Citation: | Mohamed M. Gomaa, Emad A. Abd El Aziz. Depositional Environment, Petrophysical Evaluation and Electrical Properties of Zeit Formation, Northwestern Shore of Gulf of Suez, Egypt. Journal of Earth Science, 2024, 35(5): 1720-1737. doi: 10.1007/s12583-023-1858-7 |
The Zeit sand reservoir is one of the most prolific formations at Northwestern side of the Gulf of Suez. In this research we will try to coordinate between electrical, petrophysical properties, depositional environment and facies discrimination in order to evaluate the hydrocarbon potentiality of studied Zeit Formation. The statistical parameters for potassium (K), thorium (Th) and Th/U ratio contents have a general increase towards northwestern parts, whereas uranium (U) content has a general increase towards southeastern parts. The sandstone facies is distinguished from the other facies by its thorium content > 4 ppm. U has high carbonate content (U ≥ 1 ppm). Rocks' electrical properties vary greatly depending on a number of factors. Electrical measurements were taken at frequencies range of (5 × 10-4 Hz–100 kHz) for fully saturated samples (clayey sandstone) with NaCl (20 gm/L). As salinity, clay content, and frequency increase, consequently does the electrical properties. The continental condition are present in northwestern part (back-sea) which is distinguished by high K percent, high Th, high Th/U ratio, and low U contents. Low K, Th, and Th/U ratio contents, with high U contents, characterize the marine depositional environment that existed around the east and southeastern parts (fore-sea coincide with the dipping of strata). Furthermore, the studied Zeit Formation has good petrophysical properties that coincide with marine conditions. The middle and eastern parts (around ISS-94 and CSS-288) is a good reservoir (porosity 36%–39%, shale content < 15%, hydrocarbon saturation 71%–92%, and net pay thickness 17–63 feet).
Abd El Aziz, E. A., Gomaa, M. M., 2022a. Electrical Properties of Sedimentary Microfacies and Depositional Environment Deduced from Core Analysis of the Syn-Rift Sediments, Northwestern Shore of Gulf of Seuz, Egypt, J. of Petroleum Exploration and Production Technology, 12: 2915–2936. https://doi.org/10.1007/s13202-022-01484-3 |
Abou El-Anwar, E., Gomaa, M. M., 2013. Electrical Properties and Geochemistry of Carbonate Rocks from the Qasr El-Sagha Formation, El-Faiyum, Egypt. Geophysical Prospecting, 61: 630–644 doi: 10.1111/j.1365-2478.2012.01087.x |
Abou El-Anwar, E. A., Gomaa, M. M., 2016. Electrical, Mineralogical, Geochemical and Provenance of Cretaceous Black Shales, Red Sea Coast, Egypt. Egyptian Journal of Petroleum, 25(3): 323–332. https://doi.org/10.1016/j.ejpe.2015.08.006 |
Abul-Nasr, R. A., 1990. Re-Evaluation of the Upper Eocene Rock Units in West Central Sinai, Egypt. Ain Shams University, Earth Science Series, 4: 234–247 |
Adams, J., Weaver, C. E., 1958. Thorium-to-Uranium Ratios as Indicators of Sedimentary Processes: Example of Concept of Geochemical Facies. AAPG Bull., 42(2): 387–430 |
Al-Jafar, M. K., Al-Jaberi, M. H., 2022. Determination of Clay Minerals Using Gamma Ray Spectroscopy for the Zubair Formation in Southern Iraq. Journal of Petroleum Exploration and Production Technology, 12(2): 299–306. https://doi.org/10.1007/s13202-021-01371-3 |
Alsharhan, A. S., 2003. Petroleum Geology and Potential Hydrocarbon Plays in the Gulf of Suez Rift Basin, Egypt. AAPG Bulletin, 87(1): 143–180 |
Archie, G. E., 1942. The Electrical Resistivity Log as an Aid in Determining some Reservoir Characteristics. Transactions of the AIME, 146(1): 54–62. https://doi.org/10.2118/942054-g |
Bosworth, W., Crevello, P., Winn, R. D. Jr, et al., 1998. Structure, Sedimentation, and Basin Dynamics during Rifting of the Gulf of Suez and North-Western Red Sea. In: Purser, B. H., Bosence, D. W. J., eds., Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden. Springer Netherlands, Dordrecht. |
