yuke Xie, Zhengkun Yang, Xiaofeng Yao. Genesis of the South Pit Deposit in Jiama District, Tibet: Constraints from Geology, Geochronology and Amphibole Geochemistry. Journal of Earth Science, 2025, 36(4): 1479-1492. doi: 10.1007/s12583-023-1855-x |
The giant Jiama deposit is a post-collisional porphyry Cu-polymetallic system located in the Gangdese metallogenic belt of Tibet. It consists of three deposits: The Main deposit, the Zegulangbei deposit, and the South Pit deposit according to exploration and research. The South Pit deposit is a high-grade Cu-Pb-Zn deposit, but its genesis is unclear. To investigate its genesis, a detailed study was conducted on the deposit geology, geochronology and amphibole geochemistry. The results indicate that the weighted average 206Pb/238U age of the zircons from the granite porphyry in the South Pit is 15.38 ± 0.45 Ma, and the molybdenite from the mineralized skarn yield a Re-Os isochron age of 15.23 ± 0.22 Ma, in line with the age of the Main deposit (15.7–14.3 Ma). The amphiboles in the granite porphyry of the South Pit, magnesiohornblende and actinolite, are high in Mg and Ca and low in K. They crystallized at temperatures of 705–749 ℃, pressures of 0.44–0.67 kbar, oxygen fugacity of -14.31– -13.69 (NNO), and depths of 1.7–2.5 km. Mapping of structure and alteration indicates that the South Pit skarn developed due to the metasomatism of marble of hornfels or carbonate in fold hinge dilation and an interlayer detachment zone by magmatic hydrothermal fluids. According to the age of magmatism and geological features, the South Pit deposit and the Main deposit have originated from the same Miocene magmatism, but the South Pit deposit was affected by the gliding nappe tectonic system. The amphibole geochemistry indicates that the ore-related magma of the South Pit has a high oxygen fugacity and is rich in water.
Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17–22. https://doi.org/10.1038/307017a0 |
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., et al., 2002. Apatite as an Indicator Mineral for Mineral Exploration: Trace-Element Compositions and Their Relationship to Host Rock Type. Journal of Geochemical Exploration, 76(1): 45–69. https://doi.org/10.1016/S0375-6742(02)00204-2 |
Chen, G. L., Zhang, Z. K., Sun, M., et al., 2021. High Fractionated I-Type Granite Porphyry and Mineralogical Characteristics of Its Biotite in the Nankeng Oreblock of Jiama Deposit, Tibet, China. Bulletin of Mineralogy, 40(2): 411–424. https://doi.org/10.19658/j.issn.1007-2802.2021.40.001 (in Chinese with English Abstract) |
Chen, S. R., Wang, Q., Zhu, D. C., et al., 2021. Reheating and Magma Mixing Recorded by Zircon and Quartz from High-Silica Rhyolite in the Coqen Region, Southern Tibet. American Mineralogist, 106(1): 112–122. https://doi.org/10.2138/am-2020-7426 |
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024. https://doi.org/10.1130/g19796.1 |
Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001 |
Cline, J. S., 1995. Genesis of Porphyry Copper Deposits: The Behavior of Water, Chloride, and Copper in Crystallizing Melts. Arizona Geological Society Digest, 20: 69–82 |
Du, A. D., Zhao, D. M., Wang, S. X., et al., 2001. Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation. Rock and Mineral Analysis, 20(4): 247–252 (in Chinese with English Abstract) |
Du, A. D., Wu, S. Q., Sun, D. Z., et al., 2004. Preparation and Certification of re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41–52. https://doi.org/10.1111/j.1751-908X.2004.tb01042.x |
Eugster, H. P., Wones, D. R., 1962. Stability Relations of the Ferruginous Biotite, Annite. Journal of Petrology, 3(1): 82–125. https://doi.org/10.1093/petrology/3.1.82 |
Gao, S. B., Zheng, Y. Y., Jiang, J. S., et al., 2019. Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 30(2): 296–308. https://doi.org/10.1007/s12583-018-0984-0 |
Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621–638. https://doi.org/10.3799/dqkx.2024.017 (in Chinese with English Abstract) |
Hou, Z. Q., Ma, H. W., Zaw, K., et al., 2003. The Himalayan Yulong Porphyry Copper Belt: Product of Large-Scale Strike-Slip Faulting in Eastern Tibet. Economic Geology, 98(1): 125–145. https://doi.org/10.2113/gsecongeo.98.1.125 |
Hou, Z. Q., Cook, N. J., Zaw, K., 2009. Metallogenesis of the Tibetan Collisional Orogen. Ore Geology Reviews, 36(1/2/3): 1. https://doi.org/10.1016/j.oregeorev.2009.07.002 |
Hou, Z. Q., Yang, Z. S., Xu, W. Y., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅰ. Mineralization in Main-Collisional Transformation Setting. Mineral Deposits, 25: 337–358 (in Chinese with English Abstract) |
