Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 6
Dec 2023
Turn off MathJax
Article Contents
Rong Cao, Hanqing Zhao, Zhongwu Lan. Calcite U-Pb Geochronology Revealing Late Ediacaran–Early Paleozoic Hydrothermal Alteration in the Stenian-Tonian Carbonate of Northeastern North China Craton. Journal of Earth Science, 2023, 34(6): 1724-1731. doi: 10.1007/s12583-023-1859-6
Citation: Rong Cao, Hanqing Zhao, Zhongwu Lan. Calcite U-Pb Geochronology Revealing Late Ediacaran–Early Paleozoic Hydrothermal Alteration in the Stenian-Tonian Carbonate of Northeastern North China Craton. Journal of Earth Science, 2023, 34(6): 1724-1731. doi: 10.1007/s12583-023-1859-6

Calcite U-Pb Geochronology Revealing Late Ediacaran–Early Paleozoic Hydrothermal Alteration in the Stenian-Tonian Carbonate of Northeastern North China Craton

doi: 10.1007/s12583-023-1859-6
More Information
  • Corresponding author: Zhongwu Lan, lzw1981@126.com
  • Received Date: 07 Feb 2023
  • Accepted Date: 24 May 2023
  • Available Online: 08 Dec 2023
  • Issue Publish Date: 30 Dec 2023
  • Two calcite LA-ICP-MS U-Pb ages of 534 ± 26 Ma (MSWD = 5.9) and 456 ± 43 Ma (MSWD = 3.8) were obtained from the Nanfen Formation, Xihe Group in the southern Liaoning Province, northeastern China, which significantly postdate the theoretical depositional age of sampling horizon. This means they represent timing of post-depositional hydrothermal event possibly induced by synchronous far-field magmatism in the South Qinling. Occurrence of common Pb enriched muddy components coupled with input of "mantle"-like common Pb could account for the relatively low U contents and high common Pb contents in the dated muddy carbonates. We recommend that micro-domains of carbonates are prescreened by rapid in situ carbonate U-Pb geochronology to demonstrate whether they are of primary or secondary origin before utilizing them for chemostratigraphic study.

     

