Citation: | Lingtong Xu, Wenchao Yu, Song Jin, Guo Hua, Pengfei Ma, Yuansheng Du, Cailong Zhang. Transition from the Sedimentary Manganese Deposit to Supergene Manganese Ore in Eastern Hebei, North China: Evidences from Mineralogy and Geochemistry. Journal of Earth Science, 2025, 36(1): 11-28. doi: 10.1007/s12583-023-1856-9 |
Original sedimentary manganese (Mn) deposits and supergene Mn ores are important Mn resources in China. However, the geochemical information from Chinese supergene Mn ores is scarce, and the relationship between sedimentary Mn deposits and supergene Mn ores is ambiguous. In this study, we collected the original Mn-bearing dolomitic sandstones (ZK20-3 drillcore) and supergene Mn ores (Longmen Section) from eastern Hebei, North China for systematic petrographic, mineralogical and geochemical analyses. Our new data help us to figure out the transformation from original Mn-bearing deposits to supergene ores. The main minerals of original Mn-bearing dolomitic sandstones are quartz and feldspar, with minor muscovite, dolomite, rhodochrosite, ankerite, and kutnohorite. Supergene Mn-oxide ores only emerged in the middle part of the Longmen (LM) Section, and mainly contain quartz, pyrolusite, cryptomelane, todorokite and occasional dolomite. The possible transformation sequence of Mn minerals is: kutnohorite/rhodochrosite → pyrolusite (I) → cryptomelane (todorokite) → todorokite (cryptomelane) → pyrolusite (II). For Mn-oxide ores, Fe, Na and Si are enriched but Al, Ca, Mg and K are depleted with the enrichment of Mn. For original and supergene ores, the total rare earth element + ytterbium (∑REY) contents range from 105.68 × 10-6 to 250.56 × 10-6 and from 18.08 × 10-6 to 176.60 × 10-6, respectively. Original Mn ores have similar slightly LREE-enriched patterns, but the purer Mn-oxide ore shows a HREE-enriched pattern. In the middle part of the LM Section, positive Ce anomalies in Mn-oxide ores indicate the precipitation of Ce-bearing minerals. It implies the existence of geochemical barriers, which changed pH and Eh values due to the long-time influence of groundwater.
Bau, M., Koschinsky, A., Dulski, P., et al., 1996. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochimica et Cosmochimica Acta, 60(10): 1709–1725. https://doi.org/10.1016/0016-7037(96)00063-4 |
Bau, M., Schmidt, K., Koschinsky, A., et al., 2014. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology, 381: 1–9. https://doi.org/10.1016/j.chemgeo.2014.05.004 |
Carmichael, S. K., Doctor, D. H., Wilson, C. G., et al., 2017. New Insight into the Origin of Manganese Oxide Ore Deposits in the Appalachian Valley and Ridge of Northeastern Tennessee and Northern Virginia, USA. Geological Society of America Bulletin, 129(9/10): 1158–1180. https://doi.org/10.1130/b31682.1 |
Chi, R. A., Wang, D. Z., 1993. Study on Adsorption Properties and Rare Earth Enrichment of Clay Minerals by Quantum Chemistry. Journal of The Chinese Rare Earth Society, 3: 199–203 (in Chinese with English Abstract) |
Dash, N., Nayak, B., Mohapatra, B. K., 2020. The Supergene Mn-Minerals in Gangpur Group, Eastern India and Their Genesis. Journal of the Geological Society of India, 96(4): 337–348. https://doi.org/10.1007/s12594-020-1562-5 |
Deng, X. D., Li, J. W., 2017. Mineralogy and 40Ar/39Ar Geochronology of Supergene Mn-Oxides in the Dongxiangqiao Deposit, Hunan Province, South China. Mineralogy and Petrology, 111(2): 253–265. https://doi.org/10.1007/s00710-016-0466-y |