Jiang, C. Y., An, S. Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocsk and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1–9. https://doi.org/10.19719/j.cnki.1001-6872.1984.03.001 (in Chinese) |
Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608–622. https://doi.org/10.1016/j.jseaes.2013.08.009 |
Lang, X. H., Deng, Y. L., Wang, X. H., et al., 2020. Reduced Fluids in Porphyry Copper-Gold Systems Reflect the Occurrence of the Wall-Rock Thermogenic Process: An Example from the No. 1 Deposit in the Xiongcun District, Tibet, China. Ore Geology Reviews, 118: 103212. https://doi.org/10.1016/j.oregeorev.2019.103212 |
Lang, X. H., Wang, X. H., Deng, Y. L., et al., 2019. Hydrothermal Evolution and Ore Precipitation of the No. 2 Porphyry Cu-Au Deposit in the Xiongcun District, Tibet: Evidence from Cathodoluminescence, Fluid Inclusions, and Isotopes. Ore Geology Reviews, 114: 103141. https://doi.org/10.1016/j.oregeorev.2019.103141 |
Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6): 999–1015. (in Chinese with English Abstract) |
Leake, B. E., 1978. Nomenclature of Amphiboles. Mineralogical Magazine, 42(324): 533–563. https://doi.org/10.1180/minmag.1978.042.324.21 |
Lin, B., Tang, J. X., Chen, Y. C., et al., 2017a. Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet: Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes. Resource Geology, 67(1): 1–21. https://doi.org/10.1111/rge.12113 |
Lin, B., Chen, Y. C., Tang, J. X., et al., 2017b. 40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au) Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China: Implication for Generation of Super-Large Deposit. Acta Geologica Sinica: English Edition, 91(2): 602–616. https://doi.org/10.1111/1755-6724.13120 |
Lin, B., Tang, J. X., Zhang, Z., et al., 2012. Preliminary Study of Fissure System in Jiama Porphyry Deposit of Tibet and Its Significance. Mineral Deposits, 31(3): 579–589. https://doi.org/10.13722/j.cnki.jrme.2020.0446 (in Chinese with English Abstract) |
Lin, B., Tang, J. X., Tang, P., et al., 2024. Multipulsed Magmatism and Duration of the Hydrothermal System of the Giant Jiama Porphyry Cu System, Tibet, China. Economic Geology, 119(1): 201–217. https://doi.org/10.5382/econgeo.5054 |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4 |
Mason, R., 2016. South Pit, Structure and Skarn Development Jiama Copper-Polymetallic Deposit, Metrorkongka County, Tibet Autonomous Region the People's Republic of China: [Research Report]. Tibet Huatailong Ming Co., Ltd., Lhasa |
Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb R. J., et al., eds., Society of Economic Geologists, 100th Anniversary Volume: 299–336. |
Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1/2): 225–242. https://doi.org/10.1016/j.lithos.2006.10.005 |
Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49–67. https://doi.org/10.1016/j.chemgeo.2008.02.003 |
Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491–559. https://doi.org/10.1515/9781501508936-019 |
Qi, J., Tang J. X., Lin, B., et al., 2021. Zircon U-Pb Age and Geochemistry of the Granite Porphyry in Northern Zegulang of Jiama Deposit, Tibet. Acta Geologica Sinica, 95(3): 822–836 (in Chinese with English Abstract) |
Qin, Z. P., Wang, X. W., Duo, J., et al., 2011. LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance. Mineral Deposits, 30(2): 339–348. https://doi.org/10.16111/j.0258-7106.2011.02.017 (in Chinese with English Abstract) |
Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515–1533. https://doi.org/10.2113/gsecongeo.98.8.1515 |
Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247–250. https://doi.org/10.1130/G25451A.1 |
Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233: 27–45. https://doi.org/10.1016/j.lithos.2014.12.011 |
Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7 |
Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826–842. https://doi.org/10.2113/gsecongeo.69.6.826 |
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3 |
Sillitoe, R. H., 1972. A Plate Tectonic Model for the Origin of Porphyry Copper Deposits. Economic Geology, 67(2): 184–197. https://doi.org/10.2113/gsecongeo.67.2.184 |
Sun, F., Zhang, J. B., Wang, R., et al., 2022. Magmatic Evolution and Formation of the Giant Jiama Porphyry-Skarn Deposit in Southern Tibet. Ore Geology Reviews, 145: 104889. https://doi.org/10.1016/j.oregeorev.2022.104889 |
Tang, J. X., Dorji, Liu, H. F., et al., 2012. Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt. Acta Geoscientica Sinica, 33(4): 393–410. https://doi.org/10.3975/cagsb.2012.04.02 (in Chinese with English Abstract) |
Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571–613 (in Chinese with English Abstract) |