  • Electronic Supplementary Materials: Supplementary materials (carbonate LA-ICP-MS U-Pb age data) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1859-6.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bao, X. J., Zhao, H. Q., Zhang, S. H., et al., 2023. Length of Day at c. 1.1 Ga Based on Cyclostratigraphic Analyses of the Nanfen Formation in the North China Craton, and Its Geodynamic Implications. Journal of the Geological Society, 180(1): jgs2022-022. https://doi.org/10.1144/jgs2022-02
    Bristow, T. F., Bonifacie, M., Derkowski, A., et al., 2011. A Hydrothermal Origin for Isotopically Anomalous Cap Dolostone Cements from South China. Nature, 474(7349): 68–71. https://doi.org/10.1038/nature10096
    Cawood, P. A., Nemchin, A. A., 2000. Provenance Record of a Rift Basin: U/Pb Ages of Detrital Zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134(3/4): 209–234. https://doi.org/10.1016/s0037-0738(00)00044-0
    Cong, F. Y., Tian, J. Q., Hao, F., et al., 2022. Calcite U-Pb Ages Constrain Petroleum Migration Pathways in Tectonic Complex Basins. Geology, 50(6): 644–649. https://doi.org/10.1130/g49750.1
    Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Reclassification of the Meso- and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica—English Edition, 83(6): 1074–1084. https://doi.org/10.1111/j.1755-6724.2009.00135.x
    Gao, L. Z., Zhang, C. H., Chen, S. M., et al., 2010. SHRIMP U-Pb Age of Detrital Zircons from the Xihe Group of the Liaodong Peninsula and Its Geological Significance. Geological Bulletin of China, 29(8): 1113–1122 (in Chinese with English Abstract)
    Hong, Z. M., Yang, Y. J., Huang, Z. F., et al., 1991. Macrofossil Sequence of the Late Precambrian from the Southern Liaodong Peninsula. Liaoning Geology, (3): 219–236. (in Chinese with English Abstract)
    Lan, Z. W., 2022. WANCE: A Possibly Volcanism-Induced Ediacaran Carbon Isotope Excursion. Journal of Earth Science, 33(3): 778–788. https://doi.org/10.1007/s12583-020-1106-3
    Lan, Z. W., Roberts, N. M. W., Zhou, Y., et al., 2022a. Application of in situ U-Pb Carbonate Geochronology to Stenian-Tonian Successions of North China. Precambrian Research, 370: 106551. https://doi.org/10.1016/j.precamres.2021.106551
    Lan, Z. W., Wu, S. T., Roberts, N. M. W., et al., 2022b. Geochronological and Geochemical Constraints on the Origin of Highly 13Ccarb-Depleted Calcite in Basal Ediacaran Cap Carbonate. Geological Magazine, 159(8): 1323–1334. https://doi.org/10.1017/s001675682200019x
    Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022c. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156
    Lan, Z. W., Sano, Y., Yahagi, T., et al., 2019. An Integrated Chemostratigraphic (δ13C-δ18O-87Sr/86Sr-δ15N) Study of the Doushantuo Formation in Western Hubei Province, South China. Precambrian Research, 320: 232–252. https://doi.org/10.1016/j.precamres.2018.10.018
    Lan, Z. W., Wu, S. T., Wang, F. Y., et al., 2023. A ca. 290 Ma Hydrothermal Calcite in Cambrian Dolostone. Marine and Petroleum Geology, 147: 106011. https://doi.org/10.1016/j.marpetgeo.2022.106011
    Lan, Z. W., Zhang, S. J., Li, X. H., et al., 2020. Towards Resolving the 'Jigsaw Puzzle' and Age-Fossil Inconsistency within East Gondwana. Precambrian Research, 345: 105775. https://doi.org/10.1016/j.precamres.2020.105775
    Liaoning Bureau of Geology and Mineral Resources (LBGMR), 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing. 856 (in Chinese)
    Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1/2): 77–93. https://doi.org/10.1016/j.precamres.2007.04.017
    Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307–315. https://doi.org/10.1038/nature13068
    Martin, J. M., Whitfield, M., 1983. The Significance of the River Input of Chemical Elements to the Ocean. Trace Metals in Sea Water. Springer, Boston. 265–296. https://doi.org/10.1007/978-1-4757-6864-0_16
    Pullaiah, G., Irving, E., Buchan, K. L., et al., 1975. Magnetization Changes Caused by Burial and Uplift. Earth and Planetary Science Letters, 28(2): 133–143. https://doi.org/10.1016/0012-821x(75)90221-6
    Ricci, A., Kleine, B. I., Fiebig, J., et al., 2022. Equilibrium and Kinetic Controls on Molecular Hydrogen Abundance and Hydrogen Isotope Fractionation in Hydrothermal Fluids. Earth and Planetary Science Letters, 579: 117338. https://doi.org/10.1016/j.epsl.2021.117338
    Roberts, N. M. W., Drost, K., Horstwood, M. S. A., et al., 2020. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb Carbonate Geochronology: Strategies, Progress, and Limitations. Geochronology, 2(1): 33–61. https://doi.org/10.5194/gchron-2-33-2020
    Roberts, N. M. W., Žák, J., Vacek, F., et al., 2021. No more Blind Dates with Calcite: Fluid-Flow vs. Fault-Slip along the Očkov Thrust, Prague Basin. Geoscience Frontiers, 12(4): 101143. https://doi.org/10.1016/j.gsf.2021.101143
    Rochelle-Bates, N., Roberts, N. M. W., Sharp, I., et al., 2021. Geochronology of Volcanically Associated Hydrocarbon Charge in the Pre-Salt Carbonates of the Namibe Basin, Angola. Geology, 49(3): 335–340. https://doi.org/10.1130/g48019.1
    Silva-Tamayo, J. C., Giovanny, N., Dussan-Tapias, K. T., 2018. Chemostratigraphy of the Mesoproterozoic-Neoproterozoic Transition. In: Sial, A. N., Gaucher, C., Ramkumar, M., et al., eds., Chemostratigraphy across Major Chronological Boundaries. American Geophysical Union and John Wiley & Sons, Inc., New Jersey. 73–87
    Tang, Q., Pang, K., Li, G. J., et al., 2021. One-Billion-Year-Old Epibionts Highlight Symbiotic Ecological Interactions in Early Eukaryote Evolution. Gondwana Research, 97: 22–33. https://doi.org/10.1016/j.gr.2021.05.008
    Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    Wang, Q. H., Yang, D. B., Xu, W. L., 2012. Neoproterozoic Basic Magmatism in the Southeast Margin of North China Craton: Evidence from Whole-Rock Geochemistry, U-Pb and Hf Isotopic Study of Zircons from Diabase Swarms in the Xuzhou-Huaibei Area of China. Science China Earth Sciences, 55(9): 1461–1479. https://doi.org/10.1007/s11430-011-4237-7
    Wu, S. T., Yang, Y. H., Roberts, N. M. W., et al., 2022. In situ Calcite U-Pb Geochronology by High-Sensitivity Single-Collector LA-SF-ICP-MS. Science China Earth Sciences, 65(6): 1146–1160. https://doi.org/10.1007/s11430-021-9907-1
    Wu, Z. J., Lu, C. H., Qiu, L. W., et al., 2022. New Detrital Zircon Geochronological Results from the Meso-Neoproterozoic Sandstones in the Southern-Eastern Liaoning Region, North China Craton, and Their Paleogeographic Implications. Precambrian Research, 381: 106847. https://doi.org/10.1016/j.precamres.2022.106847
    Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208–225. https://doi.org/10.1016/j.precamres.2014.03.004
    Yang, D. B., Xu, W. L., Xu, Y. G., et al., 2012. U-Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China: Implications for the Late Precambrian Evolution of the Southeastern North China Craton. Precambrian Research, 216/217/218/219: 162–176. https://doi.org/10.1016/j.precamres.2012.07.002
    Zhang, S. H., Zhao, Y., Ye, H., et al., 2016. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203–225. https://doi.org/10.1016/j.precamres.2015.11.005
    Zhang, S. J., Cao, R., Lan, Z. W., et al., 2022. SIMS Pb-Pb Dating of Phosphates in the Proterozoic Strata of SE North China Craton: Constraints on Eukaryote Evolution. Precambrian Research, 371: 106562. https://doi.org/10.1016/j.precamres.2022.106562
    Zhang, W., Liu, F. L., Liu, C. H., 2021. Provenance Transition from the North China Craton to the Grenvillian Orogeny-Related Source: Evidence from Late Mesoproterozoic–Early Neoproterozoic Strata in the Liao-Ji Area. Precambrian Research, 362: 106281. https://doi.org/10.1016/j.precamres.2021.106281
    Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. GSA Bulletin, 132(3/4): 739–766. https://doi.org/10.1130/b35198.1
    Zhou, Y., Pogge von Strandmann, P. A. E., Zhu, M. Y., et al., 2020. Reconstructing Tonian Seawater 87Sr/86Sr Using Calcite Microspar. Geology, 48(5): 462–467. https://doi.org/10.1130/g46756.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(262) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return