Deng, Y., Wang, H. J., Lyu, D., et al., 2021. Evolution of the 1.8–1.6 Ga Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 365: 106383. https://doi.org/10.1016/j.precamres.2021.106383 |
Dong, L. L., Yang, Z. M., Song, M. C., 2023. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 34(4): 1150–1164. https://doi.org/10.1007/s12583-022-1737-7 |
Evdokimov, A. N., Pharoe, B. L., 2021. Features of the Mineral and Chemical Composition of the Northwest Manganese Ore Occurrence in the Highveld Region, South Africa. Journal of Mining Institute, 248: 195–208. https://doi.org/10.31897/pmi.2021.2.4 |
Fan, D. L., Dasgupta, S., Bolton, B. R., et al., 1992. Mineralogy and Geochemistry of the Proterozoic Wafangzi Ferromanganese Deposit, China. Economic Geology, 87(5): 1430–1440. https://doi.org/10.2113/gsecongeo.87.5.1430 |
Fan, D. L., Ye, J., Li, J. J., 1999. Geology, Mineralogy, and Geochemistry of the Middle Proterozoic Wafangzi Ferromanganese Deposit, Liaoning Province, China. Ore Geology Reviews, 15(1/2/3): 31–53. https://doi.org/10.1016/S0169-1368(99)00013-X |
Fang, H., Tang, D. J., Shi, X. Y., et al., 2020. Manganese-Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (Ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966 |
Fu, Y., Xu, Z. G., Pei, H. X., et al., 2014. Study on Metallogenic Regularity of Manganese Ore Deposits in China. Acta Geologica Sinica, 88(12): 2192–2207. https://doi.org/10.19762/j.cnki.dizhixuebao.2014.12.004 (in Chinese with English Abstract) |
Glasby, G. P., Schulz, H. D., 1999. Eh Ph Diagrams for Mn, Fe, Co, Ni, Cu and as under Seawater Conditions: Application of Two New Types of Eh Ph Diagrams to the Study of Specific Problems in Marine Geochemistry. Aquatic Geochemistry, 5(3): 227–248. https://doi.org/10.1023/A: 1009663322718 doi: 10.1023/A:1009663322718 |
Guo, H., Du, Y. S., Kah, L. C., et al., 2013. Isotopic Composition of Organic and Inorganic Carbon from the Mesoproterozoic Jixian Group, North China: Implications for Biological and Oceanic Evolution. Precambrian Research, 224: 169–183. https://doi.org/10.1016/j.precamres.2012.09.023 |
Hao, R. X., Guan, G. Y., 1995. The Mineral Assemblages and Oxidizing Mechanism of Oxidized Manganese Deposits of Xialei-Hurun Manganese Mineralized Zone. China's Manganese Industry, 1: 3–7. https://doi.org/10.14101/j.cnki.issn.1002-4336.1995.01.001 (in Chinese with English Abstract) |
Hao, R. X., Peng, S. L., 1998. Element Geochemical Characteristics of Hurun Manganese Ore Deposit. Geology-Geochemistry, 26(4): 33–37 (in Chinese with English Abstract) |
Hu, G. P., Wei, G. J., Ma, J. L., et al., 2017. Mobilization and re-Distribution of Major and Trace Elements during the Process of Moderate Weathering of Carbonates in Northern Guangdong, South China. Geochimica, 46(1): 33–45. https://doi.org/10.3969/j.issn.0379-1726.2017.01.004 (in Chinese with English Abstract) |
Huang, C. M., Wang, C. S., 2002. Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation. Chinese Rare Earths, 23(5): 46–49. https://doi.org/10.3969/j.issn.1004-0277.2002.05.013 (in Chinese with English Abstract) |
Huang, X. G., 2006. Tectonic Evolution of the Meso-Neoproterozoic Sedimentary Basin in Yanshan Range. Geological Survey and Research, 29(4): 263–270 (in Chinese with English Abstract) |
Hummer, D. R., Golden, J. J., Hystad, G., et al., 2022. Evidence for the Oxidation of Earth's Crust from the Evolution of Manganese Minerals. Nature Communications, 13(1): 960. https://doi.org/10.1038/s41467-022-28589-x[PubMed] |
Jia, C. Z., He, D. F., Lu, J. M., 2004. Episodes and Geodynamic Setting of Himalayan Movement in China. Oil & amp; amp; Gas Geology, 25(2): 121–125 (in Chinese with English Abstract) |