Cassel, L. A., Schultz, D., 2010. High Resolution Spectral Gamma Ray Log (HRSGR): Applications for Unconventional Reservoirs. In: Article # 40689, Poster Presentation at AAPG International Conference and Exhibition, Calgary, Alberta, Canada, September 12–15, 2010 |
Chelidze, T. L., Gueguen, Y., 1999. Electrical Spectroscopy of Porous Rocks: A Review-Ⅰ. Theoretical Models. Geophysical Journal International, 137(1): 1–15. https://doi.org/10.1046/j.1365-246x.1999.00799.x |
Chelidze, T. L., Gueguen, Y., Ruffet, C., 1999. Electrical Spectroscopy of Porous Rocks: A Review-Ⅱ. Experimental Results and Interpretation. Geophysical Journal International, 137(1): 16–34. https://doi.org/10.1046/j.1365-246x.1999.00800.x |
Corex, 2009. Special Core Analysis Study, Issaran Field, Egypt. Internal Reports |
Davies, S. J., Elliott, T., 1996. Spectral Gamma Ray Characterization of High Resolution Sequence Stratigraphy: Examples from Upper Carboniferous Fluvio-Deltaic Systems, County Clare, Ireland. Geological Society, London, Special Publications, 104(1): 25–35. https://doi.org/10.1144/gsl.sp.1996.104.01.03 |
Dukhin, S. S., 1971. Dielectric Properties of Disperse Systems. In: Matijevic, E., ed., Surface and Colloid Science, Wiley and Sons, New York |
Efros, A. L., Shklovskii, B. I., 1976. Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold. Physica Status Solidi B Basic Research, 76(2): 475–485. https://doi.org/10.1002/pssb.2220760205 |
Egyptian General Petroleum Corporation (E. G. P. C.), 1996. Gulf of Suez Oil and Gas Fields, A Comprehensive Overview, Cairo |
Ehrenberg, S. N., Svana, T. A., 2001. Use of Spectral Gamma-Ray Signature to Interpret Stratigraphic Surfaces in Carbonate Strata: An Example from the Finnmark Carbonate Platform (Carboniferous-Permian), Barents Sea. AAPG Bulletin, 85(2): 295–308. https://doi.org/10.1306/8626c7c1-173b-11d7-8645000102c1865d |
Garfunkel, R. L., Bartov, Y., 1977. The Tectonic of the Suez Rift. Geological Survey of Israel Bulletin, 71: 1–44 |
Garrouch, A. A., 2001. Effect of Wettability and Water Saturation on the Dielectric Constant of Hydrocarbons Rocks, 41st Annual Logging Symp. (SPWLA), Paper NN. J. Geophys. Res., 99: 21635–21650 |
Garrouch, A. A., 1994. The Influence of Clay Content, Salinity, Stress, and Wettability on the Dielectric Properties of Brine-Saturated Rocks: 10 Hz to 10 MHz. Geophysics, 59(6): 909. https://doi.org/10.1190/1.1443650 |
Glover, P. W. J., Meredith, P. G., Sammonds, P. R., et al., 1994a. Ionic Surface Electrical Conductivity in Sandstone. J. Geophys. Res., 99(B11): 21635–21650 doi: 10.1029/94JB01474 |
Glover, P. W. J., Meredith, P. G., Sammonds, P. R., et al., 1994b. Measurements of Complex Electrical Conductivity and Fluid Permeabilities in Porous Rocks at Raised Confining Pressures, In: Rock Mechanics in Petroleum Engineering, Proc. EUROROCK94, 29–36, Balkema, Amsterdam |
Gomaa, M. M. M. S., Elsayed, R. A. M., 2006. Thermal Effect of Magma Intrusion on Electrical Properties of Magnetic Rocks from Hamamat Sediments, NE Desert, Egypt 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006. Vienna, Austria. European Association of Geoscientists & Engineers, 57(1): 141–149. https://doi.org/10.3997/2214-4609.201402105 |
Gomaa, M. M., 2009. Relation between Electric Properties and Water Saturation for Hematitic Sandstone with Frequency. Annals of Geophysics, 51(5/6): 801–811 |
Gomaa, M. M., 2009. Saturation Effect on Electrical Properties of Hematitic Sandstone in the Audio Frequency Range Using Non-Polarizing Electrodes. Geophysical Prospecting, 57(6): 1091–1100. https://doi.org/10.1111/j.1365-2478.2009.00797.x |
Gomaa, M. M., 2013. Forward and Inverse Modelling of the Electrical Properties of Magnetite Intruded by Magma, Egypt. Geophysical Journal International, 194(3): 1527–1540. https://doi.org/10.1093/gji/ggt176 |
Gomaa, M. M., Abou El-Anwar, E. A., 2015. Electrical and Geochemical Properties of Tufa Deposits as Related to Mineral Composition in the South Western Desert, Egypt. Journal of Geophysics and Engineering, 12(3): 292–302. https://doi.org/10.1088/1742-2132/12/3/292 |