Tang, P., Tang, J. X., Lin, B., et al., 2019. Mineral Chemistry of Magmatic and Hydrothermal Biotites from the Bangpu Porphyry Mo(Cu) Deposit, Tibet. Ore Geology Reviews, 115: 103122. https://doi.org/10.1016/j.oregeorev.2019.103122 |
Tang, P., Tang, J. X., Wang, Y., et al., 2020. Zircon U-Pb Geochronology, Geochemistry, S-Pb-Hf Isotopic Compositions, and Mineral Chemistry of the Xin'gaguo Skarn Pb-Zn Deposit, Tibet, China. Geological Journal, 55(6): 4790–4809. https://doi.org/10.1002/gj.3713 |
Tang, P., Tang, J. X., Wang, Y., et al., 2021. Genesis of the Lakang'e Porphyry Mo(Cu) Deposit, Tibet: Constraints from Geochemistry, Geochronology, Sr-Nd-Pb-Hf Isotopes, Zircon and Apatite. Lithos, 380/381: 105834. https://doi.org/10.1016/j.lithos.2020.105834 |
Tang, P., Tang, J. X., Lin, B., et al., 2023. Geology, Geochemistry, and Geochronology of the Zegulangbei Deposit in the Jiama Ore District: Implications for a Polycentric, Complex Porphyry Mineralization System Model. Ore Geology Reviews, 159: 105558. https://doi.org/10.1016/j.oregeorev.2023.105558 |
Wang, L. Q., Tang, J. X., Yang, Y., et al., 2018. Zircon U-Pb Geochronology, Geochemistry, and S-Pb Isotopic Compositions of the Lietinggang Iron Polymetallic Deposit, Tibet, China. Ore Geology Reviews, 98: 62–79. https://doi.org/10.1016/j.oregeorev.2018.05.017 |
Xie, F. W., Tang, J. X., Chen, Y. C., et al., 2018. Apatite and Zircon Geochemistry of Jurassic Porphyries in the Xiongcun District, Southern Gangdese Porphyry Copper Belt: Implications for Petrogenesis and Mineralization. Ore Geology Reviews, 96: 98–114. https://doi.org/10.1016/j.oregeorev.2018.04.013 |
Yang, Z. M., Hou, Z. Q., White, N. C., et al., 2009. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 36(1/2/3): 133–159. https://doi.org/10.1016/j.oregeorev.2009.03.003 |
Yang, Z. M., Cooke, D. R., 2019. Chapter 5 Porphyry Copper Deposits in China. In: Chang, Z. S., Goldfarb, R. J., eds., Special Publications of the Society of Economic Geologists: Mineral Deposits of China. 133–187. |
Yang, Y., Tang, J. X., Wu, C. N., et al., 2020. Typomorphic Mineralogical Characteristics of Pyrrhotite in Jiama Cu Polymetallic Deposit, Tibet, and Its Geological Significance. Mineral Deposits, 39(2): 337–350. https://doi.org/10.16111/j.0258-7106.2020.02.008 (in Chinese with English Abstract) |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Ying, L. J., Tang, J. X., Wang, D. H., et al., 2009. Re-Os Isotopic Dating of Molybdenite in Skarn from the Jiama Copper Polymetallic Deposit of Tibet and Its Metallogenic Significance. Rock and Mineral Analysis, 28(3): 265–268. https://doi.org/10.3969/j.issn.0254-5357.2009.03.014 (in Chinese with English Abstract) |
Ying, L. J., Wang, D. H., Tang, J. X., et al., 2010. Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance. Acta Geologica Sinica, 84(8): 1165–1174. https://doi.org/10.19762/j.cnki.dizhixuebao.2010.08.009 (in Chinese with English Abstract) |
Ying, L. J., Tang, J. X., Wang, D. H., et al., 2011. Zircon SHRIMP U-Pb Dating of Porphyry Vein from the Jiama Copper Polymetallic Deposit in Tibet and Its Significance. Acta Petrologica Sinica, 27(7): 2095–2102 (in Chinese with English Abstract) |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170–189. https://doi.org/10.1016/j.gr.2012.08.024 |
Zhao, X. Y., Yang, Z. S., Zheng, Y. C., et al., 2015. Geology and Genesis of the Post-Collisional Porphyry-Skarn Deposit at Bangpu, Tibet. Ore Geology Reviews, 70: 486–509. https://doi.org/10.1016/j.oregeorev.2014.09.014 |
Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151–169. https://doi.org/10.1016/j.oregeorev.2015.11.024 |
Zheng, W. B., Chen, Y. C., Song, X., et al., 2010. Element Distribution of Jiama Copper-Polymetallic Deposit in Tibet and Its Geological Significance. Mineral Deposits, 29(5): 775–784. https://doi.org/10.16111/j.0258-7106.2010.05.005 (in Chinese with English Abstract) |
Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(6): 1909–1940 (in Chinese with English Abstract) |
Zhong, K. H., Li, L., Zhou, H. W., et al., 2012. Features of Jiama-Kajunguo Thrust-Gliding Nappe Tectonic System in Tibet. Acta Geoscientica Sinica, 33: 411–423. https://doi.org/10.3975/cagsb.2012.04.03 (in Chinese with English Abstract) |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005 |
Zou, B., Lin, B., Zheng, W. B., et al., 2019. The Characteristics of Alteration and Mineralization and Geochronology of Ore-Bearing Porphyry in South Pit of Jiama Copper-Polymetallic Deposit, Tibet. Acta Petrologica Sinica, 35(3): 953–967. https://doi.org/10.18654/1000-0569/2019.03.20 (in Chinese with English Abstract) |