Jin, G. Y., Liu, D. S., 2002. Mid-Holocene Climate Change in North China, and the Effect on Cultural Development. Chinese Science Bulletin, 47(5): 408–413. https://doi.org/10.1360/02tb9095 |
Jin, S., Guo, H., Yu, W. C., et al., 2020. Evolution of Yanliao Aulacogen in the Paleo-Mesoproterozoic and Its Control on Manganese Deposit. Journal of Palaeogeography (Chinese Edition), 22(5): 841–854. https://doi.org/10.7605/gdlxb.2020.05.058 (in Chinese with English Abstract) |
Jin, S., Ma, P. F., Guo, H., et al., 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277–289. https://doi.org/10.1007/s11430-014-4830-7 (in Chinese with English Abstract) |
Johnson, J. E., Webb, S. M., Ma, C., et al., 2016. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record. Geochimica et Cosmochimica Acta, 173: 210–231. https://doi.org/10.1016/j.gca.2015.10.027 |
Koppi, A. J., Edis, R., Field, D. J., et al., 1996. Rare Earth Element Trends and Cerium-Uranium-Manganese Associations in Weathered Rock from Koongarra, Northern Territory, Australia. Geochimica et Cosmochimica Acta, 60(10): 1695–1707. https://doi.org/10.1016/0016-7037(96)00047-6 |
Kürschner, W. M., Kvacek, Z., Dilcher, D. L., 2008. The Impact of Miocene Atmospheric Carbon Dioxide Fluctuations on Climate and the Evolution of Terrestrial Ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105(2): 449–453. https://doi.org/10.1073/pnas.0708588105[PubMed] |
Lang, Y. S., Li, J. W., Deng, X. D., et al., 2007. Mineralogy and Geochemistry of Supergene Manganese Ore Deposits in Qinzhou-Fangcheng Area, Southern Guangxi, with Implications for Ore Genesis. Mineral Deposits, 26(5): 527–540. https://doi.org/10.3969/j.issn.0258-7106.2007.05.005 (in Chinese with English Abstract) |
Lawrence, M. G., Greig, A., Collerson, K. D., et al., 2006. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39–72. https://doi.org/10.1007/s10498-005-4471-8 |
Li, C. H., Liu, Z. H., Xu, Z. Y., et al., 2022. Mesoproterozoic (∼1.3 Ga) S–Type Granites in Shangdu Area, Inner Mongolia of the North China Craton (NCC): Implications for Breakup of the NCC from the Columbia Supercontinent. Precambrian Research, 369: 106515. https://doi.org/10.1016/j.precamres.2021.106515 |
Li, J. F., Ferguson, D. K., Yang, J., et al., 2009. Early Miocene Vegetation and Climate in Weichang District, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1/2): 47–63. https://doi.org/10.1016/j.palaeo.2009.05.017 |
Li, J. W., Vasconcelos, P., Duzgoren-Aydin, N., et al., 2007. Neogene Weathering and Supergene Manganese Enrichment in Subtropical South China: An 40Ar/39Ar Approach and Paleoclimatic Significance. Earth and Planetary Science Letters, 256(3/4): 389–402. https://doi.org/10.1016/j.epsl.2007.01.021 |
Li, M. Y. H., Zhou, M. F., Williams-Jones, A. E., 2020. Controls on the Dynamics of Rare Earth Elements during Subtropical Hillslope Processes and Formation of Regolith-Hosted Deposits. Economic Geology, 115(5): 1097–1118. https://doi.org/10.5382/econgeo.4727 |
Li, S. H., Yuan, H. Q., Ding, A. J., et al., 2015. Geochemical Characteristics and Metallogenesis of the Ronghua Manganese Deposit in Western Guangxi, China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1213–1222 (in Chinese with English Abstract) |
Li, S. Z., Liu, X., Suo, Y. H., et al., 2009. Triassic Folding and Thrusting in the Eastern Block of the North China Craton and the Dabie-Sulu Orogen and Its Geodynamics. Acta Petrologica Sinica, 25(9): 2031–2049. https://doi.org/10.1016/j.jseaes.2004.06.004 (in Chinese with English Abstract) |