Gomaa, M. M., Abou El-Anwar, E. A., 2019. Electrical, Mineralogical, and Geochemical Properties of Um Gheig and Um Bogma Formations, Egypt. Carbonates and Evaporites, 34(4): 1251–1264. https://doi.org/10.1007/s13146-017-0370-5 |
Gomaa, M. M., Alikaj, P., 2009. Effect of Electrode Contact Impedance on A. C. Electrical Properties of a Wet Hematite Sample. Marine Geophysical Researches, 30(4): 265–276. https://doi.org/10.1007/s11001-010-9092-y |
Gomaa, M. M., Kassab, M. A., 2016. Pseudo-Random Renormalization Group Forward and Inverse Modeling of the Electrical Properties of some Carbonate Rocks. Journal of Applied Geophysics, 135: 144–154. https://doi.org/10.1016/j.jappgeo.2016.10.003 |
Gomaa, M. M., Metwally, H., Melegy, A., 2019. Effect of Concentration of Salts on Electrical Properties of Sediments, Lake Quaroun, Fayium, Egypt. Carbonates and Evaporites, 34(3): 721–729. https://doi.org/10.1007/s13146-018-0433-2 |
Gomaa, M. M., Shaltout, A. A., Boshta, M., 2009. Electrical Properties and Mineralogical Investigation of Egyptian Iron Ore Deposits. Materials Chemistry and Physics, 114(1): 313–318. https://doi.org/10.1016/j.matchemphys.2008.09.012 |
Grant, F. A., 1958. Use of Complex Conductivity in the Representation of Dielectric Phenomena. Journal of Applied Physics, 29(1): 76–80. https://doi.org/10.1063/1.1722949 |
Hoekstra, P., Doyle, W. T., 1971. Dielectric Relaxation of Surface Adsorbed Water. Journal of Colloid and Interface Science, 36(4): 513–521. https://doi.org/10.4401/ag-3015 |
Jonscher, A. K., 1999. Dielectric Relaxation in Solids. J. Phys. D: Appl. Phys., 32: R57–R70 doi: 10.1088/0022-3727/32/14/201 |
Kassab, M. A., Gomaa, M. M., Lala, A. M. S., 2017. Relationships between Electrical Properties and Petrography of El-Maghara Sandstone Formations, Egypt. NRIAG Journal of Astronomy and Geophysics, 6(1): 162–173. https://doi.org/10.1016/j.nrjag.2017.01.002 |
Khalil, B., Mesheref, W. M., 1988. Hydrocarbon Occurrences and Structural Style of the Southern Suez Rift Basin. Egypt. 9th Petrol. Expl. and Prod. Conf., E. G. P. C., Cairo, Egypt, 1: 86–109 |
Knight, R. J., Endres, A. L., 1990. A New Concept in Modeling the Dielectric Response of Sandstones: Defining a Wetted Rock and Bulk Water System. Geophysics, 55: 586–594 doi: 10.1190/1.1442870 |
Knight, R. J., 1983. The Use of Complex Plane Plots in Studying the Electrical Response of Rocks. Journal of Geomagnetism and Geoelectricity, 35(11/12): 767–776. https://doi.org/10.5636/jgg.35.767 |
Knight, R. J., Nur, A., 1987. The Dielectric Constant of Sandstones, 60 kHz to 4 MHz. Geophysics, 52(5): 644–654. https://doi.org/10.1190/1.1442332 |
Leroy, P., Revil, A., 2004. A Triple-Layer Model of the Surface Electrochemical Properties of Clay Minerals. Journal of Colloid and Interface Science, 270(2): 371–380. https://doi.org/10.1016/j.jcis.2003.08.007 |
Levitskaya, T. M., Sternberg, B. K., 2000. Application of Lumped-Circuit Method to Studying Soils at Frequencies from 1 kHz to 1 GHz. Radio Science, 35(2): 371–383 doi: 10.1029/1999RS002186 |
MacDonald, J. R., 1974. Binary Electrolyte Small-Signal Frequency Response. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53(1): 0022072874800021. https://doi.org/10.1016/0022-0728(74)80002-1 |
Mendelson, K. S., Cohen, M. H., 1982. The Effect of Grain Anisotropy on the Electrical Properties of Sedimentary Rocks. Geophysics, 47(2): 257–263 doi: 10.1190/1.1441332 |
Minor, M., Hp, V. L., Lyklema, J., 1998. Low-Frequency Dielectric Response of Polystyrene Latex Dispersions. Journal of Colloid and Interface Science, 206(2): 397–406. https://doi.org/10.1006/jcis.1998.5619 |
Mitchell, J. K., 1992. Fundamentals of Soil Behaviour, 2nd Edn. Wiley, New York |
Montenat, C., D'Estevou, P. O., Jarrige, J. J., et al., 1998. Rift Development in the Gulf of Suez and the North-Western Red Sea: Structural Aspects and Related Sedimentary Processes. In: Purser, B. H., Bosence, D. W. J., eds., Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden. Springer Netherlands, Dordrecht. |