Lv, P., Yu, S. Y., Peng, Y. B., et al., 2021. Paleo-Mesoproterozoic Magmatism in the Tarim Craton, NW China: Implications for Episodic Extension to Initial Breakup of the Columbia Supercontinent. Precambrian Research, 363: 106337. https://doi.org/10.1016/j.precamres.2021.106337 |
Lyu, D., Deng, Y., Wang, X. M., et al., 2022. New Chronological and Paleontological Evidence for Paleoproterozoic Eukaryote Distribution and Stratigraphic Correlation between the Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 371: 106577. https://doi.org/10.1016/j.precamres.2022.106577 |
Ma, H. O., Wang, L. F., Guo, S., et al., 2018. Environmental Geochemical Characteristics and Genesis of the Weathering Crust of Carbonate Rocks in Eastern Yunnan Province. Geological Journal of China Universities, 24(2): 222–232. https://doi.org/10.16108/j.issn1006-7493.2017085 (in Chinese with English Abstract) |
MacLean, W. H., Barrett, T. J., 1993. Lithogeochemical Techniques Using Immobile Elements. Journal of Geochemical Exploration, 48(2): 109–133. https://doi.org/10.1016/0375-6742(93)90002-4 |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109. https://doi.org/10.1029/2000GC000109 |
Mei, M. X., 2007. Sedimentary Features and Their Implication for the Depositional Succession of Non-Stromatolitic Carbonates, Mesoproterozoic Gaoyuzhuang Formation in Yanshan Area of North China. Geoscience, 21(1): 45–56. https://doi.org/10.3969/j.issn.1000-8527.2007.01.005 (in Chinese with English Abstract) |
Mei, M. X., 2010. Stratigraphic Impact of the Indo-China Movement and Its Related Evolution of Sedimentary-Basin Pattern of the Late Triassic in the Middle-Upper Yangtze Region, South China. Earth Science Frontiers, 17(4): 99–111 (in Chinese with English Abstract) |
Ostwald, J., 1992. Genesis and Paragenesis of the Tetravalent Manganese Oxides of the Australian Continent. Economic Geology, 87(5): 1237–1252. https://doi.org/10.2113/gsecongeo.87.5.1237 |
Pack, A., Gutzmer, J., Beukes, N. J., et al., 2000. Supergene Ferromanganese Wad Deposits Derived from Permian Karoo Strata along the Late Cretaceous-Mid-Tertiary African Land Surface, Ryedale, South Africa. Economic Geology, 95(1): 203–220. https://doi.org/10.2113/gsecongeo.95.1.203 |
Pan, J. G., Qu, Y. Q., Ma, R., et al., 2013. Sedimentary and Tectonic Evolution of the Meso-Neoproterozoic Strata in the Northern Margin of the North China Block. Geological Journal of China Universities, 19(1): 109–122. https://doi.org/10.16108/j.issn1006-7493.2013.01.017 (in Chinese with English Abstract) |
Plavshudin, V. G., Shvets, V. V., 1970. Effect of Supergene Processes on Composition and Structure of Manganese Carbonate Ores in the Nikopol' Deposit. International Geology Review, 12(4): 406–411. https://doi.org/10.1080/00206817009475248 |
Pracejus, B., Bolton, B. R., 1992. Geochemistry of Supergene Manganese Oxide Deposits, Groote Eylandt, Australia. Economic Geology, 87(5): 1310–1335. https://doi.org/10.2113/gsecongeo.87.5.1310 |
Pracejus, B., Bolton, B. R., Frakes, L. A., 1988. Nature and Development of Supergene Manganese Deposits, Groote Eylandt, Northern Territory, Australia. Ore Geology Reviews, 4(1/2): 71–98. https://doi.org/10.1016/0169-1368(88)90005-4 |
Pracejus, B., Bolton, B. R., Frakes, L. A., et al., 1990. Rare-Earth Element Geochemistry of Supergene Manganese Deposits from Groote Eylandt, Northern Territory, Australia. Ore Geology Reviews, 5(4): 293–314. https://doi.org/10.1016/0169-1368(90)90035-L |
Quan, C., Liu, Y. S., Utescher, T., 2012. Paleogene Temperature Gradient, Seasonal Variation and Climate Evolution of Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 313: 150–161. https://doi.org/10.1016/j.palaeo.2011.10.016 |
Roy, S., 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273–305. https://doi.org/10.1016/j.earscirev.2006.03.004 |
Sasmaz, A., Zagnitko, V. M., Sasmaz, B., 2020. Major, Trace and Rare Earth Element (REE) Geochemistry of the Oligocene Stratiform Manganese Oxide-Hydroxide Deposits in the Nikopol, Ukraine. Ore Geology Reviews, 126: 103772. https://doi.org/10.1016/j.oregeorev.2020.103772 |
Sensarma, S., Saha, A., Hazra, A., 2021. Implications of REE Incorporation and Host Sediment Influence on the Origin and Growth Processes of Ferromanganese Nodules from Central Indian Ocean Basin. Geoscience Frontiers, 12(3): 101123. https://doi.org/10.1016/j.gsf.2020.11.017 |
Tang, D. J., Shi, X. Y., Wang, X. Q., et al., 2016. Extremely Low Oxygen Concentration in Mid-Proterozoic Shallow Seawaters. Precambrian Research, 276: 145–157. https://doi.org/10.1016/j.precamres.2016.02.005 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Black-Well Scientific, London. 1–312 |
Tian, H., Zhang, J., Li, H. K., et al., 2015. Zircon LA-MC-ICPMS U-Pb Dating of Tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and Its Geological Significance. Acta Geoscientica Sinica, 36(5): 647–658 (in Chinese with English Abstract) |
Tian, N., Wang, Y. D., Zhang, W., et al., 2014. A New Structurally Preserved Fern Rhizome of Osmundaceae (Filicales) Ashicaulis Wangii Sp. Nov. from the Jurassic of Western Liaoning and Its Significances for Palaeobiogeography and Evolution. Science China Earth Sciences, 57(4): 671–681. https://doi.org/10.1007/s11430-013-4767-2 |
Vafeas, N. A., Viljoen, K. S., Blignaut, L. C., 2018. Characterization of Fibrous Cryptomelane from the Todorokite-Cryptomelane Mineral Assemblage at the Sebilo Mine, Northern Cape Province, South Africa. The Canadian Mineralogist, 56(1): 65–76. https://doi.org/10.3749/canmin.1700043 |
Varentsov, I. M., 1996. Manganese Ores of Supergene Zone: Geochemistry of Formation. Springer Science & Business Media, B. V., Netherlands. https://doi.org/10.1007/978-94-017-2174-5 |
Varentsov, I. M., Kuleshov, V. N., 2019. Rare Elements—Markers of the Formation Setting of Manganese and Iron Ore Deposits in the Kalahari and Postmasburg Fields (South Africa): Communication 1. Kalahari Manganese Field. Lithology and Mineral Resources, 54(4): 333–349. https://doi.org/10.1134/S0024490219040060 |
Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119–3160. https://doi.org/10.3799/dqkx.2020.121 (in Chinese with English Abstract) |
Wang, Q. Y., Wen, X. F., Wei, X., et al., 2022. Heavy Metal Migration and Enrichment Mechanism and the Environmental Risks during the Weathering and Soil Formation of Carbonate Rocks. Earth and Environment, 50(1): 119–130. https://doi.org/10.14050/j.cnki.1672-9250.2021.49.082 (in Chinese with English Abstract) |
Wang, Y., Sun, L. X., Zhou, L. Y., et al., 2018. Discussion on the Relationship between the Yanshanian Movement and Cratonic Destruction in North China. Science China Earth Sciences, 61(5): 499–514. https://doi.org/10.1007/s11430-017-9177-2 |
Wu, C., Zhang, X. Q., Zhao, Y. K., 2000. Stratiform Geomorphology and Himalayan Tectonic Movement on the North China Mountains. Geography and Territorial Research, 16(3): 82–86 (in Chinese with English Abstract) |