Myers, K. J., Wignall, P. B., 1987. Understanding Jurassic Organic-Rich Mudrocks—New Concepts Using Gamma-Ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. Marine Clastic Sedimentology, Springer Netherlands, Dordrecht. |
Olhoeft, G. R., 1985. Low-Frequency Electrical Properties. Geophysics, 50(12): 2492–2503. https://doi.org/10.1190/1.1441880 |
Pride, S., 1994. Governing Equations for the Coupled Electromagnetics and Acoustics of Porous Media. Physical Review B, Condensed Matter, 50(21): 15678–15696. https://doi.org/10.1103/physrevb.50.15678 |
Revil, A., Glover, P. W. J., 1997. Theory of Ionic-Surface Electrical Conduction in Porous Media. Physical Review B, 55(3): 1757–1773. https://doi.org/10.1103/physrevb.55.1757 |
Roberts, J. J., Lin, W. N., 1997. Electrical Properties of Partially Saturated Topopah Spring Tuff: Water Distribution as a Function of Saturation. Water Resources Research, 33(4): 577–587. https://doi.org/10.1029/96wr03905 |
Robson, D. A., 1971. The Structure of the Gulf of Suez (Clysmic) Rift, with Special Reference to the Eastern Side. Journal of the Geological Society, 127(3): 247–271. https://doi.org/10.1144/gsjgs.127.3.0247 |
Saarenketo, T., 1998. Electrical Properties of Water in Clay and Silty Soils. Journal of Applied Geophysics, 40(1/2/3): 73–88. https://doi.org/10.1016/s0926-9851(98)00017-2 |
Saoudi, A., Moustafa, A. R., Farag, R. I., et al., 2014. Dual-Porosity Fractured Miocene Syn-Rift Dolomite Reservoir in the Issaran Field (Gulf of Suez, Egypt): A Case History of the Zonal Isolation of Highly Fractured Water Carrier Bed. Geological Society, London, Special Publications, 374(1): 379–394. https://doi.org/10.1144/sp374.7 |
Schlumberger, 1984. Natural Gamma-Ray Spectrometry: Essentials of NGS Interpretation. Developments in Petroleum Science, 15A: 113–134. https://doi.org/10.1016/s0376-7361(08)70421-7 |
Schlumberger, 1998. Schlumberger Log Interpretation Principle-Applications. Schlumberger Educational Services, Houston, Texas |
Schwan, H. P., Schwarz, G., Maczuk, J., et al., 1962. On the Low-Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte SOLUTION. The Journal of Physical Chemistry, 66(12): 2626–2635. https://doi.org/10.1021/j100818a066 |
Schwarz, G., 1962. A Theory of the low-Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte SOLUTION. The Journal of Physical Chemistry, 66(12): 2636–2642. https://doi.org/10.1021/j100818a067 |
Sen, P., 1989. Unified Model of Conductivity and Membrane Potential of Porous Media. Physical Review B, Condensed Matter, 39(13): 9508–9517. https://doi.org/10.1103/physrevb.39.9508 |
Shaltout, A. A., Gomma, M. M., Ali-Bik, M. W., 2012. Utilization of Standardless Analysis Algorithms Using WDXRF and XRD for Egyptian Iron Ore Identification. X-Ray Spectrometry, 41(6): 355–362. https://doi.org/10.1002/xrs.2410 |
Sheriff, R. E., Geldart, L. P., 1995. Exploration Seismology. Cambridge Univ. Press, Cambridge |
Shilov, V. N., Delgado, A. V., Gonzalez-Caballero, F., et al., 2001. Thin Double Layer Theory of the Wide-Frequency Range Dielectric Dispersion of Suspensions of Non-Conducting Spherical Particles Including Surface Conductivity of the Stagnant Layer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 192: 253–265 |
Swanson, V. E., 1961. Geology and Geochemistry of Uranium in Marine Black Shales: A Review. U. S. Geological Survey Professional Paper 356-C, 67–112 |
Wilkinson, D., Langer, J. S., Sen, P. N., 1983. Enhancement of the Dielectric Constant near a Percolation Threshold. Physical Review B, 28(2): 1081–1087. https://doi.org/10.1103/physrevb.28.1081 |
Wong, P. Z., 1987. Fractal Surfaces in Porous Media. Am. Inst. Phys., 154: 304–318. https://doi.org/10.1063/1.36383 |
Wong, J., 1979. An Electrochemical Model of the Induced-Polarization Phenomenon in Disseminated Sulfide Ores. Geophysics, 44(7): 1245. https://doi.org/10.1190/1.1441005 |