Xia, S. Q., Lin, C. S., Du, X. F., et al., 2020. Correspondences among Lacustrine Fluctuations, Climate Changes and the Milankovitch Cycles in the Paleogene through Tracking Onlap Points and Correlating Palaeontology in Liaozhong Depression, Bohai Bay Basin, NE China. Geological Journal, 55(9): 6527–6543. https://doi.org/10.1002/gj.3825 |
Xie, B. Z., Zhu, J. M., Wang, X. L., et al., 2023. Mesoproterozoic Oxygenation Event: From Shallow Marine to Atmosphere. GSA Bulletin, 135(3/4): 753–766. https://doi.org/10.1130/b36407.1 |
Xie, J. C., Yang, X. Y., Du, J. G., et al., 2006. Geochemical Characteristics of Sedimentary Manganese Deposit of Guichi, Anhui Province, China. Journal of Rare Earths, 24(3): 374–380. https://doi.org/10.1016/S1002-0721(06)60127-0 |
Xu, H., Liu, Y. Q., Kuang, H. W., et al., 2017. Jurassic–Cretaceous Terrestrial Transition Red Beds in Northern North China and Their Implication on Regional Paleogeography, Paleoecology, and Tectonic Evolution. Palaeoworld, 26(2): 403–422. https://doi.org/10.1016/j.palwor.2016.05.007 |
Yan, D. R., Li, J. W., Hu, M. A., et al., 2006. Characteristics and Genesis of Supergene Manganese Ores in Xialei, Guangxi. Geological Science and Technology Information, 25(3): 61–67 (in Chinese with English Abstract) |
Yang, J. H., Wu, F. Y., Shao, J., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3/4): 336–352. https://doi.org/10.1016/j.epsl.2006.04.029 |
Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859–863. https://doi.org/10.1130/G49917.1 |
Yu, W. C., Du, Y. S., Zhou, Q., et al., 2020. Coupling between Metallogenesis of the Cryogenian Datangpo-Type Manganese Deposit in South China and Major Geological Events. Journal of Palaeogeography (Chinese Edition), 22(5): 855–871. https://doi.org/10.7605/gdlxb.2020.05.059 (in Chinese with English Abstract) |
Yu, W. C., Polgári, M., Gyollai, I., et al., 2021. Microbial Metallogenesis of Early Carboniferous Manganese Deposit in Central Guangxi, South China. Ore Geology Reviews, 136: 104251. https://doi.org/10.1016/j.oregeorev.2021.104251 |
Zhang, H. R., Zhang, Y. K., Cai, X. M., et al., 2013. The Triggering of Yanshan Movement: Yanshan Event. Acta Geologica Sinica, 87(12): 1779–1790. https://doi.org/10.19762/j.cnki.dizhixuebao.2013.12.001 (in Chinese with English Abstract) |
Zhang, X. H., Wang, Z. L., Hou, F. H., et al., 2015. Terrain Evolution of China Seas and Land since the Indo-China Movement and Characteristics of the Stepped Landform. Chinese Journal of Geophysics, 58(1): 54–68. https://doi.org/10.1002/cjg2.20155 |
Zheng, S. L., Zhang, W., Ding, Q. H., 2001. Discovery of Fossil Plants from Middle—Upper Jurassic Tuchengzi Formation in Western Liaoning, China. Acta Palaeontologica Sinica, 40(1): 67–85 (in Chinese with English Abstract) |
Zhou, H. Y., Pi, D. H., Huang, Q., et al., 2024. Geology, Geochemistry and Genesis of the Dongping Manganese Deposit, Guangxi Province, China. Earth Science, 49(2): 656–668. https://doi.org/10.3799/dqkx.2022.159 (in Chinese with English Abstract) |
Zhou, M. F., Li, M. Y. H., Wang, Z. C., et al., 2020. The Genesis of Regolith-Hosted Rare Earth Element and Scandium Deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809–3824. https://doi.org/10.1360/TB-2020-0350 (in Chinese with English Abstract) |
Zhu, G., Lu, Y. C., Su, N., et al., 2021. Crustal Deformation and Dynamics of Early Cretaceous in the North China Craton. Science China Earth Sciences, 64(9): 1428–1450 |
Zhu, S. Q., 1998. Geological Features of Lateritic Type Manganese Deposit in Dongping. China's Manganese Industry, 16(1): 9–13 (in Chinese with English Abstract) |